Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Chem ; 144: 107159, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38309001

ABSTRACT

Misfolding/aggregation of ß-amyloid peptide lead to the formation of toxic oligomers or accumulation of amyloid plaques, which is a seminal step in the progression of Alzheimer's disease (AD). Despite continuous efforts in the development of therapeutic agents, the cure for AD remains a major challenge. Owing to specific binding affinity of structure-based peptides, we report the synthesis of new peptide-based inhibitors derived from the C-terminal sequences, Aß38-40 and Aß40-42. Preliminary screening using MTT cell viability assay and corroborative results from ThT fluorescence assay revealed a tripeptide showing significantly effective inhibition towards Aß1-42 aggregation and induced toxicity. Peptide 3 exhibited excellent cell viability of 94.3 % at 2 µM and of 100 % at 4 µM and 10 µM. CD study showed that peptide 3 restrict the conformation transition of Aß1-42 peptide towards cross-ß-sheet structure and electron microscopy validated the absence of Aß aggregates as indicated by the altered morphology of Aß1-42 in the presence of peptide 3. The HRMS-ESI, DLS and ANS studies were performed to gain mechanistic insights into the effect of inhibitor against Aß aggregation. This Aß-derived ultrashort motif provides impetus for the development of peptide-based anti-AD agents.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Cell Survival
2.
Med Res Rev ; 43(4): 775-828, 2023 07.
Article in English | MEDLINE | ID: mdl-36710510

ABSTRACT

Modified and synthetic α-amino acids are known to show diverse applications. Histidine, which possesses numerous applications when subjected to synthetic modifications, is one such amino acid. The utility of modified histidines varies widely from remarkable biological activities to catalysis, and from nanotechnology to polymer chemistry. This renders histidine residue an important place in scientific research. Histidine is a well-studied scaffold and constitutes the active site of various enzymes catalyzing important reactions in the biological systems. A rational modification in histidine structure with a distinctly developed protocol extensively changes its physical and chemical properties. The utilization of modified histidines in search of potent, target selective and proteostable scaffolds is vital in the development of bioactive peptides with enhanced drug-likeliness. This review is a compilation and analysis of reported side-chain ring modifications at histidine followed by applications of ring-modified histidines in the synthesis of various categories of bioactive peptides and peptidomimetics.


Subject(s)
Chemistry, Pharmaceutical , Histidine , Humans , Histidine/chemistry , Peptides/pharmacology , Peptides/chemistry , Drug Discovery
3.
Bioorg Chem ; 84: 63-75, 2019 03.
Article in English | MEDLINE | ID: mdl-30481647

ABSTRACT

Human serum albumin is perceived to be the most abundant protein in human blood plasma and functions as a major carrier of different enzymes and drugs inside human body. The present article puts in an effort to demonstrate the attitude adopted by human serum albumin towards a potential therapeutic luminophore 4-(2-Hydroxyethyl)-10-phenyl-3,4,6,7,8,10-hexahydro-1H-cyclopenta[g]furo[3,4-b]quinoline-1-one (HPFQ). HPFQ is a prodigy from azapodophyllotoxin class of compounds, which have been synthesized from the perspective of improved bioactivity than its prologue podophyllotoxins. While, HPFQ has proved to be highly bioactive against most cancer cell lines with best GI50 values of <0.1 µM for a major number of cell lines; it also showed terrific fluorescent properties throughout the polarity scale, worthy of a promising imaging agent. The binding mechanism of HPFQ with HSA has been established by combining in vitro spectroscopic techniques, in silico molecular docking and induced fit docking (IFD). The competitive site-binding studies demonstrated that the otherwise anion-receptor sudlow site I of HSA nurtures neutral HPFQ with prudent affinity (Binding constant, Kb = 0.74 × 105 M-1). The time-resolve fluorescence studies reveal an appreciable reduction in HSA average radiative lifetime against an increase in HPFQ concentration and provided evidence for Forster's resonance energy transfer (FRET) being responsible for the dominant quenching mechanism, escorted by minor structural deformations in the backbone of protein structure. HPFQ institutes itself near Trp-214 within protein matrix, and subsequently the "hydrophobic amino acids" dominated cybotactic environment of Trp-214 experiences a reduction in the micropolarity. The allosteric modulation triggered by the stronger association of HPFQ with HSA leads towards minor deformation in secondary structure of protein. Sudlow site I of HSA proficiently embraces a favourable conformation like malleable dough to furnish space for arriving bioactive HPFQ molecule. HPFQ is also believed to administer the conformational regulation in HSA domain by affecting inter-conversion of HSA rotamers, which may prove to be an enlightening area to decode the preferable interaction between them. The juxtaposed spectroscopic research described herein is expected to embolden design of azapodophyllotoxin based anti-proliferative clinical agents for efficient in vivo bio-distribution employing HSA-centred drug delivery and administration systems.


Subject(s)
Furocoumarins/chemistry , Serum Albumin, Human/chemistry , Tryptophan/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Molecular Structure
4.
Bioresour Technol ; 250: 621-624, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29220805

ABSTRACT

In citrus processing industries, where up to 60% of the whole fruit is discarded, generates citrus waste (peel, seeds, membrane, and pulp) on a massive scale. The waste does not currently have high-value applications, instead the majority is disposed of or pelletized for animal feed. Therefore, a concise and efficacious protocol for processing of Kinnow mandarin (Citrus reticulata) fruit waste to numerous novel Brønsted acidic ionic liquids (3a-k) have been developed. BAILs were characterized using spectroscopic techniques (FT-IR and NMR). Water immiscibility of ILs 3a, 3g and 3h, a property never observed with sulfonic acid ILs, allowed the catalytic application of BAIL 3a in hydrolysis of sucrose/table sugar, giving a mixture of d-glucose and d-fructose in excellent yields. The ionic liquid could be recycled for >3 times without significant loss of activity.


Subject(s)
Citrus , Sucrose , Animals , Fruit , Hydrolysis , Ionic Liquids , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL