ABSTRACT
Immune-related adverse events, particularly severe toxicities such as myocarditis, are major challenges to the utility of immune checkpoint inhibitors (ICIs) in anticancer therapy1. The pathogenesis of ICI-associated myocarditis (ICI-MC) is poorly understood. Pdcd1-/-Ctla4+/- mice recapitulate clinicopathological features of ICI-MC, including myocardial T cell infiltration2. Here, using single-cell RNA and T cell receptor (TCR) sequencing of cardiac immune infiltrates from Pdcd1-/-Ctla4+/- mice, we identify clonal effector CD8+ T cells as the dominant cell population. Treatment with anti-CD8-depleting, but not anti-CD4-depleting, antibodies improved the survival of Pdcd1-/-Ctla4+/- mice. Adoptive transfer of immune cells from mice with myocarditis induced fatal myocarditis in recipients, which required CD8+ T cells. The cardiac-specific protein α-myosin, which is absent from the thymus3,4, was identified as the cognate antigen source for three major histocompatibility complex class I-restricted TCRs derived from mice with fulminant myocarditis. Peripheral blood T cells from three patients with ICI-MC were expanded by α-myosin peptides. Moreover, these α-myosin-expanded T cells shared TCR clonotypes with diseased heart and skeletal muscle, which indicates that α-myosin may be a clinically important autoantigen in ICI-MC. These studies underscore the crucial role for cytotoxic CD8+ T cells, identify a candidate autoantigen in ICI-MC and yield new insights into the pathogenesis of ICI toxicity.
Subject(s)
CD8-Positive T-Lymphocytes , Immunotherapy , Myocarditis , Ventricular Myosins , Animals , Mice , Autoantigens/immunology , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/deficiency , CTLA-4 Antigen/genetics , Immunotherapy/adverse effects , Myocarditis/chemically induced , Myocarditis/etiology , Myocarditis/mortality , Myocarditis/pathology , Ventricular Myosins/immunologyABSTRACT
BACKGROUND: Heart failure (HF) is the leading cause of morbidity and mortality worldwide, and there is an urgent need for more global studies and data mining approaches to uncover its underlying mechanisms. Multiple omics techniques provide a more holistic molecular perspective to study pathophysiological events involved in the development of HF. METHODS: In this study, we used a label-free whole myocardium multi-omics characterization from three commonly used mouse HF models: transverse aortic constriction (TAC), myocardial infarction (MI), and homozygous Phospholamban-R14del (PLN-R14Δ/Δ). Genes, proteins, and metabolites were analysed for differential expression between each group and a corresponding control group. The core transcriptome and proteome datasets were used for enrichment analysis. For genes that were upregulated at both the RNA and protein levels in all models, clinical validation was performed by means of plasma level determination in patients with HF from the BIOSTAT-CHF cohort. RESULTS: Cell death and tissue repair-related pathways were upregulated in all preclinical models. Fatty acid oxidation, ATP metabolism, and Energy derivation processes were downregulated in all investigated HF aetiologies. Putrescine, a metabolite known for its role in cell survival and apoptosis, demonstrated a 4.9-fold (p < 0.02) increase in PLN-R14Δ/Δ, 2.7-fold (p < 0.005) increase in TAC mice, and 2.2-fold (p < 0.02) increase in MI mice. Four Biomarkers were associated with all-cause mortality (PRELP: Hazard ratio (95% confidence interval) 1.79(1.35, 2.39), p < 0.001; CKAP4: 1.38(1.21, 1.57), p < 0.001; S100A11: 1.37(1.13, 1.65), p = 0.001; Annexin A1 (ANXA1): 1.16(1.04, 1.29) p = 0.01), and three biomarkers were associated with HF-Related Rehospitalization, (PRELP: 1.88(1.4, 2.53), p < 0.001; CSTB: 1.15(1.05, 1.27), p = 0.003; CKAP4: 1.18(1.02, 1.35), P = 0.023). CONCLUSIONS: Cell death and tissue repair pathways were significantly upregulated, and ATP and energy derivation processes were significantly downregulated in all models. Common pathways and biomarkers with potential clinical and prognostic associations merit further investigation to develop optimal management and therapeutic strategies for all HF aetiologies.
Subject(s)
Heart Failure , Myocardial Infarction , Animals , Mice , Prognosis , Multiomics , Heart Failure/genetics , Heart Failure/metabolism , Myocardial Infarction/drug therapy , Biomarkers , Adenosine TriphosphateABSTRACT
PURPOSE OF REVIEW: Immune checkpoint inhibitors (ICIs) have improved the field of cancer, especially in patients with advanced malignancies. Nevertheless, cardiovascular immune-related adverse events (irAEs) with high mortality and morbidity have been observed, including myocarditis, pericarditis, and vasculitis. To date, only a few clinical risk factors have been described and are currently being investigated. RECENT FINDINGS: In this review, we address the four most prevailing risk factors for cardiovascular irAEs. ICI combination therapy is a predominant risk factor for developing ICI-mediated myocarditis. Additionally, ICI combined with other anti-cancer treatments (e.g., tyrosine kinase inhibitors, radiation, chemotherapy) seems to increase the risk of developing cardiovascular irAEs. Other risk factors include female sex, pre-existing cardiovascular disease, and specific tumors, on which we will further elaborate in this review. An a priori risk strategy to determine who is at risk to develop these cardiovascular irAEs is needed. Insights into the impact of risk factors are therefore warranted to help clinicians improve care and disease management in these patients.
Subject(s)
Antineoplastic Agents, Immunological , Cardiovascular System , Myocarditis , Neoplasms , Humans , Female , Immune Checkpoint Inhibitors/adverse effects , Myocarditis/chemically induced , Antineoplastic Agents, Immunological/adverse effects , Risk FactorsABSTRACT
Previous studies have reported an association between ABO type blood group and cardiovascular (CV) events and outcomes. The precise mechanisms underpinning this striking observation remain unknown, although differences in von Willebrand factor (VWF) plasma levels have been proposed as an explanation. Recently, galectin-3 was identified as an endogenous ligand of VWF and red blood cells (RBCs) and, therefore, we aimed to explore the role of galectin-3 in different blood groups. Two in vitro assays were used to assess the binding capacity of galectin-3 to RBCs and VWF in different blood groups. Additionally, plasma levels of galectin-3 were measured in different blood groups in the Ludwigshafen Risk and Cardiovascular Health (LURIC) study (2571 patients hospitalized for coronary angiography) and validated in a community-based cohort of the Prevention of Renal and Vascular End-stage Disease (PREVEND) study (3552 participants). To determine the prognostic value of galectin-3 in different blood groups, logistic regression and cox regression models were used with all-cause mortality as the primary outcome. First, we demonstrated that galectin-3 has a higher binding capacity for RBCs and VWF in non-O blood groups, compared to blood group O. Additionally, LURIC patients with non-O blood groups had substantially lower plasma levels of galectin-3 (15.0, 14.9, and 14.0 µg/L in blood groups A, B, and AB, respectively, compared to 17.1 µg/L in blood group O, p < 0.0001). Finally, the independent prognostic value of galectin-3 for all-cause mortality showed a non-significant trend towards higher mortality in non-O blood groups. Although plasma galectin-3 levels are lower in non-O blood groups, the prognostic value of galectin-3 is also present in subjects with a non-O blood group. We conclude that physical interaction between galectin-3 and blood group epitopes may modulate galectin-3, which may affect its performance as a biomarker and its biological activity.
Subject(s)
Galectin 3 , von Willebrand Factor , Humans , von Willebrand Factor/metabolism , Prognosis , ABO Blood-Group System , Kidney/metabolismABSTRACT
Within the aging population, the frequency of cancer is increasing dramatically. In addition, multiple genetic and environmental factors lead to common multifactorial diseases, including cardiovascular disease, chronic kidney disease, chronic obstructive pulmonary disease, and metabolic-associated fatty liver disease. In recent years, there has been a growing awareness of the connection between cancer and multifactorial diseases, as well as how one can affect the other, resulting in a vicious cycle. Although the exact mechanistic explanations behind this remain to be fully explored, some progress has been made in uncovering the common pathologic mechanisms. In this review, we focus on the nature of the link between cancer and common multifactorial conditions, as well as specific shared mechanisms, some of which may represent either preventive or therapeutic targets. Rather than organ-specific interactions, we herein focus on the shared mechanisms among the multifactorial diseases, which may explain the increased cancer risk. More research on this subject will highlight the significance of developing new drugs that target multiple systems rather than just one disease.
ABSTRACT
AIMS: Ongoing adverse remodeling is a hallmark of heart failure (HF), which might be reflected by either focal or diffuse myocardial fibrosis. Therefore, in (pre)clinical settings, we used immunohistochemistry or cardiac magnetic resonance imaging (CMR) to investigate the association of (focal or diffuse) fibrosis with cardiac biomarkers and adverse events in HF. METHODS AND RESULTS: In C57Bl/6J mice, we determined the presence and extent of myocardial fibrosis 6 weeks post-myocardial infarction (MI). Furthermore, we studied 159 outpatient HF patients who underwent CMR, and determined focal and diffuse fibrosis by late gadolinium enhancement (LGE) and post-contrast T1 time of the non-LGE myocardium, respectively. HF patients were categorized based on the presence of LGE, and by the median post-contrast T1 time. Kaplan-Meier and Cox regression analyses were used to determine the association of fibrosis with HF hospitalization and all-cause mortality. LGE was detected in 61 (38%) patients. Cardiac biomarker levels were comparable between LGE-positive and LGE-negative patients. LGE-positive patients with a short T1 time had elevated levels of both NT-proBNP and galectin-3 (1611 vs. 453 ng/L, p = 0.026 and 20 vs. 15 µg/L, p = 0.004, respectively). This was not observed in LGE-negative patients. Furthermore, a short T1 time in LGE-positive patients was associated with a higher risk of adverse events (log-rank p = 0.01). CONCLUSION: This study implies that cardiac biomarkers reflect active remodeling of the non-infarcted myocardium of patients with focal myocardial scarring. Diffuse fibrosis, in contrast to focal scarring, might have a higher prognostic value regarding adverse outcomes in HF patients.
Subject(s)
Cardiomyopathies , Heart Failure , Animals , Mice , Biomarkers , Cicatrix/pathology , Contrast Media , Fibrosis , Gadolinium , Galectin 3 , Heart Failure/etiology , Magnetic Resonance Imaging , HumansABSTRACT
AIMS: There are limited data examining the role of immune checkpoint (IC) ligands in the pathophysiology of heart failure (HF). Therefore, we explore this in three HF animal models and in three different human cohorts (healthy, stable, and worsening HF). METHODS AND RESULTS: Transcriptomic analyses of cardiac tissue of three different HF mouse models revealed differentially expressed IC receptors and their ligands compared with control mice. Based on this observation, serum levels of three well-known IC ligands (i.e. sPD-L1, sPD-L2 and galectin-9) were measured in stable HF patients from the Vitamin D Chronic Heart Failure (VitD-CHF) study (n = 101), as well as healthy individuals from the Prevention of Renal and Vascular End-stage Disease (PREVEND) study (n = 58). sPD-L1, sPD-L2, and galectin-9 were all associated with New York Heart Association classification. In multivariate linear regression analyses, all three IC ligands were associated with galectin-3 (ß = 0.230, ß = 0.283, and ß = 0.304, respectively). sPD-L1 and galectin-9 were also associated with hs-troponin-T (ß = 0.386 and ß = 0.314). Regarding prognosis, higher serum levels of sPD-L1 and galectin-9 were significantly associated with increased risk for HF hospitalization and all-cause mortality [hazard ratio 1.69 (1.09-2.59) and hazard ratio 1.50 (1.06-2.12)]. Furthermore, the importance of IC ligands was tested in another stage of HF, namely worsening HF patients. In the worsening HF cohort (The BIOlogy Study to Tailored Treatment in Chronic Heart Failure) (n = 2032), sPD-L2 and galectin-9 were associated with New York Heart Association classification and significantly predicted outcome with an increased relative risk of 15% and 20%, after multivariable adjustment, respectively. CONCLUSIONS: IC ligands are expressed in cardiac disease models, and serum levels of IC ligands are elevated in HF patients, are associated with disease severity, and significantly predict prognosis. These data indicate a potential role for IC ligands in HF pathogenesis.
Subject(s)
Heart Failure , Humans , Animals , Mice , Ligands , Heart Failure/therapy , Prognosis , Galectins , Galectin 3 , Chronic DiseaseABSTRACT
Background: Cancer and heart failure (HF) are the leading causes of death in the Western world. Shared mechanisms such as fibrosis may underlie either disease entity, furthermore it is unknown whether this relationship is sex-specific. Objectives: We sought to investigate how fibrosis-related biomarker galectin-3 (gal-3) aids in identifying individuals at risk for new-onset cancer and HF, and how this differs between sexes. Methods: Gal-3 was measured at baseline and at 4-year follow-up in 5,786 patients of the PREVEND (Prevention of Renal and Vascular Endstage Disease) study. The total follow-up period was 11.5 years. An increase of ≥50% in gal-3 levels between measurements was considered relevant. We performed sex-stratified log-rank tests and Cox regression analyses overall and by sex to evaluate the association of gal-3 over time with both new-onset cancer and new-onset HF. Results: Of the 5,786 healthy participants (50% males), 399 (59% males) developed new-onset cancer, and 192 (65% males) developed new-onset HF. In males, an increase in gal-3 was significantly associated with new-onset cancer (both combined and certain cancer-specific subtypes), after adjusting for age, body mass index, hypertension, smoking status, estimated glomerular filtration rate, diabetes mellitus, triglycerides, coronary artery disease, and C-reactive protein (HR: 1.89; 95% CI: 1.32-2.71; P < 0.001). Similar analyses demonstrated an association with new-onset HF in males (HR: 1.77; 95% CI: 1.07-2.95; P = 0.028). In females, changes in gal-3 over time were neither associated with new-onset cancer nor new-onset HF. Conclusions: Gal-3, a marker of fibrosis, is associated with new-onset cancer and new-onset HF in males, but not in females.
ABSTRACT
AIMS: Management of comorbidities represents a critical step in optimal treatment of heart failure (HF) patients. However, minimal attention has been paid whether comorbidity burden and their prognostic value changes over time. Therefore, we examined the association between comorbidities and clinical outcomes in HF patients between 2002 and 2017. METHODS AND RESULTS: The 2002-HF cohort consisted of patients from The Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure (COACH) trial (n = 1,032). The 2017-HF cohort were outpatient HF patients enrolled after hospitalization for HF in a tertiary referral academic hospital (n = 382). Kaplan meier and cox regression analyses were used to assess the association of comorbidities with HF hospitalization and all-cause mortality. Patients from the 2017-cohort were more likely to be classified as HF with preserved ejection fraction (24 vs 15%, p < 0.001), compared to patients from the 2002-cohort. Comorbidity burden was comparable between both cohorts (mean of 3.9 comorbidities per patient) and substantially increased with age. Higher comorbidity burden was significantly associated with a comparable increased risk for HF hospitalization and all-cause mortality (HR 1.12 [1.02-1.22] and HR 1.18 [1.05-1.32]), in the 2002- and 2017-cohort respectively. When assessing individual comorbidities, obesity yielded a statistically higher prognostic effect on outcome in the 2017-cohort compared to the 2002-HF cohort (p for interaction 0.026). CONCLUSION: Despite major advances in HF treatment over the past decades, comorbidity burden remains high in HF and influences outcome to a large extent. Obesity emerges as a prominent comorbidity, and efforts should be made for prevention and treatment. Created with BioRender.com.
Subject(s)
Heart Failure , Humans , Comorbidity , Heart Failure/therapy , Heart Failure/drug therapy , Hospitalization , Obesity , Prognosis , Stroke Volume , Clinical Trials as TopicABSTRACT
AIM: We aimed to analyse the association of clonal haematopoiesis of indeterminate potential (CHIP) with incident heart failure (HF) in a European population cohort. METHODS AND RESULTS: From the prospective Prevention of Renal and Vascular End-stage Disease (PREVEND) cohort, we included all 374 participants with incident HF and selected 1:1 age- and sex-matched control subjects. Peripheral blood samples of 705 individuals were successfully analysed by error-corrected next generation sequencing for acquired mutations at a variant allele frequency ≥2% in 27 CHIP driver genes. The median age of the study population was 65 years (interquartile range 58-70) and 35.6% were female. CHIP mutations positively correlated with age, smoking, hypertension and cardiovascular biomarkers including N-terminal pro-B-type natriuretic peptide and mid-regional pro-A-type natriuretic peptide, but the frequency of CHIP was comparable in individuals with incident HF and in control participants (18.4% vs. 17.3%; p = 0.69). In multivariable Cox regression models, CHIP was not significantly associated with incident HF (hazard ratio [HR] 1.24, 95% confidence interval [CI] 0.93-1.65; p = 0.144). This association, however, was modified by age (p for CHIP-age interaction = 0.002). Among people younger than 65 years, CHIP mutations were more frequently detected in the case cohort compared to the control cohort (14.2% vs. 5.8%; p = 0.009), and were significantly associated with new-onset HF (HR 2.07, 95% CI 1.30-3.29; p = 0.002). CONCLUSION: Clonal haematopoiesis of indeterminate potential correlates with HF risk factors and biomarkers, and is associated with incident HF in subjects <65 years of age.
Subject(s)
Heart Failure , Aged , Female , Humans , Male , Biomarkers , Clonal Hematopoiesis , Heart Failure/epidemiology , Heart Failure/genetics , Incidence , Prospective Studies , Risk Factors , Middle AgedABSTRACT
Cardio-Oncology has blossomed as a new field in cardiovascular medicine, in large part due to new therapies, which may have cardiovascular sequelae. Despite this, anthracyclines still serve as cornerstone therapy for most pediatric cancers, several solid tumors and hematological malignancies. Cardiotoxicity is the main limiting concern with anthracyclines, and this is particularly an issue in patients in extremes of age (both young and old patients). Pediatric hearts are susceptible for cardiotoxicity, while in older patients, concomitant risk factors may contribute to lower threshold for cardiotoxic effects. With increasing patient survival, a significant increase in elderly cancer patients and long-term cardiotoxicity effects of anthracyclines, a better mechanistic understanding of age-dependent processes-that define cardiotoxicity-is needed. This review sheds light on how age affects underlying molecular pathways of anthracycline-associated cardiotoxicity and aims to provide preventive strategies that can be used in clinical practice.
Subject(s)
Anthracyclines/adverse effects , Cardiotoxicity , Cardiovascular Diseases/chemically induced , Age Factors , Cardiology , Cardiotoxicity/epidemiology , Cardiotoxicity/physiopathology , Cardiotoxicity/prevention & control , Cardiovascular Diseases/prevention & control , Humans , Medical Oncology , Risk FactorsABSTRACT
AIMS: Two key echocardiographic parameters that are currently used to diagnose heart failure (HF) with preserved ejection fraction (HFpEF) are left atrial volume index (LAVi) and left ventricular mass index (LVMi). We investigated whether patients' characteristics, biomarkers, and co-morbidities are associated with these parameters and whether the relationships differ between patients with HFpEF or HF with reduced ejection fraction (HFrEF). METHODS: We consecutively enrolled 831 outpatients with typical signs and symptoms of HF and elevated N-terminal prohormone of brain natriuretic peptide (NT-proBNP) levels and categorized patients based upon left ventricular ejection fraction (LVEF): LVEF < 40% (HFrEF), LVEF between 40% and 50% (HF with mid-range ejection fraction), and LVEF ≥ 50% (HFpEF). The study includes consecutively enrolled HF patients from an HF outpatient clinic at a tertiary medical centre in the Netherlands. All patients underwent baseline characterization, laboratory measurements, and echocardiography. RESULTS: Four hundred sixty-nine patients had HFrEF, 189 HF with mid-range ejection fraction, and 173 HFpEF. The patients with HFrEF were rather male [HFrEF: 323 (69%); HFpEF: 80 (46%); P < 0.001], and the age was comparable (HFrEF 67 ± 13; HFpEF 70 ± 14; P = 0.069). In HFpEF, more patients had hypertension [190 (40.5%); 114 (65.9%); P < 0.001], higher body mass indices (27 ± 8; 30 ± 7; P < 0.001), and atrial fibrillation [194 (41.4); 86 (49.7); P = 0.029]. The correlation analyses showed that in HFrEF patients, LAVi was significantly associated with age (ß 0.293; P < 0.001), male gender (ß 0.104; P = 0.042), body mass index (ß -0160; P = 0.002), diastolic blood pressure (ß -0.136; P < 0.001), New York Heart Association (ß 0.174; P = 0.001), atrial fibrillation (ß 0.381; P < 0.001), galectin 3 (ß 0.230; P < 0.001), NT-proBNP (ß 0.183; P < 0.001), estimated glomerular filtration rate (ß -0.205; P < 0.001), LVEF (ß -0.173; P = 0.001), and LVMi (ß 0.337; P < 0.001). In HFpEF patients, only age (ß 0.326; P < 0.001), atrial fibrillation (ß 0.386; P < 0.001), NT-proBNP (ß 0.176; P = 0.036), and LVMi (ß 0.213; P = 0.013) were associated with LAVi. CONCLUSIONS: Although LVMi and LAVi are hallmark parameters to diagnose HFpEF, they only correlate with a few characteristics of HF and mainly with atrial fibrillation. In contrast, in HFrEF patients, LAVi relates strongly to several other HF parameters. These findings underscore the complexity in visualizing the pathophysiology of HFpEF and question the relation between cardiac structural remodeling and the impact of co-morbidities.
Subject(s)
Heart Failure , Heart Atria/diagnostic imaging , Heart Failure/diagnosis , Heart Failure/epidemiology , Humans , Male , Prognosis , Stroke Volume , Ventricular Function, LeftABSTRACT
Background: Accurate measurement of kidney function in patients with neuromuscular disorders is challenging. Cystatin C, a marker not influenced by skeletal muscle degradation, might be of clinical value in these patients. Methods: We consecutively enrolled 39 patients with neuromuscular disorders. We investigated the association of the eGFR, based on plasma creatinine and Cystatin C, with clinical and biochemical variables associated with kidney function, namely age and galectin-3. Results: Creatinine-based eGFR was 242 (±80) and Cystatin C-based eGFR was 110 (±23) mL/min/1.73 m2. Cystatin C-based eGFR was associated with age (ß -0.63 p < 0.0001) and galectin-3 levels (ß -0.43 p < 0.01), while creatinine-based eGFR was not (ß -0.22 p = 0.20; ß -0.28 p = 0.10). Sensitivity analyses in Duchenne and Becker patients revealed the same results: Cystatin C-based eGFR was associated with age (ß -0.61 p < 0.01) and galectin-3 levels (ß -0.43 p = 0.05), while creatinine-based eGFR was not (ß -0.32 p = 0.13; ß -0.34 p = 0.14). Conclusions: These data indicate that estimation of renal function in patients with neuromuscular disorders cannot reliably be achieved with creatinine, while Cystatin C appears a reasonable alternative. Since a large proportion of patients with neuromuscular disorders develops heart failure, and requires heart failure medication, adequate monitoring of renal function is warranted.
ABSTRACT
Immune checkpoint inhibitors (ICI) targeting CTLA4 or PD-1/PD-L1 have transformed cancer therapy but are associated with immune-related adverse events, including myocarditis. Here, we report a robust preclinical mouse model of ICI-associated myocarditis in which monoallelic loss of Ctla4 in the context of complete genetic absence of Pdcd1 leads to premature death in approximately half of mice. Premature death results from myocardial infiltration by T cells and macrophages and severe ECG abnormalities, closely recapitulating the clinical and pathologic hallmarks of ICI-associated myocarditis observed in patients. Using this model, we show that Ctla4 and Pdcd1 functionally interact in a gene dosage-dependent manner, providing a mechanism by which myocarditis arises with increased frequency in the setting of combination ICI therapy. We demonstrate that intervention with CTLA4-Ig (abatacept) is sufficient to ameliorate disease progression and additionally provide a case series of patients in which abatacept mitigates the fulminant course of ICI myocarditis. SIGNIFICANCE: We provide a preclinical model of ICI-associated myocarditis which recapitulates this clinical syndrome. Using this model, we demonstrate that CTLA4 and PD-1 (ICI targets) functionally interact for myocarditis development and that intervention with CTLA4-Ig (abatacept) attenuates myocarditis, providing mechanistic rationale and preclinical support for therapeutic clinical studies.See related commentary by Young and Bluestone, p. 537.This article is highlighted in the In This Issue feature, p. 521.
Subject(s)
Immune Checkpoint Inhibitors/adverse effects , Molecular Targeted Therapy/adverse effects , Myocarditis/diagnosis , Myocarditis/etiology , Neoplasms/complications , Animals , Biomarkers, Tumor/antagonists & inhibitors , Cardiotoxicity , Disease Management , Disease Models, Animal , Disease Susceptibility , Electrocardiography , Humans , Immune Checkpoint Inhibitors/therapeutic use , Mice , Myocarditis/metabolism , Neoplasms/drug therapy , Neoplasms/etiologyABSTRACT
INTRODUCTION: Heart failure (HF) remains a major public health problem worldwide, affecting approximately 23 million patients, and is predominantly a disease of the elderly population. Elderly patients mostly suffer from HF with preserved ejection fraction (HFpEF), which often presents with multiple co-morbidities and they require multiple medical treatments. This, together with the heterogeneous phenotype of HFpEF, makes it a difficult syndrome to diagnose and treat. Areas covered: Although HF is most abundant in the elderly, this group is still underrepresented in clinical trials, which results in the lack of evidence-based medical regimens. The current review has focused on new potential therapies for this poorly studied population. The focus will be on several classes of drugs currently recommended or might be expected soon. These will include sacubitril/valsartan (former LCZ696), Omecamtiv mecarbil, Vericiguat, Ivabradine, mineralocorticoid receptor antagonists (MRAs) and potassium binders. Expert opinion: We discuss promising new treatments and hypothesize that personalized approaches will be needed to treat elderly patients optimally. Medical doctors should not only focus on HF therapy, but comorbidities and polypharmacy should also influence therapeutic decision making. Furthermore, the importance of quality of life as a management endpoint should not be underestimated in the frail elderly.