Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
J Biol Chem ; 299(7): 104871, 2023 07.
Article in English | MEDLINE | ID: mdl-37247760

ABSTRACT

Malaria causes >600 thousand fatalities each year, with most cases attributed to the human-infectious Plasmodium falciparum species. Many rodent-infectious Plasmodium species, like Plasmodium berghei and Plasmodium yoelii, have been used as model species that can expedite studies of this pathogen. P. yoelii is an especially good model for investigating the mosquito and liver stages of development because key attributes closely resemble those of P. falciparum. Because of its importance, in 2002 the 17XNL strain of P. yoelii was the first rodent malaria parasite to be sequenced. Although this was a breakthrough effort, the assembly consisted of >5000 contiguous sequences that adversely impacted the annotated gene models. While other rodent malaria parasite genomes have been sequenced and annotated since then, including the related P. yoelii 17X strain, the 17XNL strain has not. As a result, genomic data for 17X has become the de facto reference genome for the 17XNL strain while leaving open questions surrounding possible differences between the 17XNL and 17X genomes. In this work, we present a high-quality genome assembly for P. yoelii 17XNL using PacBio DNA sequencing. In addition, we use Nanopore and Illumina RNA sequencing of mixed blood stages to create complete gene models that include coding sequences, alternate isoforms, and UTR designations. A comparison of the 17X and this new 17XNL assembly revealed biologically meaningful differences between the strains due to the presence of coding sequence variants. Taken together, our work provides a new genomic framework for studies with this commonly used rodent malaria model species.


Subject(s)
Malaria , Parasites , Plasmodium yoelii , Animals , Humans , Plasmodium yoelii/genetics , Rodentia , Malaria/parasitology , Liver
2.
PLoS Biol ; 19(10): e3001434, 2021 10.
Article in English | MEDLINE | ID: mdl-34673764

ABSTRACT

Productive transmission of malaria parasites hinges upon the execution of key transcriptional and posttranscriptional regulatory events. While much is now known about how specific transcription factors activate or repress sexual commitment programs, far less is known about the production of a preferred mRNA homeostasis following commitment and through the host-to-vector transmission event. Here, we show that in Plasmodium parasites, the NOT1 scaffold protein of the CAF1/CCR4/Not complex is duplicated, and one paralogue is dedicated for essential transmission functions. Moreover, this NOT1-G paralogue is central to the sex-specific functions previously associated with its interacting partners, as deletion of not1-g in Plasmodium yoelii leads to a comparable or complete arrest phenotype for both male and female parasites. We show that, consistent with its role in other eukaryotes, PyNOT1-G localizes to cytosolic puncta throughout much of the Plasmodium life cycle. PyNOT1-G is essential to both the complete maturation of male gametes and to the continued development of the fertilized zygote originating from female parasites. Comparative transcriptomics of wild-type and pynot1-g- parasites shows that loss of PyNOT1-G leads to transcript dysregulation preceding and during gametocytogenesis and shows that PyNOT1-G acts to preserve mRNAs that are critical to sexual and early mosquito stage development. Finally, we demonstrate that the tristetraprolin (TTP)-binding domain, which acts as the typical organization platform for RNA decay (TTP) and RNA preservation (ELAV/HuR) factors is dispensable for PyNOT1-G's essential blood stage functions but impacts host-to-vector transmission. Together, we conclude that a NOT1-G paralogue in Plasmodium fulfills the complex transmission requirements of both male and female parasites.


Subject(s)
Life Cycle Stages , Parasites/growth & development , Parasites/metabolism , Plasmodium/growth & development , Plasmodium/metabolism , Protozoan Proteins/metabolism , Sequence Homology, Amino Acid , Animals , Cytosol/metabolism , Female , Gene Duplication , Gene Expression Regulation, Developmental , Germ Cells/physiology , Male , Mice , Models, Biological , Protein Domains , Protein Interaction Maps , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Deletion , Sexual Maturation/physiology , Transcriptome/genetics , Zygote/growth & development
3.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902031

ABSTRACT

RNA-binding motif 8A (RBM8A) is a core component of the exon junction complex (EJC) that binds pre-mRNAs and regulates their splicing, transport, translation, and nonsense-mediated decay (NMD). Dysfunction in the core proteins has been linked to several detriments in brain development and neuropsychiatric diseases. To understand the functional role of Rbm8a in brain development, we have generated brain-specific Rbm8a knockout mice and used next-generation RNA-sequencing to identify differentially expressed genes (DEGs) in mice with heterozygous, conditional knockout (cKO) of Rbm8a in the brain at postnatal day 17 (P17) and at embryonic day 12. Additionally, we analyzed enriched gene clusters and signaling pathways within the DEGs. At the P17 time point, between the control and cKO mice, about 251 significant DEGs were identified. At E12, only 25 DEGs were identified in the hindbrain samples. Bioinformatics analyses have revealed many signaling pathways related to the central nervous system (CNS). When E12 and P17 results were compared, three DEGs, Spp1, Gpnmb, and Top2a, appeared to peak at different developmental time points in the Rbm8a cKO mice. Enrichment analyses suggested altered activity in pathways affecting cellular proliferation, differentiation, and survival. The results support the hypothesis that loss of Rbm8a causes decreased cellular proliferation, increased apoptosis, and early differentiation of neuronal subtypes, which may lead ultimately to an altered neuronal subtype composition in the brain.


Subject(s)
Brain , Transcriptome , Animals , Mice , Mice, Knockout , Brain/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction
4.
Addict Biol ; 26(1): e12859, 2021 01.
Article in English | MEDLINE | ID: mdl-31782218

ABSTRACT

Nicotine use remains highly prevalent with tobacco and e-cigarette products consumed worldwide. However, increasing evidence of transgenerational epigenetic inheritance suggests that nicotine use may alter behavior and neurobiology in subsequent generations. We tested the effects of chronic paternal nicotine exposure in C57BL6/J mice on fear conditioning in F1 and F2 offspring, as well as conditioned fear extinction and spontaneous recovery, nicotine self-administration, hippocampal cholinergic functioning, RNA expression, and DNA methylation in F1 offspring. Paternal nicotine exposure was associated with enhanced contextual and cued fear conditioning and spontaneous recovery of extinguished fear memories. Further, nicotine reinforcement was reduced in nicotine-sired mice, as assessed in a self-administration paradigm. These behavioral phenotypes were coupled with altered response to nicotine, upregulated hippocampal nicotinic acetylcholine receptor binding, reduced evoked hippocampal cholinergic currents, and altered methylation and expression of hippocampal genes related to neural development and plasticity. Gene expression analysis suggests multigenerational effects on broader gene networks potentially involved in neuroplasticity and mental disorders. The changes in fear conditioning similarly suggest phenotypes analogous to anxiety disorders similar to post-traumatic stress.


Subject(s)
Fear/drug effects , Hippocampus/metabolism , Memory/drug effects , Nicotine/pharmacology , Paternal Exposure/adverse effects , Animals , Conditioning, Psychological/drug effects , Cues , Extinction, Psychological , Female , Male , Mice , Mice, Inbred C57BL , Up-Regulation/drug effects
5.
BMC Bioinformatics ; 21(1): 292, 2020 Jul 08.
Article in English | MEDLINE | ID: mdl-32640986

ABSTRACT

BACKGROUND: Bioinformaticians collaborating with life scientists need software that allows them to involve their collaborators in the process of data analysis. RESULTS: We have developed a web application that allows researchers to publish and execute data analysis scripts. Within the platform bioinformaticians are able to deploy data analysis workflows (recipes) that their collaborators can execute via point and click interfaces. The results generated by the recipes are viewable via the web interface and consist of a snapshot of all the commands, printed messages and files that have been generated during the recipe run. A demonstration version of our software is available at https://www.bioinformatics.recipes/ . Detailed documentation for the software is available at: https://bioinformatics-recipes.readthedocs.io . The source code for the software is distributed through GitHub at https://github.com/ialbert/biostar-central . CONCLUSIONS: Our software platform supports collaborative interactions between bioinformaticians and life scientists. The software is presented via a web application that provides a high utility and user-friendly approach for conducting reproducible research. The recipes developed and shared through the web application are generic, with broad applicability and may be downloaded and executed on other computing platforms.


Subject(s)
Computational Biology/methods , Software , Data Analysis , Reproducibility of Results , User-Computer Interface , Workflow
6.
J Cell Sci ; 131(6)2018 03 26.
Article in English | MEDLINE | ID: mdl-29487181

ABSTRACT

In this study, we characterized the Puf family gene member Puf3 in the malaria parasites Plasmodium falciparum and Plasmodium yoelii Secondary structure prediction suggested that the RNA-binding domains of the Puf3 proteins consisted of 11 pumilio repeats that were similar to those in the human Puf-A (also known as PUM3) and Saccharomyces cerevisiae Puf6 proteins, which are involved in ribosome biogenesis. Neither P. falciparum (Pf)Puf3 nor P. yoelii (Py)Puf3 could be genetically disrupted, suggesting they may be essential for the intraerythrocytic developmental cycle. Cellular fractionation of PfPuf3 in the asexual stages revealed preferential partitioning to the nuclear fraction, consistent with nuclear localization of PfPuf3::GFP and PyPuf3::GFP as detected by immunofluorescence. Furthermore, PfPuf3 colocalized with the nucleolar marker PfNop1, demonstrating that PfPuf3 is a nucleolar protein in the asexual stages. We found, however, that PyPuf3 changed its localization from being nucleolar to being present in cytosolic puncta in the mosquito and liver stages, which may reflect alternative functions in these stages. Affinity purification of molecules that associated with a PTP-tagged variant of PfPuf3 revealed 31 proteins associated with the 60S ribosome, and an enrichment of 28S rRNA and internal transcribed spacer 2 sequences. Taken together, these results suggest an essential function for PfPuf3 in ribosomal biogenesis.


Subject(s)
Plasmodium falciparum/metabolism , Plasmodium yoelii/metabolism , Protozoan Proteins/chemistry , Ribosomes/metabolism , Cell Nucleolus/genetics , Cell Nucleolus/metabolism , Cytosol/metabolism , Life Cycle Stages , Plasmodium falciparum/chemistry , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Plasmodium yoelii/chemistry , Plasmodium yoelii/genetics , Plasmodium yoelii/growth & development , Protein Transport , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Ribosomes/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
7.
Int J Syst Evol Microbiol ; 70(11): 5701-5710, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32931408

ABSTRACT

A novel thermophilic phototrophic purple sulphur bacterium was isolated from microbial mats (56 °C) at Nakabusa hot springs, Nagano prefecture, Japan. Cells were motile, rod-shaped, stain Gram-negative and stored sulphur globules intracellularly. Bacteriochlorophyll a and carotenoids of the normal spirilloxanthin series were the major pigments. Dense liquid cultures were red in colour. Strain No.7T was able to grow photoautotrophically using sulfide, thiosulfate, sulfite and hydrogen (in the presence of sulfide) as electron donors and bicarbonate as the sole carbon source. Optimum growth occurred under anaerobic conditions in the light at 50 °C (range, 40-56 °C) and pH 7.2 (range, pH 7-8). Major fatty acids were C16 : 0 (46.8 %), C16 : 1 ω7c (19.9 %), C18 : 1 ω7c (21.1 %), C14 : 0 (4.6 %) and C18 : 0 (2.4 %). The polar lipid profile showed phosphatidylglycerol and unidentified aminophospholipids to be the major lipids. The only quinone detected was ubiquinone-8. 16S rRNA gene sequence comparisons indicated that the novel bacterium is only distantly related to Thermochromatium tepidum with a nucleotide identity of 90.4 %. The phylogenetic analysis supported the high novelty of strain No.7T with a long-branching phylogenetic position within the Chromatiaceae next to Thermochromatium tepidum. The genome comprised a circular chromosome of 2.99 Mbp (2 989 870 bp), included no plasmids and had a DNA G+C content of 61.2 mol%. Polyphasic taxonomic analyses of the isolate suggested strain No.7T is a novel genus within the Chromatiaceae. The proposed genus name of the second truly thermophilic purple sulphur bacterium is Caldichromatium gen. nov. with the type species Caldichromatium japonicum sp. nov. (DSM 110881=JCM 39101).


Subject(s)
Chromatiaceae/classification , Hot Springs/microbiology , Phylogeny , Bacterial Typing Techniques , Base Composition , Chromatiaceae/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Japan , Phospholipids/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sulfides , Sulfur , Thiosulfates , Ubiquinone/chemistry
8.
Plant Mol Biol ; 99(4-5): 499-516, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30739243

ABSTRACT

KEY MESSAGE: Key genes potentially involved in cacao disease resistance were identified by transcriptomic analysis of important cacao cultivars. Defense gene polymorphisms were identified which could contribute to pathogen recognition capacity. Cacao suffers significant annual losses to the water mold Phytophthora spp. (Oomycetes). In West Africa, P. megakarya poses a major threat to farmer livelihood and the stability of cocoa production. As part of a long-term goal to define key disease resistance genes in cacao, here we use a transcriptomic analysis of the disease-resistant cacao clone SCA6 and the susceptible clone NA32 to characterize basal differences in gene expression, early responses to infection, and polymorphisms in defense genes. Gene expression measurements by RNA-seq along a time course revealed the strongest transcriptomic response 24 h after inoculation in the resistant genotype. We observed strong regulation of several pathogenesis-related genes, pattern recognition receptors, and resistance genes, which could be critical for the ability of SCA6 to combat infection. These classes of genes also showed differences in basal expression between the two genotypes prior to infection, suggesting that prophylactic expression of defense-associated genes could contribute to SCA6's broad-spectrum disease resistance. Finally, we analyzed polymorphism in a set of defense-associated receptors, identifying coding variants between SCA6 and NA32 which could contribute to unique capacities for pathogen recognition. This work is an important step toward characterizing genetic differences underlying a successful defense response in cacao.


Subject(s)
Cacao/genetics , Cacao/immunology , Disease Resistance/genetics , Disease Resistance/immunology , Genotype , Phytophthora/pathogenicity , Polymorphism, Genetic , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant/genetics , Plant Diseases/genetics , Plant Diseases/immunology , Plant Diseases/parasitology , Plant Leaves , RNA, Plant/isolation & purification , Transcriptome
9.
Proc Natl Acad Sci U S A ; 113(23): 6478-83, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27222581

ABSTRACT

Many globular and structural proteins have repetitions in their sequences or structures. However, a clear relationship between these repeats and their contribution to the mechanical properties remains elusive. We propose a new approach for the design and production of synthetic polypeptides that comprise one or more tandem copies of a single unit with distinct amorphous and ordered regions. Our designed sequences are based on a structural protein produced in squid suction cups that has a segmented copolymer structure with amorphous and crystalline domains. We produced segmented polypeptides with varying repeat number, while keeping the lengths and compositions of the amorphous and crystalline regions fixed. We showed that mechanical properties of these synthetic proteins could be tuned by modulating their molecular weights. Specifically, the toughness and extensibility of synthetic polypeptides increase as a function of the number of tandem repeats. This result suggests that the repetitions in native squid proteins could have a genetic advantage for increased toughness and flexibility.


Subject(s)
Decapodiformes/genetics , Peptides , Proteins , Tandem Repeat Sequences , Animals , Mechanical Phenomena , Peptides/chemistry , Peptides/genetics , Proteins/chemistry , Proteins/genetics
10.
Mol Biol Evol ; 33(10): 2648-58, 2016 10.
Article in English | MEDLINE | ID: mdl-27486223

ABSTRACT

We have identified a fixed nonsynonymous sequence difference between humans (Val381; derived variant) and Neandertals (Ala381; ancestral variant) in the ligand-binding domain of the aryl hydrocarbon receptor (AHR) gene. In an exome sequence analysis of four Neandertal and Denisovan individuals compared with nine modern humans, there are only 90 total nucleotide sites genome-wide for which archaic hominins are fixed for the ancestral nonsynonymous variant and the modern humans are fixed for the derived variant. Of those sites, only 27, including Val381 in the AHR, also have no reported variability in the human dbSNP database, further suggesting that this highly conserved functional variant is a rare event. Functional analysis of the amino acid variant Ala381 within the AHR carried by Neandertals and nonhuman primates indicate enhanced polycyclic aromatic hydrocarbon (PAH) binding, DNA binding capacity, and AHR mediated transcriptional activity compared with the human AHR. Also relative to human AHR, the Neandertal AHR exhibited 150-1000 times greater sensitivity to induction of Cyp1a1 and Cyp1b1 expression by PAHs (e.g., benzo(a)pyrene). The resulting CYP1A1/CYP1B1 enzymes are responsible for PAH first pass metabolism, which can result in the generation of toxic intermediates and perhaps AHR-associated toxicities. In contrast, the human AHR retains the ancestral sensitivity observed in primates to nontoxic endogenous AHR ligands (e.g., indole, indoxyl sulfate). Our findings reveal that a functionally significant change in the AHR occurred uniquely in humans, relative to other primates, that would attenuate the response to many environmental pollutants, including chemicals present in smoke from fire use during cooking.


Subject(s)
Hominidae/genetics , Neanderthals/genetics , Receptors, Aryl Hydrocarbon/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Benzo(a)pyrene , Biological Evolution , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1B1/genetics , DNA/metabolism , Evolution, Molecular , Humans , Ligands , Polycyclic Aromatic Hydrocarbons/metabolism
11.
BMC Microbiol ; 16(1): 145, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27400733

ABSTRACT

BACKGROUND: Multiple types of solid waste in developing countries is disposed of together in dumpsites where there is interaction between humans, animals and the bacteria in the waste. To study the bacteria at the dumpsite and the associated risks, previous studies have focused on culturable, leaving behind a great number of unculturable bacteria. This study focuses on a more comprehensive approach to study bacteria at the dumpsite. Since the site comprised of unsorted wastes, a qualitative survey was first performed to identify the variety of solid waste as this has influence on the microbial composition. Thus, domestic (Dom), biomedical (Biom), river sludge (Riv), and fecal material of pigs scavenging on the dumpsite (FecD) were sampled. Total DNA was extracted from 78 samples and the v4-16S rRNA amplicons was characterized using an Illumina MiSeq platform. RESULTS: A total of 8,469,294 sequences passed quality control. Catchall analysis predicted a mean of 8243 species per sample. Diversity was high with an average InvSimpson index of 44.21 ± 1.44. A total of 35 phyla were detected and the predominant were Firmicutes (38 %), Proteobacteria (35 %), Bacteroidetes (13 %) and Actinobacteria (3 %). Overall 76,862 OTUs were detected, however, only 20 % were found more than 10 times. The predominant OTUs were Acinetobacter (12.1 %), Clostridium sensu stricto (4.8 %), Proteinclasticum and Lactobacillus both at (3.4 %), Enterococcus (2.9 %) and Escherichia/Shigella (1.7 %). Indicator analysis (P ≤ 0.05, indicator value ≥ 70) shows that Halomonas, Idiomarina, Tisierella and Proteiniclasticum were associated with Biom; Enterococcus, Bifidobacteria, and Clostridium sensu stricto with FecD and Flavobacteria, Lysobacter and Commamonas to Riv. Acinetobacter and Clostridium sensu stricto were found in 62 % and 49 % of all samples, respectively, at the relative abundance of 1 %. None of OTUs was found across all samples. CONCLUSIONS: This study provides a comprehensive report on the abundance and diversity bacteria in municipal dumpsite. The species richness reported here shows the complexity of this man-made ecosystem and calls for further research to assess for a link between human diseases and the dumpsite. This would provide insight into proper disposal of the waste, as well as, limit the risks to human health associated with the dumpsite.


Subject(s)
Bacteria/classification , Bacteria/genetics , RNA, Ribosomal, 16S/genetics , Waste Disposal Facilities , Animals , Biodiversity , DNA, Bacterial , Feces/microbiology , High-Throughput Nucleotide Sequencing/methods , Microbial Consortia/genetics , Phylogeny , Sequence Analysis , Sewage/microbiology , Solid Waste , Swine/microbiology , Tanzania
12.
BMC Genomics ; 16: 620, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26285697

ABSTRACT

BACKGROUND: Adaptive manipulation of animal behavior by parasites functions to increase parasite transmission through changes in host behavior. These changes can range from slight alterations in existing behaviors of the host to the establishment of wholly novel behaviors. The biting behavior observed in Carpenter ants infected by the specialized fungus Ophiocordyceps unilateralis s.l. is an example of the latter. Though parasitic manipulation of host behavior is generally assumed to be due to the parasite's gene expression, few studies have set out to test this. RESULTS: We experimentally infected Carpenter ants to collect tissue from both parasite and host during the time period when manipulated biting behavior is experienced. Upon observation of synchronized biting, samples were collected and subjected to mixed RNA-Seq analysis. We also sequenced and annotated the O. unilateralis s.l. genome as a reference for the fungal sequencing reads. CONCLUSIONS: Our mixed transcriptomics approach, together with a comparative genomics study, shows that the majority of the fungal genes that are up-regulated during manipulated biting behavior are unique to the O. unilateralis s.l. genome. This study furthermore reveals that the fungal parasite might be regulating immune- and neuronal stress responses in the host during manipulated biting, as well as impairing its chemosensory communication and causing apoptosis. Moreover, we found genes up-regulated during manipulation that putatively encode for proteins with reported effects on behavioral outputs, proteins involved in various neuropathologies and proteins involved in the biosynthesis of secondary metabolites such as alkaloids.


Subject(s)
Ants/genetics , Ants/microbiology , Behavior, Animal/physiology , Saccharomycetales/physiology , Sequence Analysis, RNA/methods , Animals , Gene Expression Profiling/methods , Gene Expression Regulation , Genome, Fungal , Genome, Insect , Host-Pathogen Interactions , Phylogeny , Saccharomycetales/genetics
13.
bioRxiv ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39026743

ABSTRACT

Twister ribozymes are an extensively studied class of nucleolytic RNAs. Thousands of natural twisters have been proposed using sequence homology and structural descriptors. Yet, most of these candidates have not been validated experimentally. To address this gap, we developed CHiTA (Cleavage High-Throughput Assay), a high-throughput pipeline utilizing massively parallel oligonucleotide synthesis and next-generation sequencing to test putative ribozymes en masse in a scarless fashion. As proof of principle, we applied CHiTA to a small set of known active and mutant ribozymes. We then used CHiTA to test two large sets of naturally occurring twister ribozymes: over 1, 600 previously reported putative twisters and ∼1, 000 new candidate twisters. The new candidates were identified computationally in ∼1, 000 organisms, representing a massive increase in the number of ribozyme-harboring organisms. Approximately 94% of the twisters we tested were active and cleaved site-specifically. Analysis of their structural features revealed that many substitutions and helical imperfections can be tolerated. We repeated our computational search with structural descriptors updated from this analysis, whereupon we identified and confirmed the first intrinsically active twister ribozyme in mammals. CHiTA broadly expands the number of active twister ribozymes found in nature and provides a powerful method for functional analyses of other RNAs.

14.
bioRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38352447

ABSTRACT

Malaria parasites must be able to respond quickly to changes in their environment, including during their transmission between mammalian hosts and mosquito vectors. Therefore, before transmission, female gametocytes proactively produce and translationally repress mRNAs that encode essential proteins that the zygote requires to establish a new infection. This essential regulatory control requires the orthologues of DDX6 (DOZI), LSM14a (CITH), and ALBA proteins to form a translationally repressive complex in female gametocytes that associates with many of the affected mRNAs. However, while the release of translational repression of individual mRNAs has been documented, the details of the global release of translational repression have not. Moreover, the changes in spatial arrangement and composition of the DOZI/CITH/ALBA complex that contribute to translational control are also not known. Therefore, we have conducted the first quantitative, comparative transcriptomics and DIA-MS proteomics of Plasmodium parasites across the host-to-vector transmission event to document the global release of translational repression. Using female gametocytes and zygotes of P. yoelii, we found that nearly 200 transcripts are released for translation soon after fertilization, including those with essential functions for the zygote. However, we also observed that some transcripts remain repressed beyond this point. In addition, we have used TurboID-based proximity proteomics to interrogate the spatial and compositional changes in the DOZI/CITH/ALBA complex across this transmission event. Consistent with recent models of translational control, proteins that associate with either the 5' or 3' end of mRNAs are in close proximity to one another during translational repression in female gametocytes and then dissociate upon release of repression in zygotes. This observation is cross-validated for several protein colocalizations in female gametocytes via ultrastructure expansion microscopy and structured illumination microscopy. Moreover, DOZI exchanges its interaction from NOT1-G in female gametocytes to the canonical NOT1 in zygotes, providing a model for a trigger for the release of mRNAs from DOZI. Finally, unenriched phosphoproteomics revealed the modification of key translational control proteins in the zygote. Together, these data provide a model for the essential translational control mechanisms used by malaria parasites to promote their efficient transmission from their mammalian host to their mosquito vector.

15.
bioRxiv ; 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36711553

ABSTRACT

Malaria causes over 200 million infections and over 600 thousand fatalities each year, with most cases attributed to a human-infectious Plasmodium species, Plasmodium falciparum . Many rodent-infectious Plasmodium species, like Plasmodium berghei, Plasmodium chabaudi , and Plasmodium yoelii , have been used as genetically tractable model species that can expedite studies of this pathogen. In particular, P. yoelii is an especially good model for investigating the mosquito and liver stages of parasite development because key attributes closely resemble those of P. falciparum . Because of its importance to malaria research, in 2002 the 17XNL strain of P. yoelii was the first rodent malaria parasite to be sequenced. While sequencing and assembling this genome was a breakthrough effort, the final assembly consisted of >5000 contiguous sequences that impacted the creation of annotated gene models. While other important rodent malaria parasite genomes have been sequenced and annotated since then, including the related P. yoelii 17X strain, the 17XNL strain has not. As a result, genomic data for 17X has become the de facto reference genome for the 17XNL strain while leaving open questions surrounding possible differences between the 17XNL and 17X genomes. In this work, we present a high-quality genome assembly for P. yoelii 17XNL using HiFi PacBio long-read DNA sequencing. In addition, we use Nanopore long-read direct RNA-seq and Illumina short-read sequencing of mixed blood stages to create complete gene models that include not only coding sequences but also alternate transcript isoforms, and 5' and 3' UTR designations. A comparison of the 17X and this new 17XNL assembly revealed biologically meaningful differences between the strains due to the presence of coding sequence variants. Taken together, our work provides a new genomic and gene expression framework for studies with this commonly used rodent malaria model species.

16.
Redox Biol ; 59: 102571, 2023 02.
Article in English | MEDLINE | ID: mdl-36516721

ABSTRACT

Macrophages play a pivotal role in mediating inflammation and subsequent resolution of inflammation. The availability of selenium as a micronutrient and the subsequent biosynthesis of selenoproteins, containing the 21st amino acid selenocysteine (Sec), are important for the physiological functions of macrophages. Selenoproteins regulate the redox tone in macrophages during inflammation, the early onset of which involves oxidative burst of reactive oxygen and nitrogen species. SELENOW is a highly expressed selenoprotein in bone marrow-derived macrophages (BMDMs). Beyond its described general role as a thiol and peroxide reductase and as an interacting partner for 14-3-3 proteins, its cellular functions, particularly in macrophages, remain largely unknown. In this study, we utilized Selenow knock-out (KO) murine bone marrow-derived macrophages (BMDMs) to address the role of SELENOW in inflammation following stimulation with bacterial endotoxin lipopolysaccharide (LPS). RNAseq-based temporal analyses of expression of selenoproteins and the Sec incorporation machinery genes suggested no major differences in the selenium utilization pathway in the Selenow KO BMDMs compared to their wild-type counterparts. However, selective enrichment of oxidative stress-related selenoproteins and increased ROS in Selenow-/- BMDMs indicated anomalies in redox homeostasis associated with hierarchical expression of selenoproteins. Selenow-/- BMDMs also exhibited reduced expression of arginase-1, a key enzyme associated with anti-inflammatory (M2) phenotype necessary to resolve inflammation, along with a significant decrease in efferocytosis of neutrophils that triggers pathways of resolution. Parallel targeted metabolomics analysis also confirmed an impairment in arginine metabolism in Selenow-/- BMDMs. Furthermore, Selenow-/- BMDMs lacked the ability to enhance characteristic glycolytic metabolism during inflammation. Instead, these macrophages atypically relied on oxidative phosphorylation for energy production when glucose was used as an energy source. These findings suggest that SELENOW expression in macrophages may have important implications on cellular redox processes and bioenergetics during inflammation and its resolution.


Subject(s)
Selenium , Selenoprotein W , Mice , Animals , Selenoprotein W/genetics , Selenoprotein W/metabolism , Selenium/metabolism , Selenoproteins/genetics , Selenoproteins/metabolism , Macrophages/metabolism , Oxidation-Reduction , Inflammation/genetics
17.
Neuropsychopharmacology ; 48(12): 1789-1797, 2023 11.
Article in English | MEDLINE | ID: mdl-37264172

ABSTRACT

The circadian system influences many different biological processes, including memory performance. While the suprachiasmatic nucleus (SCN) functions as the brain's central pacemaker, downstream "satellite clocks" may also regulate local functions based on the time of day. Within the dorsal hippocampus (DH), for example, local molecular oscillations may contribute to time-of-day effects on memory. Here, we used the hippocampus-dependent Object Location Memory task to determine how memory is regulated across the day/night cycle in mice. First, we systematically determined which phase of memory (acquisition, consolidation, or retrieval) is modulated across the 24 h day. We found that mice show better long-term memory performance during the day than at night, an effect that was specifically attributed to diurnal changes in memory consolidation, as neither memory acquisition nor memory retrieval fluctuated across the day/night cycle. Using RNA-sequencing we identified the circadian clock gene Period1 (Per1) as a key mechanism capable of supporting this diurnal fluctuation in memory consolidation, as learning-induced Per1 oscillates in tandem with memory performance in the hippocampus. We then show that local knockdown of Per1 within the DH impairs spatial memory without affecting either the circadian rhythm or sleep behavior. Thus, Per1 may independently function within the DH to regulate memory in addition to its known role in regulating the circadian system within the SCN. Per1 may therefore exert local diurnal control over memory consolidation within the DH.


Subject(s)
Hippocampus , Memory Consolidation , Animals , Mice , Circadian Rhythm/physiology , Hippocampus/metabolism , Memory Consolidation/physiology , Period Circadian Proteins/genetics , Spatial Memory , Suprachiasmatic Nucleus/metabolism
18.
Nutrients ; 14(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35458125

ABSTRACT

Vitamin A (VA) deficiency and diarrheal diseases are both serious public health issues worldwide. VA deficiency is associated with impaired intestinal barrier function and increased risk of mucosal infection-related mortality. The bioactive form of VA, retinoic acid, is a well-known regulator of mucosal integrity. Using Citrobacter rodentium-infected mice as a model for diarrheal diseases in humans, previous studies showed that VA-deficient (VAD) mice failed to clear C. rodentium as compared to their VA-sufficient (VAS) counterparts. However, the distinct intestinal gene responses that are dependent on the host's VA status still need to be discovered. The mRNAs extracted from the small intestine (SI) and the colon were sequenced and analyzed on three levels: differential gene expression, enrichment, and co-expression. C. rodentium infection interacted differentially with VA status to alter colon gene expression. Novel functional categories downregulated by this pathogen were identified, highlighted by genes related to the metabolism of VA, vitamin D, and ion transport, including improper upregulation of Cl- secretion and disrupted HCO3- metabolism. Our results suggest that derangement of micronutrient metabolism and ion transport, together with the compromised immune responses in VAD hosts, may be responsible for the higher mortality to C. rodentium under conditions of inadequate VA.


Subject(s)
Enterobacteriaceae Infections , Vitamin A Deficiency , Animals , Citrobacter rodentium , Colon/metabolism , Diarrhea/complications , Intestinal Mucosa/metabolism , Intestine, Small/metabolism , Mice , Mice, Inbred C57BL , Vitamin A/metabolism , Vitamin A Deficiency/complications
19.
J Bacteriol ; 193(20): 5879-80, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21952546

ABSTRACT

We report the first whole-genome sequences for five strains, two carried and three pathogenic, of the emerging pathogen Haemophilus haemolyticus. Preliminary analyses indicate that these genome sequences encode markers that distinguish H. haemolyticus from its closest Haemophilus relatives and provide clues to the identity of its virulence factors.


Subject(s)
Genome, Bacterial , Haemophilus Infections/microbiology , Haemophilus/genetics , Haemophilus/isolation & purification , Base Sequence , Haemophilus/classification , Humans , Molecular Sequence Data
20.
Plant J ; 63(6): 990-1003, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20626650

ABSTRACT

Rapid progress in comparative genomics among the grasses has revealed similar gene content and order despite exceptional differences in chromosome size and number. Large- and small-scale genomic variations are of particular interest, especially among cultivated and wild species, as they encode rapidly evolving features that may be important in adaptation to particular environments. We present a genome-wide study of intermediate-sized structural variation (SV) among rice (Oryza sativa) and three of its closest relatives in the genus Oryza (Oryza nivara, Oryza rufipogon and Oryza glaberrima). We computationally identified regional expansions, contractions and inversions in the Oryza species genomes relative to O. sativa by combining data from paired-end clone alignments to the O. sativa reference genome and physical maps. A subset of the computational predictions was validated using a new approach for BAC size determination. The result was a confirmed catalog of 674 expansions (25-38 Mb) and 611 (4-19 Mb) contractions, and 140 putative inversions (14-19 Mb) between the three Oryza species and O. sativa. In the expanded regions unique to O. sativa we found enrichment in transposable elements (TEs): long terminal repeats (LTRs) were randomly located across the chromosomes, and their insertion times corresponded to the date of the A genome radiation. Also, rice-expanded regions contained an over-representation of single-copy genes related to defense factors in the environment. This catalog of confirmed SV in reference to O. sativa provides an entry point for future research in genome evolution, speciation, domestication and novel gene discovery.


Subject(s)
Oryza/genetics , Evolution, Molecular , Genome, Plant/genetics , Genomics , Oryza/anatomy & histology , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL