Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Nature ; 608(7922): 360-367, 2022 08.
Article in English | MEDLINE | ID: mdl-35948708

ABSTRACT

Defining the transition from benign to malignant tissue is fundamental to improving early diagnosis of cancer1. Here we use a systematic approach to study spatial genome integrity in situ and describe previously unidentified clonal relationships. We used spatially resolved transcriptomics2 to infer spatial copy number variations in >120,000 regions across multiple organs, in benign and malignant tissues. We demonstrate that genome-wide copy number variation reveals distinct clonal patterns within tumours and in nearby benign tissue using an organ-wide approach focused on the prostate. Our results suggest a model for how genomic instability arises in histologically benign tissue that may represent early events in cancer evolution. We highlight the power of capturing the molecular and spatial continuums in a tissue context and challenge the rationale for treatment paradigms, including focal therapy.


Subject(s)
Clone Cells , DNA Copy Number Variations , Genomic Instability , Neoplasms , Spatial Analysis , Clone Cells/metabolism , Clone Cells/pathology , DNA Copy Number Variations/genetics , Early Detection of Cancer , Genome, Human , Genomic Instability/genetics , Genomics , Humans , Male , Models, Biological , Neoplasms/genetics , Neoplasms/pathology , Prostate/metabolism , Prostate/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Transcriptome/genetics
2.
Nature ; 508(7495): 215-21, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24695224

ABSTRACT

Cancers have dysfunctional redox regulation resulting in reactive oxygen species production, damaging both DNA and free dNTPs. The MTH1 protein sanitizes oxidized dNTP pools to prevent incorporation of damaged bases during DNA replication. Although MTH1 is non-essential in normal cells, we show that cancer cells require MTH1 activity to avoid incorporation of oxidized dNTPs, resulting in DNA damage and cell death. We validate MTH1 as an anticancer target in vivo and describe small molecules TH287 and TH588 as first-in-class nudix hydrolase family inhibitors that potently and selectively engage and inhibit the MTH1 protein in cells. Protein co-crystal structures demonstrate that the inhibitors bind in the active site of MTH1. The inhibitors cause incorporation of oxidized dNTPs in cancer cells, leading to DNA damage, cytotoxicity and therapeutic responses in patient-derived mouse xenografts. This study exemplifies the non-oncogene addiction concept for anticancer treatment and validates MTH1 as being cancer phenotypic lethal.


Subject(s)
DNA Repair Enzymes/antagonists & inhibitors , Neoplasms/drug therapy , Neoplasms/metabolism , Nucleotides/metabolism , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Animals , Catalytic Domain , Cell Death/drug effects , Cell Survival/drug effects , Crystallization , DNA Damage , DNA Repair Enzymes/chemistry , DNA Repair Enzymes/metabolism , Deoxyguanine Nucleotides/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Humans , Male , Mice , Models, Molecular , Molecular Conformation , Molecular Targeted Therapy , Neoplasms/pathology , Oxidation-Reduction/drug effects , Phosphoric Monoester Hydrolases/chemistry , Phosphoric Monoester Hydrolases/metabolism , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Pyrophosphatases/antagonists & inhibitors , Reproducibility of Results , Xenograft Model Antitumor Assays , Nudix Hydrolases
4.
Mol Cell ; 37(4): 492-502, 2010 Feb 26.
Article in English | MEDLINE | ID: mdl-20188668

ABSTRACT

Faithful DNA replication is essential to all life. Hydroxyurea (HU) depletes the cells of dNTPs, which initially results in stalled replication forks that, after prolonged treatment, collapse into DSBs. Here, we report that stalled replication forks are efficiently restarted in a RAD51-dependent process that does not trigger homologous recombination (HR). The XRCC3 protein, which is required for RAD51 foci formation, is also required for replication restart of HU-stalled forks, suggesting that RAD51-mediated strand invasion supports fork restart. In contrast, replication forks collapsed by prolonged replication blocks do not restart, and global replication is rescued by new origin firing. We find that RAD51-dependent HR is triggered for repair of collapsed replication forks, without apparent restart. In conclusion, our data suggest that restart of stalled replication forks and HR repair of collapsed replication forks require two distinct RAD51-mediated pathways.


Subject(s)
DNA Repair , DNA Replication , DNA/metabolism , Hydroxyurea/metabolism , Rad51 Recombinase/metabolism , Cell Line, Tumor , DNA/genetics , DNA Damage , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , RNA, Small Interfering/genetics , Rad51 Recombinase/genetics , S Phase , Substrate Specificity
5.
Nucleic Acids Res ; 40(17): 8440-8, 2012 Sep 01.
Article in English | MEDLINE | ID: mdl-22753029

ABSTRACT

Ultraviolet (UV)-induced DNA damage causes an efficient block of elongating replication forks. The checkpoint kinase, CHK1 has been shown to stabilize replication forks following hydroxyurea treatment. Therefore, we wanted to test if the increased UV sensitivity caused by the unspecific kinase inhibitor caffeine--inhibiting ATM and ATR amongst other kinases--is explained by inability to activate the CHK1 kinase to stabilize replicative structures. For this, we used cells deficient in polymerase η (Polη), a translesion synthesis polymerase capable of properly bypassing the UV-induced cis-syn TT pyrimidine dimer, which blocks replication. These cells accumulate gaps behind progressing replication forks after UV exposure. We demonstrate that both caffeine and CHK1 inhibition, equally retards continuous replication fork elongation after UV treatment. Interestingly, we found more pronounced UV-sensitization by caffeine than with the CHK1 inhibitor in clonogenic survival experiments. Furthermore, we demonstrate an increased collapse of replicative structures after caffeine treatment, but not after CHK1 inhibition, in UV-irradiated cells. This demonstrates that CHK1 activity is not required for stabilization of gaps induced during replication of UV-damaged DNA. These data suggest that elongation and stabilization of replicative structures at UV-induced DNA damage are distinct mechanisms, and that CHK1 is only involved in replication elongation.


Subject(s)
DNA Damage , DNA Replication , Protein Kinases/metabolism , Ultraviolet Rays , Caffeine/pharmacology , Cell Cycle Checkpoints/drug effects , Cell Line, Transformed , Cell Survival , Checkpoint Kinase 1 , DNA Breaks, Double-Stranded , DNA Replication/drug effects , DNA Replication/radiation effects , DNA-Directed DNA Polymerase/deficiency , Humans , Protein Kinase Inhibitors/pharmacology , Signal Transduction/radiation effects
6.
Nat Commun ; 15(1): 3475, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658552

ABSTRACT

Somatic copy number alterations (SCNAs) are pervasive in advanced human cancers, but their prevalence and spatial distribution in early-stage, localized tumors and their surrounding normal tissues are poorly characterized. Here, we perform multi-region, single-cell DNA sequencing to characterize the SCNA landscape across tumor-rich and normal tissue in two male patients with localized prostate cancer. We identify two distinct karyotypes: 'pseudo-diploid' cells harboring few SCNAs and highly aneuploid cells. Pseudo-diploid cells form numerous small-sized subclones ranging from highly spatially localized to broadly spread subclones. In contrast, aneuploid cells do not form subclones and are detected throughout the prostate, including normal tissue regions. Highly localized pseudo-diploid subclones are confined within tumor-rich regions and carry deletions in multiple tumor-suppressor genes. Our study reveals that SCNAs are widespread in normal and tumor regions across the prostate in localized prostate cancer patients and suggests that a subset of pseudo-diploid cells drive tumorigenesis in the aging prostate.


Subject(s)
DNA Copy Number Variations , Prostatic Neoplasms , Single-Cell Analysis , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Aneuploidy , Prostate/pathology , Prostate/metabolism , Clone Cells , Diploidy , Aged
7.
Carcinogenesis ; 34(2): 325-30, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23125219

ABSTRACT

Although alcohol consumption is related to increased cancer risk, its molecular mechanism remains unclear. Here, we demonstrate that an intake of 10% alcohol for 4 weeks in rats is genotoxic due to induction of micronuclei. Acetaldehyde (AA), the first product of ethanol metabolism, is believed to be responsible for DNA damage induced by alcohol. Here, we observe that AA effectively blocks DNA replication elongation in mammalian cells, resulting in DNA double-strand breaks associated with replication. AA-induced DNA damage sites colocalize with the homologous recombination (HR) repair protein RAD51. HR measured in the hypoxhantineguaninefosforibosyltransferase (HPRT) gene is effectively induced by AA and recombination defective mammalian cells are hypersensitive to AA, clearly demonstrating that HR is essential in the repair of AA-induced DNA damage. Altogether, our data indicate that alcohol genotoxicity related to AA produces replication lesions on DNA triggering HR repair.


Subject(s)
Acetaldehyde/toxicity , Alcohols/toxicity , DNA Breaks, Double-Stranded/drug effects , DNA Replication/drug effects , Recombination, Genetic/drug effects , Recombinational DNA Repair/drug effects , Animals , CHO Cells , Cells, Cultured , Cricetinae , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/metabolism , Genomic Instability/drug effects , Lung/cytology , Lung/drug effects , Lung/metabolism , Male , Micronucleus Tests , Rad51 Recombinase/metabolism , Rats , Rats, Wistar
8.
EMBO J ; 28(17): 2601-15, 2009 Sep 02.
Article in English | MEDLINE | ID: mdl-19629035

ABSTRACT

If replication forks are perturbed, a multifaceted response including several DNA repair and cell cycle checkpoint pathways is activated to ensure faithful DNA replication. Here, we show that poly(ADP-ribose) polymerase 1 (PARP1) binds to and is activated by stalled replication forks that contain small gaps. PARP1 collaborates with Mre11 to promote replication fork restart after release from replication blocks, most likely by recruiting Mre11 to the replication fork to promote resection of DNA. Both PARP1 and PARP2 are required for hydroxyurea-induced homologous recombination to promote cell survival after replication blocks. Together, our data suggest that PARP1 and PARP2 detect disrupted replication forks and attract Mre11 for end processing that is required for subsequent recombination repair and restart of replication forks.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Replication/physiology , DNA-Binding Proteins/metabolism , Poly(ADP-ribose) Polymerases/metabolism , Recombination, Genetic/physiology , Animals , Cells, Cultured , Cricetinae , Cricetulus , DNA Repair , Fluorescent Antibody Technique
9.
IEEE Int Conf Rehabil Robot ; 2023: 1-6, 2023 09.
Article in English | MEDLINE | ID: mdl-37941215

ABSTRACT

In this paper, we propose a task-generic learning-based model for the control of a powered ankle exoskeleton. In contrast to the traditional state machine-based control approaches that hard codes the transition heuristics for the different states and motion conditions during gait, we propose to learn the finer constraints of gait from multiple demonstrations of human gait. We validate our proposed approach on a dataset of ten subjects walking on various inclines and at multiple speeds. We deploy our model on an ankle exoskeleton, and conduct user studies on able-bodied subjects who perform gait scenarios across varying speeds and inclines. We conduct multiple online experiments to validate our learning-based approach for different motion conditions, e.g., normal walking, walking at different speeds and inclines, turns, cross-overs with variable speed and cadence, walking on a treadmill as well as on level ground. We find that our proposed learning-based model has the capability to extrapolate its learned decision rules to support untrained gait conditions, for, e.g., walking at higher speeds and inclines not seen during training. The subjects were able to adapt to the different gait scenarios comfortably without loss of stability.


Subject(s)
Bionics , Gait , Humans , Biomechanical Phenomena , Walking , Lower Extremity
10.
Nat Commun ; 14(1): 509, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36720873

ABSTRACT

Spatially resolved transcriptomics has enabled precise genome-wide mRNA expression profiling within tissue sections. The performance of methods targeting the polyA tails of mRNA relies on the availability of specimens with high RNA quality. Moreover, the high cost of currently available spatial resolved transcriptomics assays requires a careful sample screening process to increase the chance of obtaining high-quality data. Indeed, the upfront analysis of RNA quality can show considerable variability due to sample handling, storage, and/or intrinsic factors. We present RNA-Rescue Spatial Transcriptomics (RRST), a workflow designed to improve mRNA recovery from fresh frozen specimens with moderate to low RNA quality. First, we provide a benchmark of RRST against the standard Visium spatial gene expression protocol on high RNA quality samples represented by mouse brain and prostate cancer samples. Then, we test the RRST protocol on tissue sections collected from five challenging tissue types, including human lung, colon, small intestine, pediatric brain tumor, and mouse bone/cartilage. In total, we analyze 52 tissue sections and demonstrate that RRST is a versatile, powerful, and reproducible protocol for fresh frozen specimens of different qualities and origins.


Subject(s)
RNA , Transcriptome , Child , Male , Humans , Animals , Mice , Transcriptome/genetics , RNA, Messenger , Benchmarking , Biological Assay
11.
Carcinogenesis ; 33(11): 2026-34, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22822095

ABSTRACT

DNA polymerase eta (pol η) is the only DNA polymerase causally linked to carcinogenesis in humans. Inherited deficiency of pol η in the variant form of xeroderma pigmentosum (XPV) predisposes to UV-light-induced skin cancer. Pol η-deficient cells demonstrate increased sensitivity to cisplatin and oxaliplatin chemotherapy. We have found that XP30R0 fibroblasts derived from a patient with XPV are more resistant to cell kill by ionising radiation (IR) than the same cells complemented with wild-type pol η. This phenomenon has been confirmed in Burkitt's lymphoma cells, which either expressed wild-type pol η or harboured a pol η deletion. Pol η deficiency was associated with accumulation of cells in S-phase, which persisted after IR. Cells deficient in pol η demonstrated increased homologous recombination (HR)-directed repair of double strand breaks created by IR. Depletion of the HR protein, X-ray repair cross-complementing protein 3 (XRCC3), abrogated the radioresistance observed in pol η-deficient cells as compared with pol η-complemented cells. These findings suggest that HR mediates S-phase-dependent radioresistance associated with pol η deficiency. We propose that pol η protein levels in tumours may potentially be used to identify patients who require treatment with chemo-radiotherapy rather than radiotherapy alone for adequate tumour control.


Subject(s)
DNA-Directed DNA Polymerase/genetics , Homologous Recombination/genetics , Radiation Tolerance/genetics , S Phase/physiology , Apoptosis , Blotting, Western , Cell Proliferation , Cells, Cultured , DNA Damage/radiation effects , DNA Repair/radiation effects , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Flow Cytometry , Gamma Rays , Humans , Neoplasms/metabolism , Neoplasms/pathology , Nucleic Acid Synthesis Inhibitors , RNA, Small Interfering/genetics , S Phase/radiation effects , Tumor Stem Cell Assay
12.
Nat Commun ; 13(1): 5475, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36115838

ABSTRACT

The molecular mechanisms underlying lethal castration-resistant prostate cancer remain poorly understood, with intratumoral heterogeneity a likely contributing factor. To examine the temporal aspects of resistance, we analyze tumor heterogeneity in needle biopsies collected before and after treatment with androgen deprivation therapy. By doing so, we are able to couple clinical responsiveness and morphological information such as Gleason score to transcriptome-wide data. Our data-driven analysis of transcriptomes identifies several distinct intratumoral cell populations, characterized by their unique gene expression profiles. Certain cell populations present before treatment exhibit gene expression profiles that match those of resistant tumor cell clusters, present after treatment. We confirm that these clusters are resistant by the localization of active androgen receptors to the nuclei in cancer cells post-treatment. Our data also demonstrates that most stromal cells adjacent to resistant clusters do not express the androgen receptor, and we identify differentially expressed genes for these cells. Altogether, this study shows the potential to increase the power in predicting resistant tumors.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Androgens/metabolism , Clone Cells/metabolism , Humans , Male , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Spatio-Temporal Analysis
13.
FASEB J ; 24(8): 2795-803, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20305126

ABSTRACT

The discovery of glycine conjugates of long-chain fatty acids (N-acyl glycines) in the brain and other non-neuronal tissues has led to the identification of an emerging class of bioactive lipids. The biological activities of N-acyl glycines include antinociceptive, anti-inflammatory and antiproliferative effects, and activation of G-protein-coupled receptors. However, despite the fact that N-acyl glycines are emerging as a distinct lipid signaling family, pathways for their production are not fully elucidated. Here we report on the characterization of human glycine N-acyltransferase-like 2 (hGLYATL2), a member of a gene family of 4 putative glycine conjugating enzymes, and show that it synthesizes various N-acyl glycines. Recombinantly expressed hGLYATL2 efficiently conjugated oleoyl-CoA, arachidonoyl-CoA, and other medium- and long-chain acyl-CoAs to glycine. The enzyme was specific for glycine as an acceptor molecule, and preferentially produced N-oleoyl glycine. The hGLYATL2 enzyme is localized to the endoplasmic reticulum, and the mRNA shows highest expression in salivary gland and trachea, but is also detected in spinal cord and skin fibroblasts. The expression pattern and the identification of high levels of N-acyl glycines in skin and lung may indicate a role for N-acyl glycines in barrier function/immune response and the potential role of hGLYATL2 in this regard is discussed.


Subject(s)
Acyltransferases/metabolism , Acyl Coenzyme A/metabolism , Acyltransferases/genetics , Glycine/analogs & derivatives , Glycine/biosynthesis , Humans , Lung/chemistry , RNA, Messenger/analysis , Skin/chemistry , Tissue Distribution
14.
Nature ; 434(7035): 913-7, 2005 Apr 14.
Article in English | MEDLINE | ID: mdl-15829966

ABSTRACT

Poly(ADP-ribose) polymerase (PARP1) facilitates DNA repair by binding to DNA breaks and attracting DNA repair proteins to the site of damage. Nevertheless, PARP1-/- mice are viable, fertile and do not develop early onset tumours. Here, we show that PARP inhibitors trigger gamma-H2AX and RAD51 foci formation. We propose that, in the absence of PARP1, spontaneous single-strand breaks collapse replication forks and trigger homologous recombination for repair. Furthermore, we show that BRCA2-deficient cells, as a result of their deficiency in homologous recombination, are acutely sensitive to PARP inhibitors, presumably because resultant collapsed replication forks are no longer repaired. Thus, PARP1 activity is essential in homologous recombination-deficient BRCA2 mutant cells. We exploit this requirement in order to kill BRCA2-deficient tumours by PARP inhibition alone. Treatment with PARP inhibitors is likely to be highly tumour specific, because only the tumours (which are BRCA2-/-) in BRCA2+/- patients are defective in homologous recombination. The use of an inhibitor of a DNA repair enzyme alone to selectively kill a tumour, in the absence of an exogenous DNA-damaging agent, represents a new concept in cancer treatment.


Subject(s)
Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , BRCA2 Protein/deficiency , Genes, BRCA2 , Neoplasms/drug therapy , Neoplasms/genetics , Poly(ADP-ribose) Polymerase Inhibitors , Animals , Azulenes , BRCA2 Protein/genetics , Benzodiazepines/pharmacology , Cell Line, Tumor , DNA Damage , DNA Repair , DNA Replication , Mice , Mice, Nude , Neoplasms/enzymology , Neoplasms/pathology , Poly(ADP-ribose) Polymerases/deficiency , Poly(ADP-ribose) Polymerases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Xenograft Model Antitumor Assays
15.
Mutat Res ; 706(1-2): 1-6, 2011 Jan 10.
Article in English | MEDLINE | ID: mdl-21074544

ABSTRACT

Transcription, replication and homologous recombination are intrinsically connected and it is well established that an increase of transcription is associated with an increase in homologous recombination. Here, we have studied how homologous recombination is affected during transcription inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a compound that prevents activating phosphorylations of the RNA Pol II C-terminal domain. We identify that DRB triggers an increase in homologous recombination within the hprt gene as well as increasing RAD51 foci formation in mammalian cells. Furthermore, we find that DRB-induced transcriptional stress is associated with formation of the nuclear foci of the phosphorylated form of H2AX (γH2AX). We accounted that about 72% of RAD51 foci co-localized with the observed γH2AX foci. Interestingly, we find that XRCC3 mutated, homologous recombination defective cells are hypersensitive to the toxic effect of DRB and fail to form RAD51 foci. In conclusion, we show that DRB-induced transcription inhibition is associated with the formation of a lesion that triggers RAD51-dependent homologous recombination repair, required for survival under transcriptional stress.


Subject(s)
DNA Damage , DNA Repair/drug effects , Dichlororibofuranosylbenzimidazole/pharmacology , Recombination, Genetic/drug effects , Animals , CHO Cells , Cricetinae , Cricetulus , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Enzyme Inhibitors/pharmacology , Histones/metabolism , Hypoxanthine Phosphoribosyltransferase/genetics , Microscopy, Confocal , Mutation , Phosphorylation/drug effects , Rad51 Recombinase/metabolism , Transcription, Genetic/drug effects
16.
Nucleic Acids Res ; 37(19): 6400-13, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19713438

ABSTRACT

Both the ERCC1-XPF complex and the proteins involved in homoIogous recombination (HR) have critical roles in inter-strand cross-link (ICL) repair. Here, we report that mitomycin C-induced lesions inhibit replication fork elongation. Furthermore, mitomycin C-induced DNA double-strand breaks (DSBs) are the result of the collapse of ICL-stalled replication forks. These are not formed through replication run off, as we show that mitomycin C or cisplatin-induced DNA lesions are not incised by global genome nucleotide excision repair (GGR). We also suggest that ICL-lesion repair is initiated either by replication or transcription, as the GGR does not incise ICL-lesions. Furthermore, we report that RAD51 foci are induced by cisplatin or mitomycin C independently of ERCC1, but that mitomycin C-induced HR measured in a reporter construct is impaired in ERCC1-defective cells. These data suggest that ERCC1-XPF plays a role in completion of HR in ICL repair. We also find no additional sensitivity to cisplatin by siRNA co-depletion of XRCC3 and ERCC1, showing that the two proteins act on the same pathway to promote survival.


Subject(s)
Cross-Linking Reagents/toxicity , DNA Repair , DNA-Binding Proteins/metabolism , Endonucleases/metabolism , Recombination, Genetic , Animals , Cell Line , Cisplatin/toxicity , Cricetinae , DNA Breaks, Double-Stranded , DNA Replication/drug effects , Humans , Mitomycin/toxicity , Mutation , Rad51 Recombinase/genetics
17.
Cell Genom ; 1(3): 100065, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-36776149

ABSTRACT

Formalin-fixed paraffin embedding (FFPE) is the most widespread long-term tissue preservation approach. Here, we report a procedure to perform genome-wide spatial analysis of mRNA in FFPE-fixed tissue sections, using well-established, commercially available methods for imaging and spatial barcoding using slides spotted with barcoded oligo(dT) probes to capture the 3' end of mRNA molecules in tissue sections. We applied this method for expression profiling and cell type mapping in coronal sections from the mouse brain to demonstrate the method's capability to delineate anatomical regions from a molecular perspective. We also profiled the spatial composition of transcriptomic signatures in two ovarian carcinosarcoma samples, exemplifying the method's potential to elucidate molecular mechanisms in heterogeneous clinical samples. Finally, we demonstrate the applicability of the assay to characterize human lung and kidney organoids and a human lung biopsy specimen infected with SARS-CoV-2. We anticipate that genome-wide spatial gene expression profiling in FFPE biospecimens will be used for retrospective analysis of biobank samples, which will facilitate longitudinal studies of biological processes and biomarker discovery.

18.
Mol Cell Biol ; 25(16): 7158-69, 2005 Aug.
Article in English | MEDLINE | ID: mdl-16055725

ABSTRACT

Homologous recombination is vital to repair fatal DNA damage during DNA replication. However, very little is known about the substrates or repair pathways for homologous recombination in mammalian cells. Here, we have compared the recombination products produced spontaneously with those produced following induction of DNA double-strand breaks (DSBs) with the I-SceI restriction endonuclease or after stalling or collapsing replication forks following treatment with thymidine or camptothecin, respectively. We show that each lesion produces different spectra of recombinants, suggesting differential use of homologous recombination pathways in repair of these lesions. The spontaneous spectrum most resembled the spectra produced at collapsed replication forks formed when a replication fork runs into camptothecin-stabilized DNA single-strand breaks (SSBs) within the topoisomerase I cleavage complex. We found that camptothecin-induced DSBs and the resulting recombination repair require replication, showing that a collapsed fork is the substrate for camptothecin-induced recombination. An SSB repair-defective cell line, EM9 with an XRCC1 mutation, has an increased number of spontaneous gammaH2Ax and RAD51 foci, suggesting that endogenous SSBs collapse replication forks, triggering recombination repair. Furthermore, we show that gammaH2Ax, DSBs, and RAD51 foci are synergistically induced in EM9 cells with camptothecin, suggesting that lack of SSB repair in EM9 causes more collapsed forks and more recombination repair. Furthermore, our results suggest that two-ended DSBs are rare substrates for spontaneous homologous recombination in a mammalian fibroblast cell line. Interestingly, all spectra showed evidence of multiple homologous recombination events in 8 to 16% of clones. However, there was no increase in homologous recombination genomewide in these clones nor were the events dependent on each other; rather, we suggest that a first homologous recombination event frequently triggers a second event at the same locus in mammalian cells.


Subject(s)
DNA Replication , Recombination, Genetic , Animals , Blotting, Southern , Camptothecin/pharmacology , Cell Cycle , Cell Line , Chromatids , Cricetinae , DNA Damage , DNA Fragmentation , DNA Repair , DNA Topoisomerases, Type I/metabolism , DNA-Binding Proteins/metabolism , Fibroblasts/metabolism , Genome , Histones/metabolism , Microscopy, Fluorescence , Models, Biological , Models, Genetic , Mutation , Protein Binding , Rad51 Recombinase , X-ray Repair Cross Complementing Protein 1
19.
Nat Commun ; 9(1): 2419, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29925878

ABSTRACT

Intra-tumor heterogeneity is one of the biggest challenges in cancer treatment today. Here we investigate tissue-wide gene expression heterogeneity throughout a multifocal prostate cancer using the spatial transcriptomics (ST) technology. Utilizing a novel approach for deconvolution, we analyze the transcriptomes of nearly 6750 tissue regions and extract distinct expression profiles for the different tissue components, such as stroma, normal and PIN glands, immune cells and cancer. We distinguish healthy and diseased areas and thereby provide insight into gene expression changes during the progression of prostate cancer. Compared to pathologist annotations, we delineate the extent of cancer foci more accurately, interestingly without link to histological changes. We identify gene expression gradients in stroma adjacent to tumor regions that allow for re-stratification of the tumor microenvironment. The establishment of these profiles is the first step towards an unbiased view of prostate cancer and can serve as a dictionary for future studies.


Subject(s)
Adenocarcinoma/genetics , Gene Expression Regulation, Neoplastic , Prostatic Neoplasms/genetics , Transcriptome/genetics , Adenocarcinoma/pathology , Adenocarcinoma/surgery , Computational Biology , Disease Progression , Gene Expression Profiling , Humans , Male , Prostate/cytology , Prostate/pathology , Prostate/surgery , Prostatectomy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , RNA, Messenger/genetics , Stromal Cells/pathology , Tumor Microenvironment/genetics
20.
Mol Cell Biol ; 22(16): 5869-78, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12138197

ABSTRACT

Homologous recombination (HR) and nonhomologous end joining (NHEJ) play overlapping roles in repair of DNA double-strand breaks (DSBs) generated during the S phase of the cell cycle. Here, we characterized the involvement of HR and NHEJ in the rescue of DNA replication forks arrested or slowed by treatment of hamster cells with hydroxyurea or thymidine. We show that the arrest of replication with hydroxyurea generates DNA fragmentation as a consequence of the formation of DSBs at newly replicated DNA. Both HR and NHEJ protected cells from the lethal effects of hydroxyurea, and this agent also increased the frequency of recombination mediated by both homologous and nonhomologous exchanges. Thymidine induced a less stringent arrest of replication and did not generate detectable DSBs. HR alone rescued cells from the lethal effects of thymidine. Furthermore, thymidine increased the frequency of DNA exchange mediated solely by HR in the absence of detectable DSBs. Our data suggest that both NHEJ and HR are involved in repair of arrested replication forks that include a DSB, while HR alone is required for the repair of slowed replication forks in the absence of detectable DSBs.


Subject(s)
DNA Replication , DNA/metabolism , Recombination, Genetic , S Phase/genetics , Animals , Apoptosis/physiology , Cell Line , Cricetinae , DNA/genetics , DNA Damage , DNA Nucleotidyltransferases/metabolism , DNA-Binding Proteins/metabolism , Flow Cytometry , Gene Expression Regulation , Humans , Hydroxyurea/pharmacology , Nucleic Acid Conformation , Nucleic Acid Synthesis Inhibitors/pharmacology , Rad51 Recombinase , Thymidine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL