Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 296
Filter
Add more filters

Publication year range
1.
Cell ; 187(12): 2919-2934.e20, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38761800

ABSTRACT

A critical roadblock to HIV vaccine development is the inability to induce B cell lineages of broadly neutralizing antibodies (bnAbs) in humans. In people living with HIV-1, bnAbs take years to develop. The HVTN 133 clinical trial studied a peptide/liposome immunogen targeting B cell lineages of HIV-1 envelope (Env) membrane-proximal external region (MPER) bnAbs (NCT03934541). Here, we report MPER peptide-liposome induction of polyclonal HIV-1 B cell lineages of mature bnAbs and their precursors, the most potent of which neutralized 15% of global tier 2 HIV-1 strains and 35% of clade B strains with lineage initiation after the second immunization. Neutralization was enhanced by vaccine selection of improbable mutations that increased antibody binding to gp41 and lipids. This study demonstrates proof of concept for rapid vaccine induction of human B cell lineages with heterologous neutralizing activity and selection of antibody improbable mutations and outlines a path for successful HIV-1 vaccine development.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , B-Lymphocytes , HIV Antibodies , HIV-1 , Humans , AIDS Vaccines/immunology , HIV-1/immunology , Antibodies, Neutralizing/immunology , B-Lymphocytes/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV Infections/virology , Cell Lineage , Liposomes , env Gene Products, Human Immunodeficiency Virus/immunology , Mutation , HIV Envelope Protein gp41/immunology
2.
Cell ; 186(21): 4652-4661.e13, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37734373

ABSTRACT

The mpox outbreak of 2022-2023 involved rapid global spread in men who have sex with men. We infected 18 rhesus macaques with mpox by the intravenous, intradermal, and intrarectal routes and observed robust antibody and T cell responses following all three routes of infection. Numerous skin lesions and high plasma viral loads were observed following intravenous and intradermal infection. Skin lesions peaked on day 10 and resolved by day 28 following infection. On day 28, we re-challenged all convalescent and 3 naive animals with mpox. All convalescent animals were protected against re-challenge. Transcriptomic studies showed upregulation of innate and inflammatory responses and downregulation of collagen formation and extracellular matrix organization following challenge, as well as rapid activation of T cell and plasma cell responses following re-challenge. These data suggest key mechanistic insights into mpox pathogenesis and immunity. This macaque model should prove useful for evaluating mpox vaccines and therapeutics.


Subject(s)
Macaca mulatta , Monkeypox virus , Mpox (monkeypox) , Animals , Humans , Male , Homosexuality, Male , Mpox (monkeypox)/immunology , Sexual and Gender Minorities , Monkeypox virus/physiology
3.
Cell ; 184(19): 4969-4980.e15, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34332650

ABSTRACT

Memory B cell reserves can generate protective antibodies against repeated SARS-CoV-2 infections, but with unknown reach from original infection to antigenically drifted variants. We charted memory B cell receptor-encoded antibodies from 19 COVID-19 convalescent subjects against SARS-CoV-2 spike (S) and found seven major antibody competition groups against epitopes recurrently targeted across individuals. Inclusion of published and newly determined structures of antibody-S complexes identified corresponding epitopic regions. Group assignment correlated with cross-CoV-reactivity breadth, neutralization potency, and convergent antibody signatures. Although emerging SARS-CoV-2 variants of concern escaped binding by many members of the groups associated with the most potent neutralizing activity, some antibodies in each of those groups retained affinity-suggesting that otherwise redundant components of a primary immune response are important for durable protection from evolving pathogens. Our results furnish a global atlas of S-specific memory B cell repertoires and illustrate properties driving viral escape and conferring robustness against emerging variants.

4.
Cell ; 184(12): 3205-3221.e24, 2021 06 10.
Article in English | MEDLINE | ID: mdl-34015271

ABSTRACT

Monoclonal antibodies (mAbs) are a focus in vaccine and therapeutic design to counteract severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants. Here, we combined B cell sorting with single-cell VDJ and RNA sequencing (RNA-seq) and mAb structures to characterize B cell responses against SARS-CoV-2. We show that the SARS-CoV-2-specific B cell repertoire consists of transcriptionally distinct B cell populations with cells producing potently neutralizing antibodies (nAbs) localized in two clusters that resemble memory and activated B cells. Cryo-electron microscopy structures of selected nAbs from these two clusters complexed with SARS-CoV-2 spike trimers show recognition of various receptor-binding domain (RBD) epitopes. One of these mAbs, BG10-19, locks the spike trimer in a closed conformation to potently neutralize SARS-CoV-2, the recently arising mutants B.1.1.7 and B.1.351, and SARS-CoV and cross-reacts with heterologous RBDs. Together, our results characterize transcriptional differences among SARS-CoV-2-specific B cells and uncover cross-neutralizing Ab targets that will inform immunogen and therapeutic design against coronaviruses.


Subject(s)
Antibodies, Neutralizing/immunology , B-Lymphocytes/metabolism , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Antibodies, Viral/blood , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/metabolism , Antigen-Antibody Reactions , B-Lymphocytes/cytology , B-Lymphocytes/virology , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Crystallography, X-Ray , Gene Expression Profiling , Humans , Immunoglobulin A/immunology , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Protein Domains/immunology , Protein Multimerization , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Sequence Analysis, RNA , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
5.
Cell ; 180(3): 471-489.e22, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32004464

ABSTRACT

Broadly neutralizing antibodies (bNAbs) represent a promising approach to prevent and treat HIV-1 infection. However, viral escape through mutation of the HIV-1 envelope glycoprotein (Env) limits clinical applications. Here we describe 1-18, a new VH1-46-encoded CD4 binding site (CD4bs) bNAb with outstanding breadth (97%) and potency (GeoMean IC50 = 0.048 µg/mL). Notably, 1-18 is not susceptible to typical CD4bs escape mutations and effectively overcomes HIV-1 resistance to other CD4bs bNAbs. Moreover, mutational antigenic profiling uncovered restricted pathways of HIV-1 escape. Of most promise for therapeutic use, even 1-18 alone fully suppressed viremia in HIV-1-infected humanized mice without selecting for resistant viral variants. A 2.5-Å cryo-EM structure of a 1-18-BG505SOSIP.664 Env complex revealed that these characteristics are likely facilitated by a heavy-chain insertion and increased inter-protomer contacts. The ability of 1-18 to effectively restrict HIV-1 escape pathways provides a new option to successfully prevent and treat HIV-1 infection.


Subject(s)
Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Monoclonal/immunology , Binding Sites , CD4 Antigens/metabolism , CHO Cells , Cohort Studies , Cricetulus , Epitopes/immunology , Female , HEK293 Cells , HIV Infections/prevention & control , HIV Infections/virology , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Middle Aged , Mutation , Protein Binding/immunology , env Gene Products, Human Immunodeficiency Virus/genetics
6.
Cell ; 183(6): 1496-1507.e16, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33171099

ABSTRACT

Antibodies are key immune effectors that confer protection against pathogenic threats. The nature and longevity of the antibody response to SARS-CoV-2 infection are not well defined. We charted longitudinal antibody responses to SARS-CoV-2 in 92 subjects after symptomatic COVID-19. Antibody responses to SARS-CoV-2 are unimodally distributed over a broad range, with symptom severity correlating directly with virus-specific antibody magnitude. Seventy-six subjects followed longitudinally to ∼100 days demonstrated marked heterogeneity in antibody duration dynamics. Virus-specific IgG decayed substantially in most individuals, whereas a distinct subset had stable or increasing antibody levels in the same time frame despite similar initial antibody magnitudes. These individuals with increasing responses recovered rapidly from symptomatic COVID-19 disease, harbored increased somatic mutations in virus-specific memory B cell antibody genes, and had persistent higher frequencies of previously activated CD4+ T cells. These findings illuminate an efficient immune phenotype that connects symptom clearance speed to differential antibody durability dynamics.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation , CD4-Positive T-Lymphocytes/immunology , COVID-19 , Immunoglobulin G/immunology , Lymphocyte Activation , Mutation , COVID-19/genetics , COVID-19/immunology , Humans , SARS-CoV-2/genetics , SARS-CoV-2/immunology
7.
Cell ; 183(1): 185-196.e14, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33007262

ABSTRACT

Several HIV-1 and SIV vaccine candidates have shown partial protection against viral challenges in rhesus macaques. However, the protective efficacy of vaccine-elicited polyclonal antibodies has not previously been demonstrated in adoptive transfer studies in nonhuman primates. In this study, we show that passive transfer of purified antibodies from vaccinated macaques can protect naive animals against SIVmac251 challenges. We vaccinated 30 rhesus macaques with Ad26-SIV Env/Gag/Pol and SIV Env gp140 protein vaccines and assessed the induction of antibody responses and a putative protective signature. This signature included multiple antibody functions and correlated with upregulation of interferon pathways in vaccinated animals. Adoptive transfer of purified immunoglobulin G (IgG) from the vaccinated animals with the most robust protective signatures provided partial protection against SIVmac251 challenges in naive recipient rhesus macaques. These data demonstrate the protective efficacy of purified vaccine-elicited antiviral antibodies in this model, even in the absence of virus neutralization.


Subject(s)
Immunization, Passive/methods , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody Formation/immunology , Gene Products, env/immunology , Gene Products, gag/immunology , Gene Products, pol/immunology , HIV-1/immunology , Immunoglobulin G/immunology , Macaca mulatta/immunology , Simian Acquired Immunodeficiency Syndrome/immunology
8.
Cell ; 173(7): 1783-1795.e14, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29731169

ABSTRACT

Anti-HIV-1 envelope broadly neutralizing monoclonal antibodies (bNAbs) isolated from memory B cells may not fully represent HIV-1-neutralizing profiles measured in plasma. Accordingly, we characterized near-pan-neutralizing antibodies extracted directly from the plasma of two "elite neutralizers." Circulating anti-gp120 polyclonal antibodies were deconvoluted using proteomics to guide lineage analysis of bone marrow plasma cells. In both subjects, a single lineage of anti-CD4-binding site (CD4bs) antibodies explained the plasma-neutralizing activity. Importantly, members of these lineages potently neutralized 89%-100% of a multi-tier 117 pseudovirus panel, closely matching the specificity and breadth of the circulating antibodies. X-ray crystallographic analysis of one monoclonal, N49P7, suggested a unique ability to bypass the CD4bs Phe43 cavity, while reaching deep into highly conserved residues of Layer 3 of the gp120 inner domain, likely explaining its extreme potency and breadth. Further direct analyses of plasma anti-HIV-1 bNAbs should provide new insights for developing antibody-based antiviral agents and vaccines.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Envelope Protein gp120/immunology , HIV-1/metabolism , Amino Acid Sequence , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/chemistry , Binding Sites , CD4 Antigens/chemistry , CD4 Antigens/metabolism , Crystallography, X-Ray , HIV Antibodies/blood , HIV Antibodies/immunology , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/metabolism , HIV-1/genetics , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Structure, Tertiary , RNA, Viral/blood , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/immunology
9.
Cell ; 170(4): 637-648.e10, 2017 Aug 10.
Article in English | MEDLINE | ID: mdl-28757252

ABSTRACT

Non-neutralizing antibodies (nnAbs) to HIV-1 show little measurable activity in prevention or therapy in animal models yet were the only correlate of protection in the RV144 vaccine trial. To investigate the role of nnAbs on HIV-1 infection in vivo, we devised a replication-competent HIV-1 reporter virus that expresses a heterologous HA-tag on the surface of infected cells and virions. Anti-HA antibodies bind to, but do not neutralize, the reporter virus in vitro. However, anti-HA protects against infection in humanized mice and strongly selects for nnAb-resistant viruses in an entirely Fc-dependent manner. Similar results were also obtained with tier 2 HIV-1 viruses using a human anti-gp41 nnAb, 246D. While nnAbs are demonstrably less effective than broadly neutralizing antibodies (bNAbs) against HIV-1 in vitro and in vivo, the data show that nnAbs can protect against and alter the course of HIV-1 infection in vivo. PAPERCLIP.


Subject(s)
HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/physiology , AIDS Vaccines/immunology , Animals , CD4 Antigens/chemistry , CD4 Antigens/metabolism , Disease Models, Animal , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/metabolism , HIV-1/genetics , Humans , Mice , Mutation , Receptors, Fc/immunology , T-Lymphocytes/virology
10.
Cell ; 165(7): 1609-1620, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27315478

ABSTRACT

Broadly neutralizing antibodies (bNAbs) against the HIV-1 envelope glycoprotein (Env) suppress viremia in animal models of HIV-1 and humans. To achieve potent activity without the emergence of viral escape mutants, co-administration of different bNAbs is necessary to target distinct epitopes essential for viral fitness. Here, we report the development of bispecific anti-Env neutralizing antibodies (biNAbs) with potent activity. Synergistic activity of biNAbs was achieved by combining an engineered hinge domain of IgG3 to increase Fab domain flexibility necessary for hetero-bivalent binding to the Env trimer while retaining the functional properties of the IgG1-Fc. Compared to unmodified biNAbs, hinge domain variants exhibited substantially improved neutralization activity, with particular combinations showing evidence of synergistic neutralization potency in vitro and enhanced in vivo therapeutic activity in HIV-1-infected humanized mice. These findings suggest innovative strategies for generating biNAbs with enhanced neutralization breadth and potency, representing ideal candidate molecules for the control of HIV-1 infection.


Subject(s)
Antibodies, Bispecific/chemistry , HIV Envelope Protein gp120/immunology , HIV-1/immunology , Animals , Antibodies, Bispecific/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Epitopes , HIV Envelope Protein gp120/chemistry , HIV Infections/prevention & control , HIV Infections/therapy , Humans , Immunization, Passive , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin G/chemistry , Immunoglobulin G/immunology , Mice
11.
Cell ; 165(7): 1621-1631, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-27315479

ABSTRACT

While the search for an efficacious HIV-1 vaccine remains elusive, emergence of a new generation of virus-neutralizing monoclonal antibodies (mAbs) has re-ignited the field of passive immunization for HIV-1 prevention. However, the plasticity of HIV-1 demands additional improvements to these mAbs to better ensure their clinical utility. Here, we report engineered bispecific antibodies that are the most potent and broad HIV-neutralizing antibodies to date. One bispecific antibody, 10E8V2.0/iMab, neutralized 118 HIV-1 pseudotyped viruses tested with a mean 50% inhibitory concentration (IC50) of 0.002 µg/mL. 10E8V2.0/iMab also potently neutralized 99% of viruses in a second panel of 200 HIV-1 isolates belonging to clade C, the dominant subtype accounting for ∼50% of new infections worldwide. Importantly, 10E8V2.0/iMab reduced virus load substantially in HIV-1-infected humanized mice and also provided complete protection when administered prior to virus challenge. These bispecific antibodies hold promise as novel prophylactic and/or therapeutic agents in the fight against HIV-1.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Neutralizing/immunology , HIV Envelope Protein gp160/immunology , HIV-1/immunology , Animals , Antibodies, Bispecific/chemistry , Antibodies, Monoclonal/chemistry , Antibodies, Neutralizing/chemistry , HIV Envelope Protein gp160/chemistry , HIV Infections/prevention & control , HIV Infections/therapy , Humans , Immunization, Passive , Mice
12.
Cell ; 160(3): 433-46, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25635457

ABSTRACT

Antibodies developed during HIV-1 infection lose efficacy as the viral spike mutates. We postulated that anti-HIV-1 antibodies primarily bind monovalently because HIV's low spike density impedes bivalent binding through inter-spike crosslinking, and the spike structure prohibits bivalent binding through intra-spike crosslinking. Monovalent binding reduces avidity and potency, thus expanding the range of mutations permitting antibody evasion. To test this idea, we engineered antibody-based molecules capable of bivalent binding through intra-spike crosslinking. We used DNA as a "molecular ruler" to measure intra-epitope distances on virion-bound spikes and construct intra-spike crosslinking molecules. Optimal bivalent reagents exhibited up to 2.5 orders of magnitude increased potency (>100-fold average increases across virus panels) and identified conformational states of virion-bound spikes. The demonstration that intra-spike crosslinking lowers the concentration of antibodies required for neutralization supports the hypothesis that low spike densities facilitate antibody evasion and the use of molecules capable of intra-spike crosslinking for therapy or passive protection.


Subject(s)
Antibodies, Neutralizing/chemistry , HIV Antibodies/chemistry , HIV-1 , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin G/chemistry , Antibodies, Neutralizing/immunology , Cross-Linking Reagents/metabolism , Crystallography, X-Ray , Epitopes , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , Immunoglobulin G/immunology , Protein Engineering
13.
Cell ; 161(7): 1505-15, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26091035

ABSTRACT

A subset of individuals infected with HIV-1 develops broadly neutralizing antibodies (bNAbs) that can prevent infection, but it has not yet been possible to elicit these antibodies by immunization. To systematically explore how immunization might be tailored to produce them, we generated mice expressing the predicted germline or mature heavy chains of a potent bNAb to the CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein (Env). Immunogens specifically designed to activate B cells bearing germline antibodies are required to initiate immune responses, but they do not elicit bNAbs. In contrast, native-like Env trimers fail to activate B cells expressing germline antibodies but elicit bNAbs by selecting for a restricted group of light chains bearing specific somatic mutations that enhance neutralizing activity. The data suggest that vaccination to elicit anti-HIV-1 antibodies will require immunization with a succession of related immunogens.


Subject(s)
Antibodies, Neutralizing/genetics , Antibodies, Viral/genetics , Gene Knock-In Techniques , HIV-1/immunology , Immunoglobulin Heavy Chains/genetics , Animals , Antigens, Viral , B-Lymphocytes/immunology , CD4 Antigens/metabolism , HIV Infections/immunology , Humans , Mice , Mutation , Spleen/cytology , env Gene Products, Human Immunodeficiency Virus/metabolism
14.
Cell ; 158(6): 1243-1253, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-25215485

ABSTRACT

Broadly neutralizing antibodies (bNAbs) against HIV-1 provide both effective pre-exposure prophylaxis and treatment of HIV-1 infection in murine and nonhuman primate models, suggesting their potential use in humans. Although much is known about the role of variable domains in the neutralization breadth and potency of these bNAbs, the contribution of Fc domains to their activities is, by contrast, poorly characterized. Assessment of the in vivo activity of several bNAbs revealed that FcγR-mediated effector function contributes substantially to their capacity to block viral entry, suppress viremia, and confer therapeutic activity. Enhanced in vivo potency of anti-HIV-1 bNAbs was associated with preferential engagement of activating, but not inhibitory FcγRs, and Fc domain-engineered bNAb variants with selective binding capacity for activating FcγRs displayed augmented protective activity. These findings reveal key roles for Fc effector function in the in vivo activity of anti-HIV-1 bNAbs and provide strategies for generating bNAbs with improved efficacy.


Subject(s)
Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , HIV Infections/drug therapy , HIV-1 , Animals , Disease Models, Animal , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin G/immunology , Mice , Primates , Receptors, IgG/metabolism , env Gene Products, Human Immunodeficiency Virus/immunology
15.
Cell ; 158(5): 989-999, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25131989

ABSTRACT

Latent reservoirs of HIV-1-infected cells are refractory to antiretroviral therapies (ART) and remain the major barrier to curing HIV-1. Because latently infected cells are long-lived, immunologically invisible, and may undergo homeostatic proliferation, a "shock and kill" approach has been proposed to eradicate this reservoir by combining ART with inducers of viral transcription. However, all attempts to alter the HIV-1 reservoir in vivo have failed to date. Using humanized mice, we show that broadly neutralizing antibodies (bNAbs) can interfere with establishment of a silent reservoir by Fc-FcR-mediated mechanisms. In established infection, bNAbs or bNAbs plus single inducers are ineffective in preventing viral rebound. However, bNAbs plus a combination of inducers that act by independent mechanisms synergize to decrease the reservoir as measured by viral rebound. Thus, combinations of inducers and bNAbs constitute a therapeutic strategy that impacts the establishment and maintenance of the HIV-1 reservoir in humanized mice.


Subject(s)
Antibodies, Neutralizing/administration & dosage , HIV Infections/immunology , HIV-1/drug effects , Transcription, Genetic/drug effects , Virus Latency/drug effects , Animals , Anti-HIV Agents/therapeutic use , Antibodies, Neutralizing/immunology , CD4-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/administration & dosage , HIV Infections/virology , HIV-1/genetics , HIV-1/physiology , Heterocyclic Compounds, 4 or More Rings/administration & dosage , Humans , Hydroxamic Acids/administration & dosage , Immunoglobulin Fc Fragments/immunology , Mice , Receptors, Fc/immunology , Vorinostat
16.
Immunity ; 50(6): 1513-1529.e9, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31126879

ABSTRACT

Broadly neutralizing antibodies (bNAbs) against HIV-1 envelope (Env) inform vaccine design and are potential therapeutic agents. We identified SF12 and related bNAbs with up to 62% neutralization breadth from an HIV-infected donor. SF12 recognized a glycan-dominated epitope on Env's silent face and was potent against clade AE viruses, which are poorly covered by V3-glycan bNAbs. A 3.3Å cryo-EM structure of a SF12-Env trimer complex showed additional contacts to Env protein residues by SF12 compared with VRC-PG05, the only other known donor-derived silentface antibody, explaining SF12's increased neutralization breadth, potency, and resistance to Env mutation routes. Asymmetric binding of SF12 was associated with distinct N-glycan conformations across Env protomers, demonstrating intra-Env glycan heterogeneity. Administrating SF12 to HIV-1-infected humanized mice suppressed viremia and selected for viruses lacking the N448gp120 glycan. Effective bNAbs can therefore be raised against HIV-1 Env's silent face, suggesting their potential for HIV-1 prevention, therapy, and vaccine development.


Subject(s)
Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Amino Acid Sequence , Antibodies, Neutralizing/isolation & purification , Antibody Affinity/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Epitopes/chemistry , Epitopes/immunology , Glycosylation , HIV Antibodies/isolation & purification , HIV Envelope Protein gp120/chemistry , HIV Envelope Protein gp120/immunology , HIV Infections/virology , HIV-1/classification , HIV-1/genetics , Humans , Models, Molecular , Phylogeny , Polysaccharides/chemistry , Polysaccharides/metabolism , Protein Binding/immunology , Protein Conformation , env Gene Products, Human Immunodeficiency Virus/chemistry , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/metabolism
17.
Cell ; 153(1): 126-38, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23540694

ABSTRACT

Broadly neutralizing antibodies (bNAbs) to HIV-1 can prevent infection and are therefore of great importance for HIV-1 vaccine design. Notably, bNAbs are highly somatically mutated and generated by a fraction of HIV-1-infected individuals several years after infection. Antibodies typically accumulate mutations in the complementarity determining region (CDR) loops, which usually contact the antigen. The CDR loops are scaffolded by canonical framework regions (FWRs) that are both resistant to and less tolerant of mutations. Here, we report that in contrast to most antibodies, including those with limited HIV-1 neutralizing activity, most bNAbs require somatic mutations in their FWRs. Structural and functional analyses reveal that somatic mutations in FWR residues enhance breadth and potency by providing increased flexibility and/or direct antigen contact. Thus, in bNAbs, FWRs play an essential role beyond scaffolding the CDR loops and their unusual contribution to potency and breadth should be considered in HIV-1 vaccine design.


Subject(s)
AIDS Vaccines/immunology , Drug Design , HIV Antibodies/immunology , HIV-1 , Mutation , AIDS Vaccines/chemistry , AIDS Vaccines/genetics , Amino Acid Sequence , Antibodies, Neutralizing , Complementarity Determining Regions , Crystallography, X-Ray , HIV Antibodies/chemistry , HIV Antibodies/genetics , Humans , Models, Molecular , Molecular Sequence Data , Sequence Alignment
18.
Cell ; 155(3): 531-9, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24243013

ABSTRACT

The global diversity of HIV-1 represents a critical challenge facing HIV-1 vaccine development. HIV-1 mosaic antigens are bioinformatically optimized immunogens designed for improved coverage of HIV-1 diversity. However, the protective efficacy of such global HIV-1 vaccine antigens has not previously been evaluated. Here, we demonstrate the capacity of bivalent HIV-1 mosaic antigens to protect rhesus monkeys against acquisition of infection following heterologous challenges with the difficult-to-neutralize simian-human immunodeficiency virus SHIV-SF162P3. Adenovirus/poxvirus and adenovirus/adenovirus vector-based vaccines expressing HIV-1 mosaic Env, Gag, and Pol afforded a significant reduction in the per-exposure acquisition risk following repetitive, intrarectal SHIV-SF162P3 challenges. Protection against acquisition of infection correlated with vaccine-elicited binding, neutralizing, and functional nonneutralizing antibodies, suggesting that the coordinated activity of multiple antibody functions may contribute to protection against difficult-to-neutralize viruses. These data demonstrate the protective efficacy of HIV-1 mosaic antigens and suggest a potential strategy for the development of a global HIV-1 vaccine. PAPERCLIP:


Subject(s)
AIDS Vaccines/immunology , HIV-1 , Animals , Antibody Formation , Female , HIV Antigens/immunology , Human Immunodeficiency Virus Proteins/immunology , Immunity, Cellular , Macaca mulatta , Male , Molecular Sequence Data , Specific Pathogen-Free Organisms
19.
Nature ; 606(7913): 375-381, 2022 06.
Article in English | MEDLINE | ID: mdl-35650437

ABSTRACT

Antiretroviral therapy is highly effective in suppressing human immunodeficiency virus (HIV)1. However, eradication of the virus in individuals with HIV has not been possible to date2. Given that HIV suppression requires life-long antiretroviral therapy, predominantly on a daily basis, there is a need to develop clinically effective alternatives that use long-acting antiviral agents to inhibit viral replication3. Here we report the results of a two-component clinical trial involving the passive transfer of two HIV-specific broadly neutralizing monoclonal antibodies, 3BNC117 and 10-1074. The first component was a randomized, double-blind, placebo-controlled trial that enrolled participants who initiated antiretroviral therapy during the acute/early phase of HIV infection. The second component was an open-label single-arm trial that enrolled individuals with viraemic control who were naive to antiretroviral therapy. Up to 8 infusions of 3BNC117 and 10-1074, administered over a period of 24 weeks, were well tolerated without any serious adverse events related to the infusions. Compared with the placebo, the combination broadly neutralizing monoclonal antibodies maintained complete suppression of plasma viraemia (for up to 43 weeks) after analytical treatment interruption, provided that no antibody-resistant HIV was detected at the baseline in the study participants. Similarly, potent HIV suppression was seen in the antiretroviral-therapy-naive study participants with viraemia carrying sensitive virus at the baseline. Our data demonstrate that combination therapy with broadly neutralizing monoclonal antibodies can provide long-term virological suppression without antiretroviral therapy in individuals with HIV, and our experience offers guidance for future clinical trials involving next-generation antibodies with long half-lives.


Subject(s)
Anti-HIV Agents , Antibodies, Neutralizing , HIV Antibodies , HIV Infections , HIV-1 , Anti-HIV Agents/administration & dosage , Anti-HIV Agents/adverse effects , Anti-HIV Agents/immunology , Anti-HIV Agents/therapeutic use , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/adverse effects , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Neutralizing/administration & dosage , Antibodies, Neutralizing/adverse effects , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Broadly Neutralizing Antibodies/administration & dosage , Broadly Neutralizing Antibodies/adverse effects , Broadly Neutralizing Antibodies/immunology , Broadly Neutralizing Antibodies/therapeutic use , Double-Blind Method , HIV Antibodies/administration & dosage , HIV Antibodies/adverse effects , HIV Antibodies/immunology , HIV Antibodies/therapeutic use , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , HIV-1/isolation & purification , Humans , Viral Load/drug effects , Viremia/drug therapy , Viremia/immunology , Viremia/virology
20.
Nature ; 606(7913): 368-374, 2022 06.
Article in English | MEDLINE | ID: mdl-35418681

ABSTRACT

HIV-1 infection remains a public health problem with no cure. Anti-retroviral therapy (ART) is effective but requires lifelong drug administration owing to a stable reservoir of latent proviruses integrated into the genome of CD4+ T cells1. Immunotherapy with anti-HIV-1 antibodies has the potential to suppress infection and increase the rate of clearance of infected cells2,3. Here we report on a clinical study in which people living with HIV received seven doses of a combination of two broadly neutralizing antibodies over 20 weeks in the presence or absence of ART. Without pre-screening for antibody sensitivity, 76% (13 out of 17) of the volunteers maintained virologic suppression for at least 20 weeks off ART. Post hoc sensitivity analyses were not predictive of the time to viral rebound. Individuals in whom virus remained suppressed for more than 20 weeks showed rebound viraemia after one of the antibodies reached serum concentrations below 10 µg ml-1. Two of the individuals who received all seven antibody doses maintained suppression after one year. Reservoir analysis performed after six months of antibody therapy revealed changes in the size and composition of the intact proviral reservoir. By contrast, there was no measurable decrease in the defective reservoir in the same individuals. These data suggest that antibody administration affects the HIV-1 reservoir, but additional larger and longer studies will be required to define the precise effect of antibody immunotherapy on the reservoir.


Subject(s)
Anti-Retroviral Agents , HIV Antibodies , HIV Infections , HIV-1 , Viral Load , Anti-Retroviral Agents/therapeutic use , CD4-Positive T-Lymphocytes/virology , HIV Antibodies/therapeutic use , HIV Infections/drug therapy , HIV-1/drug effects , HIV-1/growth & development , Humans , Proviruses/drug effects , Viral Load/drug effects , Viremia/drug therapy , Virus Latency/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL