Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Future Oncol ; 19(32): 2171-2183, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37497626

ABSTRACT

Aim: The RAISE project aimed to find a surrogate end point to predict treatment response early in patients with enteropancreatic neuroendocrine tumors (NET). Response heterogeneity, defined as the coexistence of responding and non-responding lesions, has been proposed as a predictive marker for progression-free survival (PFS) in patients with NETs. Patients & methods: Computerized tomography scans were analyzed from patients with multiple lesions in CLARINET (NCT00353496; n = 148/204). Cox regression analyses evaluated association between response heterogeneity, estimated using the standard deviation of the longest diameter ratio of target lesions, and NET progression. Results: Greater response heterogeneity at a given visit was associated with earlier progression thereafter: week 12 hazard ratio (HR; 95% confidence interval): 1.48 (1.20-1.82); p < 0.001; n = 148; week 36: 1.72 (1.32-2.24); p < 0.001; n = 108. HRs controlled for sum of longest diameter ratio: week 12: 1.28 (1.04-1.59); p = 0.020 and week 36: 1.81 (1.20-2.72); p = 0.005. Conclusion: Response heterogeneity independently predicts PFS in patients with enteropancreatic NETs. Further validation is required.


Neuroendocrine tumors (NET) are rare, slow-growing cancers that can grow in various parts of the body. By understanding how NETs are responding to treatment, doctors can choose the best treatment for a patient and monitor whether the treatment needs to be changed. Treatment response is determined using 'Response Evaluation Criteria in Solid Tumors (RECIST)': a technique which measures the size of tumors to assess whether they are shrinking. However, RECIST is not always useful in NETs, which grow slowly and rarely shrink. 'Response heterogeneity' describes the situation in which some tumors respond well to treatment, while other tumors in the same patient do not. Response heterogeneity may be important in understanding how tumors are responding to treatment and predicting outcomes for patients. Until now, the link between response heterogeneity and treatment response has not been studied in patients with NETs. The RAISE project examined data from a clinical trial of patients with NETs treated with lanreotide. In RAISE, response heterogeneity was estimated using imaging scans of NETs. Response heterogeneity was compared with factors such as tumor size and amounts of certain molecules found in the blood, to see how well response heterogeneity could predict outcomes for patients with NETs. In this study, response heterogeneity was linked with worse outcomes for patients. Therefore, it may be useful in understanding how NETs respond to treatment. Further research is needed in a different group of patients with NETs, and in patients receiving other treatments, to better understand response heterogeneity.


Subject(s)
Neuroendocrine Tumors , Pancreatic Neoplasms , Humans , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/therapy , Biomarkers , Progression-Free Survival , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/drug therapy
2.
Future Oncol ; 19(32): 2185-2199, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37497644

ABSTRACT

Aim: The RAISE project assessed whether deep learning could improve early progression-free survival (PFS) prediction in patients with neuroendocrine tumors. Patients & methods: Deep learning models extracted features from CT scans from patients in CLARINET (NCT00353496) (n = 138/204). A Cox model assessed PFS prediction when combining deep learning with the sum of longest diameter ratio (SLDr) and logarithmically transformed CgA concentration (logCgA), versus SLDr and logCgA alone. Results: Deep learning models extracted features other than lesion shape to predict PFS at week 72. No increase in performance was achieved with deep learning versus SLDr and logCgA models alone. Conclusion: Deep learning models extracted relevant features to predict PFS, but did not improve early prediction based on SLDr and logCgA.


Subject(s)
Deep Learning , Neuroendocrine Tumors , Humans , Progression-Free Survival , Neuroendocrine Tumors/diagnosis , Neuroendocrine Tumors/therapy , Proportional Hazards Models , Tomography, X-Ray Computed
3.
Eur J Cancer ; 174: 90-98, 2022 10.
Article in English | MEDLINE | ID: mdl-35985252

ABSTRACT

BACKGROUND: The need for developing new biomarkers is increasing with the emergence of many targeted therapies. Artificial Intelligence (AI) algorithms have shown great promise in the medical imaging field to build predictive models. We developed a prognostic model for solid tumour patients using AI on multimodal data. PATIENTS AND METHODS: Our retrospective study included examinations of patients with seven different cancer types performed between 2003 and 2017 in 17 different hospitals. Radiologists annotated all metastases on baseline computed tomography (CT) and ultrasound (US) images. Imaging features were extracted using AI models and used along with the patients' and treatments' metadata. A Cox regression was fitted to predict prognosis. Performance was assessed on a left-out test set with 1000 bootstraps. RESULTS: The model was built on 436 patients and tested on 196 patients (mean age 59, IQR: 51-6, 411 men out of 616 patients). On the whole, 1147 US images were annotated with lesions delineation, and 632 thorax-abdomen-pelvis CTs (total of 301,975 slices) were fully annotated with a total of 9516 lesions. The developed model reaches an average concordance index of 0.71 (0.67-0.76, 95% CI). Using the median predicted risk as a threshold value, the model is able to significantly (log-rank test P value < 0.001) isolate high-risk patients from low-risk patients (respective median OS of 11 and 31 months) with a hazard ratio of 3.5 (2.4-5.2, 95% CI). CONCLUSION: AI was able to extract prognostic features from imaging data, and along with clinical data, allows an accurate stratification of patients' prognoses.


Subject(s)
Artificial Intelligence , Neoplasms , Biomarkers , Humans , Male , Middle Aged , Neoplasms/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed/methods
4.
Nat Commun ; 12(1): 634, 2021 01 27.
Article in English | MEDLINE | ID: mdl-33504775

ABSTRACT

The SARS-COV-2 pandemic has put pressure on intensive care units, so that identifying predictors of disease severity is a priority. We collect 58 clinical and biological variables, and chest CT scan data, from 1003 coronavirus-infected patients from two French hospitals. We train a deep learning model based on CT scans to predict severity. We then construct the multimodal AI-severity score that includes 5 clinical and biological variables (age, sex, oxygenation, urea, platelet) in addition to the deep learning model. We show that neural network analysis of CT-scans brings unique prognosis information, although it is correlated with other markers of severity (oxygenation, LDH, and CRP) explaining the measurable but limited 0.03 increase of AUC obtained when adding CT-scan information to clinical variables. Here, we show that when comparing AI-severity with 11 existing severity scores, we find significantly improved prognosis performance; AI-severity can therefore rapidly become a reference scoring approach.


Subject(s)
COVID-19/diagnosis , COVID-19/physiopathology , Deep Learning , Neural Networks, Computer , Tomography, X-Ray Computed/methods , Artificial Intelligence , COVID-19/classification , Humans , Models, Biological , Multivariate Analysis , Prognosis , Radiologists , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL