Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Adv Exp Med Biol ; 1139: 105-114, 2019.
Article in English | MEDLINE | ID: mdl-31134497

ABSTRACT

Metastatic melanoma continues to present a significant challenge-with a cure rate of less than 10% and a median survival of 6-9 months. Despite noteworthy advances in the field, the heterogeneity of melanoma tumors, comprised of cell subpopulations expressing a cancer stem cell (CSC) phenotype concomitant with drug resistance markers presents a formidable challenge in the design of current therapies. Particularly vexing is the ability of distinct subpopulations of melanoma cells to resist standard-of-care treatments, resulting in relapse and progression to metastasis. Recent studies have provided new information and insights into the expression and function of CSC markers associated with the aggressive melanoma phenotype, such as the embryonic morphogen Nodal and CD133, together with a drug resistance marker ABCA1. This chapter highlights major findings that demonstrate the promise of targeting Nodal as a viable option to pursue in combination with standard-of-care therapy. In recognizing that aggressive melanoma tumors utilize multiple mechanisms to survive, we must consider a more strategic approach to effectively target heterogeneity, tumor cell plasticity, and functional adaptation and resistance to current therapies-to eliminate relapse, disease progression, and metastasis.


Subject(s)
Cell Plasticity , Melanoma/pathology , Neoplastic Stem Cells/cytology , Biomarkers, Tumor , Humans , Neoplasm Recurrence, Local
2.
Lab Invest ; 97(2): 176-186, 2017 02.
Article in English | MEDLINE | ID: mdl-27775691

ABSTRACT

Metastatic melanoma is a highly aggressive skin cancer with a poor prognosis. It is the leading cause of skin cancer deaths with a median overall survival for advanced-stage metastatic disease of <6 months. Despite advances in the field with conventional and targeted therapies, the heterogeneity of melanoma poses the greatest ongoing challenge, ultimately leading to relapse and progression to a more drug-resistant tumor in most patients. Particularly noteworthy are recent findings, indicating that these therapies exert selective pressure on tumors resulting in the activation of pathways associated with cancer stem cells that are unresponsive to current therapy. Our previous studies have shown how Nodal, an embryonic morphogen of the transforming growth factor-beta superfamily, is one of these critical factors that is reactivated in aggressive melanoma and resistant to conventional chemotherapy, such as dacarbazine. In the current study, we sought to determine whether BRAF inhibitor (BRAFi) therapy targeted Nodal-expressing tumor cells in uniquely matched unresectable stage III and IV melanoma patient samples before and after therapy that preceded their eventual death due to disease. The results demonstrate that BRAFi treatment failed to affect Nodal levels in melanoma tissues. Accompanying experiments in soft agar and in nude mice showed the advantage of using combinatorial treatment with BRAFi plus anti-Nodal monoclonal antibody to suppress tumor growth and metastasis. These data provide a promising new approach using front-line therapy combined with targeting a cancer stem cell-associated molecule-producing a more efficacious response than monotherapy.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Melanoma/drug therapy , Nodal Protein/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Skin Neoplasms/drug therapy , Animals , Antibodies, Monoclonal/administration & dosage , Blotting, Western , Cell Line, Tumor , Female , Humans , Imidazoles/administration & dosage , Immunohistochemistry , Lung Neoplasms/prevention & control , Lung Neoplasms/secondary , Melanoma/genetics , Melanoma/metabolism , Mice, Nude , Molecular Targeted Therapy/methods , Mutation , Nodal Protein/immunology , Nodal Protein/metabolism , Oximes/administration & dosage , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Pyridones/administration & dosage , Pyrimidinones/administration & dosage , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Treatment Outcome , Xenograft Model Antitumor Assays/methods
3.
Cancer Metastasis Rev ; 35(1): 21-39, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26951550

ABSTRACT

The transforming growth factor beta (TGFß) superfamily member Nodal is an established regulator of early embryonic development, with primary roles in endoderm induction, left-right asymmetry, and primitive streak formation. Nodal signals through TGFß family receptors at the plasma membrane and induces signaling cascades leading to diverse transcriptional regulation. While conceptually simple, the regulation of Nodal and its molecular effects are profoundly complex and context dependent. Pioneering work by developmental biologists has characterized the signaling pathways, regulatory components, and provided detailed insight into the mechanisms by which Nodal mediates changes at the cellular and organismal levels. Nodal is also an important factor in maintaining pluripotency of embryonic stem cells through regulation of core transcriptional programs. Collectively, this work has led to an appreciation for Nodal as a powerful morphogen capable of orchestrating multiple cellular phenotypes. Although Nodal is not active in most adult tissues, its reexpression and signaling have been linked to multiple types of human cancer, and Nodal has emerged as a driver of tumor growth and cellular plasticity. In vitro and in vivo experimental evidence has demonstrated that inhibition of Nodal signaling reduces cancer cell aggressive characteristics, while clinical data have established associations with Nodal expression and patient outcomes. As a result, there is great interest in the potential targeting of Nodal activity in a therapeutic setting for cancer patients that may provide new avenues for suppressing tumor growth and metastasis. In this review, we evaluate our current understanding of the complexities of Nodal function in cancer and highlight recent experimental evidence that sheds light on the therapeutic potential of its inhibition.


Subject(s)
Molecular Targeted Therapy , Neoplasms/genetics , Nodal Protein/genetics , Transforming Growth Factor beta/genetics , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/pathology , Neoplasms/therapy , Nodal Protein/biosynthesis , Signal Transduction
4.
Nat Rev Cancer ; 7(4): 246-55, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17384580

ABSTRACT

Aggressive tumour cells share many characteristics with embryonic progenitors, contributing to the conundrum of tumour cell plasticity. Recent studies using embryonic models of human stem cells, the zebrafish and the chick have shown the reversion of the metastatic phenotype of aggressive melanoma cells, and revealed the convergence of embryonic and tumorigenic signalling pathways, which may help to identify new targets for therapeutic intervention. This Review will summarize the embryonic models used to reverse the metastatic melanoma phenotype, and highlight the prominent signalling pathways that have emerged as noteworthy targets for future consideration.


Subject(s)
Embryo, Mammalian/cytology , Embryo, Nonmammalian , Melanoma/pathology , Neoplasm Metastasis/pathology , Animals , Cell Communication , Cell Differentiation , Cell Line, Tumor , Cell Movement , Chick Embryo , Embryonic Stem Cells , Humans , Melanoma/metabolism , Models, Animal , Neoplasm Transplantation , Neural Crest , Nodal Protein , Signal Transduction , Transforming Growth Factor beta/physiology , Zebrafish/embryology
5.
Int J Mol Sci ; 17(3): 418, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-27011171

ABSTRACT

Expression of Nodal, a Transforming Growth Factor-beta (TGF-ß) related growth factor, is associated with aggressive melanoma. Nodal expression in adult dysplastic nevi may predict the development of aggressive melanoma in some patients. A subset of pediatric patients diagnosed with giant or large congenital melanocytic nevi (LCMN) has shown increased risk for development of melanoma. Here, we investigate whether Nodal expression can help identify the rare cases of LCMN that develop melanoma and shed light on why the majority of these patients do not. Immunohistochemistry (IHC) staining results show varying degree of Nodal expression in pediatric dysplastic nevi and LCMN. Moreover, median scores from Nodal IHC expression analysis were not significantly different between these two groups. Additionally, none of the LCMN patients in this study developed melanoma, regardless of Nodal IHC levels. Co-culture experiments revealed reduced tumor growth and lower levels of Nodal and its signaling molecules P-SMAD2 and P-ERK1/2 when melanoma cells were grown in vivo or in vitro with normal melanocytes. The same was observed in melanoma cells cultured with melanocyte conditioned media containing pigmented melanocyte derived melanosomes (MDM). Since MDM contain molecules capable of inactivating radical oxygen species, to investigate potential anti-oxidant effect of MDM on Nodal expression and signaling in melanoma, melanoma cells were treated with either N-acetyl-l-cysteine (NAC), a component of the anti-oxidant glutathione or synthetic melanin, which in addition to providing pigmentation can also exert free radical scavenging activity. Melanoma cells treated with NAC or synthetic melanin showed reduced levels of Nodal, P-SMAD2 and P-ERK1/2 compared to untreated melanoma cells. Thus, the potential role for Nodal in melanoma development in LCMN is less evident than in adult dysplastic nevi possibly due to melanocyte cross-talk in LCMN capable of offsetting or delaying the pro-melanoma effects of Nodal via anti-oxidant effects of MDM.


Subject(s)
Melanocytes/metabolism , Melanoma/metabolism , Nodal Protein/metabolism , Signal Transduction , Acetylcysteine/pharmacology , Animals , Cell Line , Cell Line, Tumor , Child , Female , Humans , Melanins/pharmacology , Melanocytes/drug effects , Melanoma/congenital , Melanoma/pathology , Mice , Mice, Nude , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Nodal Protein/genetics , Smad2 Protein/metabolism
6.
Semin Cancer Biol ; 29: 40-50, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25073112

ABSTRACT

The Ras-ERK pathway is deregulated in approximately a third of human cancers, particularly those of epithelial origin. In aggressive, triple-negative, basal-like breast cancers, most tumors display increased MEK and ERK phosphorylation and exhibit a gene expression profile characteristic of Kras or EGFR mutant tumors; however, Ras family genetic mutations are uncommon in triple-negative breast cancer and EGFR mutations account for only a subset of these tumors. Therefore, the upstream events that activate MAPK signaling and promote tumor aggression in triple-negative breast cancers remain poorly defined. We have previously shown that a secreted TGF-ß family signaling ligand, Nodal, is expressed in breast cancer in correlation with disease progression. Here we highlight key findings demonstrating that Nodal is required in aggressive human breast cancer cells to activate ERK signaling and downstream tumorigenic phenotypes both in vitro and in vivo. Experimental knockdown of Nodal signaling downregulates ERK activity, resulting in loss of c-myc, upregulation of p27, G1 cell cycle arrest, increased apoptosis and decreased tumorigenicity. The data suggest that ERK activation by Nodal signaling regulates c-myc and p27 proteins post-translationally and that this cascade is essential for aggressive breast tumor behavior in vivo. As the MAPK pathway is an important target for treating triple-negative breast cancers, upstream Nodal signaling may represent a promising target for breast cancer diagnosis and combined therapies aimed at blocking ERK pathway activation.


Subject(s)
Cell Transformation, Neoplastic/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System/genetics , Nodal Protein/metabolism , Triple Negative Breast Neoplasms/pathology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Apoptosis/genetics , Female , G1 Phase Cell Cycle Checkpoints/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Nodal Protein/genetics , Proliferating Cell Nuclear Antigen/biosynthesis , Proto-Oncogene Proteins c-myc/genetics , Triple Negative Breast Neoplasms/genetics
7.
Int J Cancer ; 136(5): E242-51, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25204799

ABSTRACT

The significant role of the embryonic morphogen Nodal in maintaining the pluripotency of embryonic stem cells is well documented. Interestingly, the recent discovery of Nodal's re-expression in several aggressive and metastatic cancers has highlighted its critical role in self renewal and maintenance of the stem cell-like characteristics of tumor cells, such as melanoma. However, the key TGFß/Nodal signaling component(s) governing Nodal's effects in metastatic melanoma remain mostly unknown. By employing receptor profiling at the mRNA and protein level(s), we made the novel discovery that embryonic stem cells and metastatic melanoma cells share a similar repertoire of Type I serine/threonine kinase receptors, but diverge in their Type II receptor expression. Ligand:receptor crosslinking and native gel binding assays indicate that metastatic melanoma cells employ the heterodimeric TGFß receptor I/TGFß receptor II (TGFßRI/TGFßRII) for signal transduction, whereas embryonic stem cells use the Activin receptors I and II (ACTRI/ACTRII). This unexpected receptor usage by tumor cells was tested by: neutralizing antibody to block its function; and transfecting the dominant negative receptor to compete with the endogenous receptor for ligand binding. Furthermore, a direct biological role for TGFßRII was found to underlie vasculogenic mimicry (VM), an endothelial phenotype contributing to vascular perfusion and associated with the functional plasticity of aggressive melanoma. Collectively, these findings reveal the divergence in Nodal signaling between embryonic stem cells and metastatic melanoma that can impact new therapeutic strategies targeting the re-emergence of embryonic pathways.


Subject(s)
Embryonic Stem Cells/metabolism , Melanoma/metabolism , Nodal Protein/metabolism , Signal Transduction , Skin Neoplasms/metabolism , Activin Receptors, Type I/genetics , Activin Receptors, Type I/metabolism , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism , Activins/genetics , Activins/metabolism , Blotting, Western , Cells, Cultured , Embryonic Stem Cells/cytology , Humans , Melanoma/genetics , Melanoma/pathology , Nodal Protein/genetics , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Receptor, Transforming Growth Factor-beta Type I , Receptor, Transforming Growth Factor-beta Type II , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Skin Neoplasms/genetics , Skin Neoplasms/secondary , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
8.
Cancer Metastasis Rev ; 31(3-4): 529-51, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22752408

ABSTRACT

Maspin, a non-inhibitory member of the serine protease inhibitor superfamily, has been characterized as a tumor suppressor gene in multiple cancer types. Among the established anti-tumor effects of Maspin are the inhibition of cancer cell invasion, attachment to extracellular matrices, increased sensitivity to apoptosis, and inhibition of angiogenesis. However, while significant experimental data support the role of Maspin as a tumor suppressor, clinical data regarding the prognostic implications of Maspin expression have led to conflicting results. This highlights the need for a better understanding of the context dependencies of Maspin in normal biology and how these are perturbed in the context of cancer. In this review, we outline the regulation and roles of Maspin in normal and developmental biology while discussing novel evidence and emerging theories related to its functions in cancer. We provide insight into the immense therapeutic potential of Maspin and the challenges related to its successful clinical translation.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Serpins/physiology , Serpins/therapeutic use , Animals , Apoptosis , Drug Resistance, Neoplasm , Epigenesis, Genetic , Humans , Integrins/physiology , Neovascularization, Physiologic , Nitric Oxide/physiology , Protein Binding , Recombinant Proteins/therapeutic use , Serpins/chemistry , Serpins/genetics , Tamoxifen/pharmacology , Tumor Suppressor Protein p53/physiology
9.
Am J Pathol ; 181(4): 1115-25, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22944600

ABSTRACT

In 1999, The American Journal of Pathology published an article entitled "Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry," by Maniotis and colleagues, which ignited a spirited debate for several years and earned distinction as a citation classic. Tumor cell vasculogenic mimicry (VM) refers to the plasticity of aggressive cancer cells forming de novo vascular networks, which thereby contribute to perfusion of rapidly growing tumors, transporting fluid from leaky vessels, and/or connecting with the constitutional endothelial-lined vasculature. The tumor cells capable of VM share a plastic, transendothelial phenotype, which may be induced by hypoxia. Since VM was introduced as a novel paradigm for melanoma tumor perfusion, many studies have contributed new findings illuminating the underlying molecular pathways supporting VM in a variety of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas, and melanomas. Facilitating the functional plasticity of tumor cell VM are key proteins associated with vascular, stem cell, and hypoxia-related signaling pathways, each deserving serious consideration as potential therapeutic targets and diagnostic indicators of the aggressive, metastatic phenotype.


Subject(s)
Molecular Mimicry , Neoplasms/blood supply , Neoplasms/therapy , Translational Research, Biomedical , Animals , Humans , Neoplasm Metastasis , Neoplasms/pathology , Neoplastic Stem Cells/pathology , Signal Transduction , Tumor Microenvironment
10.
Nat Rev Cancer ; 3(6): 411-21, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12778131

ABSTRACT

The gene-expression profile of aggressive cutaneous and uveal melanoma cells resembles that of an undifferentiated, embryonic-like cell. The plasticity of certain types of cancer cell could explain their ability to mimic the activities of endothelial cells and to participate in processes such as neovascularization and the formation of a fluid-conducting, matrix-rich meshwork. This ability has been termed 'vasculogenic mimicry'. How does vasculogenic mimicry contribute to tumour progression, and can it be targeted by therapeutic agents?


Subject(s)
Endothelium, Vascular/pathology , Melanoma/blood supply , Neovascularization, Pathologic/etiology , Skin Neoplasms/blood supply , Uveal Neoplasms/blood supply , Animals , Humans , Melanoma/pathology , Skin Neoplasms/pathology , Uveal Neoplasms/pathology
11.
Pathol Oncol Res ; 29: 1611038, 2023.
Article in English | MEDLINE | ID: mdl-37351538

ABSTRACT

CVM-1118 (foslinanib) is a phosphoric ester compound selected from 2-phenyl-4-quinolone derivatives. The NCI 60 cancer panel screening showed CVM-1125, the major active metabolite of CVM-1118, to exhibit growth inhibitory and cytotoxic effects at nanomolar range. CVM-1118 possesses multiple bioactivities, including inducing cellular apoptosis, cell cycle arrest at G2/M, as well as inhibiting vasculogenic mimicry (VM) formation. The TNF receptor associated protein 1 (TRAP1) was identified as the binding target of CVM-1125 using nematic protein organization technique (NPOT) interactome analysis. Further studies demonstrated CVM-1125 reduced the protein level of TRAP1 and impeded its downstream signaling by reduction of cellular succinate levels and destabilization of HIF-1α. The pharmacogenomic biomarkers associated with CVM-1118 were also examined by Whole Genome CRISPR Knock-Out Screening. Two hits (STK11 and NF2) were confirmed with higher sensitivity to the drug in cell knock-down experiments. Biological assays indicate that the mechanism of action of CVM-1118 is via targeting TRAP1 to induce mitochondrial apoptosis, suppress tumor cell growth, and inhibit vasculogenic mimicry formation. Most importantly, the loss-of-function mutations of STK11 and NF2 are potential biomarkers of CVM-1118 which can be applied in the selection of cancer patients for CVM-1118 treatment. CVM-1118 is currently in its Phase 2a clinical development.


Subject(s)
Apoptosis , Neovascularization, Pathologic , Humans , TNF Receptor-Associated Factor 1/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Biomarkers , Cell Line, Tumor , HSP90 Heat-Shock Proteins/metabolism
12.
Breast Cancer Res ; 14(3): R75, 2012 May 11.
Article in English | MEDLINE | ID: mdl-22577960

ABSTRACT

INTRODUCTION: The re-emergence of the tumour growth factor-beta (TGF-beta)-related embryonic morphogen Nodal has recently been reported in several different human cancers. In this study, we examined the expression of Nodal in a series of benign and malignant human breast tissues to determine the clinical significance of this expression and whether Nodal could represent a potential therapeutic target in breast cancer. METHODS: Tissue sections from 431 therapeutically naive patients diagnosed with benign or malignant breast disease were stained for Nodal by immunohistochemistry and analysed in a blinded manner. The degree of Nodal staining was subsequently correlated with available clinical data, such as diagnoses and disease stage. These tissue findings were further explored in breast cancer cell lines MDA-MB-231 and MDA-MB-468 treated with a Nodal blocking antibody to determine biological effects for target validation. RESULTS: A variable degree of Nodal staining was detected in all samples. The intensity of Nodal staining was significantly greater in undifferentiated, advanced stage, invasive breast cancer compared with benign breast disease or early stage breast cancer. Treatment of human breast cancer cells in vitro with Nodal blocking antibody significantly reduced proliferation and colony-forming ability in soft agar, concomitant with increased apoptosis. CONCLUSIONS: These data suggest a potential role for Nodal as a biomarker for disease progression and a promising target for anti-Nodal therapy in breast cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Nodal Protein/metabolism , Adult , Aged , Antibodies, Blocking/immunology , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Progression , Female , Humans , Middle Aged , Nodal Protein/immunology , Prognosis
13.
Sarcoma ; 2012: 820254, 2012.
Article in English | MEDLINE | ID: mdl-22448124

ABSTRACT

Chondrosarcomas are among the most malignant skeletal tumors. Dedifferentiated chondrosarcoma is a highly aggressive subtype of chondrosarcoma, with lung metastases developing within a few months of diagnosis in 90% of patients. In this paper we performed comparative analyses of the transcriptomes of five individual metastatic lung lesions that were surgically resected from a patient with dedifferentiated chondrosarcoma. We document for the first time a high heterogeneity of gene expression profiles among the individual lung metastases. Moreover, we reveal a signature of "multifunctional" genes that are expressed in all metastatic lung lesions. Also, for the first time, we document the occurrence of massive macrophage infiltration in dedifferentiated chondrosarcoma lung metastases.

14.
Prostate ; 71(11): 1198-209, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21656830

ABSTRACT

BACKGROUND: Nodal is a member of the transforming growth factor ß (TGFß) superfamily that directs embryonic patterning and promotes the plasticity and tumorigenicity of tumor cells, but its role in the prostate is unknown. The goal of this study was to characterize the expression and function of Nodal in prostate cancer and determine whether, like other TGFß ligands, it modulates androgen receptor (AR) activity. METHODS: Nodal expression was investigated using immunohistochemistry of tissue microarrays and Western blots of prostate cell lines. The functional role of Nodal was examined using Matrigel and soft agar growth assays. Cross-talk between Nodal and AR signaling was assessed with luciferase reporter assays and expression of endogenous androgen regulated genes. RESULTS: Significantly increased Nodal expression was observed in cancer compared with benign prostate specimens. Nodal was only expressed by DU145 and PC3 cells. All cell lines expressed Nodal's co-receptor, Cripto-1, but lacked Lefty, a critical negative regulator of Nodal signaling. Recombinant human Nodal triggered downstream Smad2 phosphorylation in DU145 and LNCaP cells, and stable transfection of pre-pro-Nodal enhanced the growth of LNCaP cells in Matrigel and soft agar. Finally, Nodal attenuated AR signaling, reducing the activity of a PSA promoter construct in luciferase assays and down-regulating the endogenous expression of androgen regulated genes. CONCLUSIONS: An aberrant Nodal signaling pathway is re-expressed and functionally active in prostate cancer cells.


Subject(s)
Disease Progression , Gene Expression Regulation, Neoplastic/physiology , Nodal Protein/physiology , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Signal Transduction/physiology , Humans , Male , Nodal Protein/metabolism , Prostatic Neoplasms/embryology , Receptors, Androgen/physiology , Transforming Growth Factor beta/biosynthesis , Tumor Cells, Cultured
15.
Proc Natl Acad Sci U S A ; 105(11): 4329-34, 2008 Mar 18.
Article in English | MEDLINE | ID: mdl-18334633

ABSTRACT

Embryonic stem cells sustain a microenvironment that facilitates a balance of self-renewal and differentiation. Aggressive cancer cells, expressing a multipotent, embryonic cell-like phenotype, engage in a dynamic reciprocity with a microenvironment that promotes plasticity and tumorigenicity. However, the cancer-associated milieu lacks the appropriate regulatory mechanisms to maintain a normal cellular phenotype. Previous work from our laboratory reported that aggressive melanoma and breast carcinoma express the embryonic morphogen Nodal, which is essential for human embryonic stem cell (hESC) pluripotency. Based on the aberrant expression of this embryonic plasticity gene by tumor cells, this current study tested whether these cells could respond to regulatory cues controlling the Nodal signaling pathway, which might be sequestered within the microenvironment of hESCs, resulting in the suppression of the tumorigenic phenotype. Specifically, we discovered that metastatic tumor cells do not express the inhibitor to Nodal, Lefty, allowing them to overexpress this embryonic morphogen in an unregulated manner. However, exposure of the tumor cells to a hESC microenvironment (containing Lefty) leads to a dramatic down-regulation in their Nodal expression concomitant with a reduction in clonogenicity and tumorigenesis accompanied by an increase in apoptosis. Furthermore, this ability to suppress the tumorigenic phenotype is directly associated with the secretion of Lefty, exclusive to hESCs, because it is not detected in other stem cell types, normal cell types, or trophoblasts. The tumor-suppressive effects of the hESC microenvironment, by neutralizing the expression of Nodal in aggressive tumor cells, provide previously unexplored therapeutic modalities for cancer treatment.


Subject(s)
Embryonic Stem Cells/metabolism , Neoplasms/genetics , Neoplasms/pathology , Cell Culture Techniques , Cells, Cultured , Humans , Nodal Protein , Phenotype , Signal Transduction , Transforming Growth Factor beta/metabolism , Tumor Stem Cell Assay
16.
J Cell Physiol ; 225(2): 390-3, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20568225

ABSTRACT

Studies are beginning to emerge that demonstrate intriguing differences between human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs). Here, we investigated the expression of key members of the Nodal embryonic signaling pathway, critical to the maintenance of pluripotency in hESCs. Western blot and real-time RT-PCR analyses reveal slightly lower levels of Nodal (a TGF-beta family member) and Cripto-1 (Nodal's co-receptor) and a dramatic decrease in Lefty (Nodal's inhibitor and TGF-beta family member) in hiPSCs compared with hESCs. The noteworthy drop in hiPSC's Lefty expression correlated with an increase in the methylation of Lefty B CpG island. Based on these findings, we addressed a more fundamental question related to the consequences of epigenetically reprogramming hiPSCs, especially with respect to maintaining a stable ESC phenotype. A global comparative analysis of 365 microRNAs (miRs) in two hiPSC versus four hESC lines ultimately identified 10 highly expressed miRs in hiPCSs with >10-fold difference, which have been shown to be cancer related. These data demonstrate cancer hallmarks expressed by hiPSCs, which will require further assessment for their impact on future therapies..


Subject(s)
Biomarkers, Tumor/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Biomarkers, Tumor/genetics , Blotting, Western , Cell Line , Epigenesis, Genetic , Gene Expression Profiling , Gene Expression Regulation/physiology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Pluripotent Stem Cells/cytology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction
17.
BMC Cancer ; 10: 471, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20809981

ABSTRACT

BACKGROUND: Chondrosarcomas are malignant cartilage tumors that do not respond to traditional chemotherapy or radiation. The 5-year survival rate of histologic grade III chondrosarcoma is less than 30%. An animal model of chondrosarcoma has been established--namely, the Swarm Rat Chondrosarcoma (SRC)--and shown to resemble the human disease. Previous studies with this model revealed that tumor microenvironment could significantly influence chondrosarcoma malignancy. METHODS: To examine the effect of the microenvironment, SRC tumors were initiated at different transplantation sites. Pyrosequencing assays were utilized to assess the DNA methylation of the tumors, and SAGE libraries were constructed and sequenced to determine the gene expression profiles of the tumors. Based on the gene expression analysis, subsequent functional assays were designed to determine the relevancy of the specific genes in the development and progression of the SRC. RESULTS: The site of transplantation had a significant impact on the epigenetic and gene expression profiles of SRC tumors. Our analyses revealed that SRC tumors were hypomethylated compared to control tissue, and that tumors at each transplantation site had a unique expression profile. Subsequent functional analysis of differentially expressed genes, albeit preliminary, provided some insight into the role that thymosin-ß4, c-fos, and CTGF may play in chondrosarcoma development and progression. CONCLUSION: This report describes the first global molecular characterization of the SRC model, and it demonstrates that the tumor microenvironment can induce epigenetic alterations and changes in gene expression in the SRC tumors. We documented changes in gene expression that accompany changes in tumor phenotype, and these gene expression changes provide insight into the pathways that may play a role in the development and progression of chondrosarcoma. Furthermore, specific functional analysis indicates that thymosin-ß4 may have a role in chondrosarcoma metastasis.


Subject(s)
Biomarkers, Tumor/genetics , Chondrosarcoma/genetics , Epigenesis, Genetic , Gene Expression Profiling , Lung Neoplasms/etiology , Tibia/pathology , Animals , Biomarkers, Tumor/metabolism , Blotting, Western , Cartilage/metabolism , Cartilage/pathology , Chondrosarcoma/metabolism , Chondrosarcoma/pathology , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , DNA Methylation , Genes, fos/physiology , Humans , Injections, Subcutaneous , Lung Neoplasms/secondary , Male , Mice , Mice, Nude , Oligonucleotide Array Sequence Analysis , Phenotype , Rats , Rats, Sprague-Dawley , Thymosin/genetics , Thymosin/metabolism , Tibia/metabolism , Tumor Cells, Cultured/transplantation
18.
Cancers (Basel) ; 11(3)2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30857267

ABSTRACT

Aggressive cancer cells are characterized by their capacity to proliferate indefinitely and to propagate a heterogeneous tumor comprised of subpopulations with varying degrees of metastatic propensity and drug resistance properties. Particularly daunting is the challenge we face in the field of oncology of effectively targeting heterogeneous tumor cells expressing a variety of markers, especially those associated with a stem cell phenotype. This dilemma is especially relevant in breast cancer, where therapy is based on traditional classification schemes, including histological criteria, differentiation status, and classical receptor markers. However, not all patients respond in a similar manner to standard-of-care therapy, thereby necessitating the need to identify and evaluate novel biomarkers associated with the difficult-to-target stem cell phenotype and drug resistance. Findings related to the convergence of embryonic and tumorigenic signaling pathways have identified the embryonic morphogen Nodal as a promising new oncofetal target that is reactivated only in aggressive cancers, but not in normal tissues. The work presented in this paper confirms previous studies demonstrating the importance of Nodal as a cancer stem cell molecule associated with aggressive breast cancer, and advances the field by providing new findings showing that Nodal is not targeted by standard-of-care therapy in breast cancer patients. Most noteworthy is the linkage found between Nodal expression and the drug resistance marker ATP-binding cassette member 1 (ABCA1), which may provide new insights into developing combinatorial approaches to overcome drug resistance and disease recurrence.

19.
Stem Cell Rev ; 3(1): 68-78, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17873384

ABSTRACT

As our understanding of embryonic stem cell biology becomes more sophisticated, the similarities between multipotent cancer cells and these totipotent precursors are increasingly striking. Both multipotent cancer cells and embryonic stem cells possess the ability to self-renew, epigenetically alter their neighboring cellular architecture, and populate a tissue mass with a phenotypically heterogeneous composition of cells. While the molecular signature of these cell types continues to be elucidated, new insights are emerging related to the convergence of embryonic and tumorigenic signaling pathways. Understanding the molecular underpinnings of these two stem cell phenotypes may lead to new therapeutic targets for the elusive cancer cell. While still in its infancy, the potential of adapting embryonic stem cells, and more specifically the factors they produce, is enormous for clinical application. Here we outline evidence that demonstrates the inductive influence of embryonic stem cells and their microenvironment to reprogram cancer cells to exhibit a more benign phenotype, with profound implications for differentiation therapy.


Subject(s)
Embryonic Stem Cells/physiology , Neoplasms/therapy , Neoplastic Stem Cells/pathology , Signal Transduction/physiology , Animals , Cellular Reprogramming/physiology , Embryo, Nonmammalian , Gene Targeting , Humans , Models, Biological , Multipotent Stem Cells/cytology , Neoplasm Invasiveness , Neoplasms/pathology , Zebrafish
20.
Cancer Res ; 65(24): 11429-36, 2005 Dec 15.
Article in English | MEDLINE | ID: mdl-16357151

ABSTRACT

We have previously shown that lysyl oxidase (LOX) mRNA is up-regulated in invasive breast cancer cells and that catalytically active LOX facilitates in vitro cell invasion. Here we validate our in vitro studies by showing that LOX expression is up-regulated in distant metastatic breast cancer tissues compared with primary cancer tissues. To elucidate the mechanism by which LOX facilitates cell invasion, we show that catalytically active LOX regulates in vitro motility/migration and cell-matrix adhesion formation. Treatment of the invasive breast cancer cell lines, Hs578T and MDA-MB-231, with beta-aminopropionitrile (betaAPN), an irreversible inhibitor of LOX catalytic activity, leads to a significant decrease in cell motility/migration and adhesion formation. Conversely, poorly invasive MCF-7 cells expressing LOX (MCF-7/LOX32-His) showed an increase in migration and adhesion that was reversible with the addition of betaAPN. Moreover, a decrease in activated focal adhesion kinase (FAK) and Src kinase, key proteins involved in adhesion complex turnover, was observed when invasive breast cancer cells were treated with betaAPN. Additionally, FAK and Src activation was increased in MCF-7/LOX32-His cells, which was reversible on betaAPN treatment. Hydrogen peroxide was produced as a by-product of LOX activity and the removal of hydrogen peroxide by catalase treatment in invasive breast cancer cells led to a dose-dependent loss in Src activation. These results suggest that LOX facilitates migration and cell-matrix adhesion formation in invasive breast cancer cells through a hydrogen peroxide-mediated mechanism involving the FAK/Src signaling pathway. These data show the need to target LOX for treatment of aggressive breast cancer.


Subject(s)
Breast Neoplasms/pathology , Cell Adhesion , Cell Movement , Hydrogen Peroxide/metabolism , Protein-Lysine 6-Oxidase/physiology , Aminopropionitrile/pharmacology , Breast Neoplasms/enzymology , Breast Neoplasms/secondary , Catalase/pharmacology , Enzyme Activation/drug effects , Female , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Humans , Neoplasm Invasiveness , Neoplasm Recurrence, Local , Proto-Oncogene Proteins pp60(c-src)/metabolism , Signal Transduction , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL