Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 86
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38612635

ABSTRACT

We previously found that feeding rats with broccoli or cauliflower leads to the formation of characteristic DNA adducts in the liver, intestine and various other tissues. We identified the critical substances in the plants as 1-methoxy-3-indolylmethyl (1-MIM) glucosinolate and its degradation product 1-MIM-OH. DNA adduct formation and the mutagenicity of 1-MIM-OH in cell models were drastically enhanced when human sulfotransferase (SULT) 1A1 was expressed. The aim of this study was to clarify the role of SULT1A1 in DNA adduct formation by 1-MIM-OH in mouse tissues in vivo. Furthermore, we compared the endogenous mouse Sult1a1 and transgenic human SULT1A1 in the activation of 1-MIM-OH using genetically modified mouse strains. We orally treated male wild-type (wt) and Sult1a1-knockout (ko) mice, as well as corresponding lines carrying the human SULT1A1-SULT1A2 gene cluster (tg and ko-tg), with 1-MIM-OH. N2-(1-MIM)-dG and N6-(1-MIM)-dA adducts in DNA were analysed using isotope-dilution UPLC-MS/MS. In the liver, caecum and colon adducts were abundant in mice expressing mouse and/or human SULT1A1, but were drastically reduced in ko mice (1.2-10.6% of wt). In the kidney and small intestine, adduct levels were high in mice carrying human SULT1A1-SULT1A2 genes, but low in wt and ko mice (1.8-6.3% of tg-ko). In bone marrow, adduct levels were very low, independently of the SULT1A1 status. In the stomach, they were high in all four lines. Thus, adduct formation was primarily controlled by SULT1A1 in five out of seven tissues studied, with a strong impact of differences in the tissue distribution of mouse and human SULT1A1. The behaviour of 1-MIM-OH in these models (levels and tissue distribution of DNA adducts; impact of SULTs) was similar to that of methyleugenol, classified as "probably carcinogenic to humans". Thus, there is a need to test 1-MIM-OH for carcinogenicity in animal models and to study its adduct formation in humans consuming brassicaceous foodstuff.


Subject(s)
DNA Adducts , Glucosinolates , Mice , Humans , Animals , Rats , Mice, Knockout , Chromatography, Liquid , Tandem Mass Spectrometry , Arylsulfotransferase/genetics
2.
Chem Res Toxicol ; 36(11): 1753-1767, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37875262

ABSTRACT

Methyleugenol (ME), found in numerous plants and spices, is a rodent carcinogen and is classified as "possibly carcinogenic to humans". The hypothesis of a carcinogenic risk for humans is supported by the observation of ME-derived DNA adducts in almost all human liver and lung samples examined. Therefore, a risk assessment of ME is needed. Unfortunately, biomarkers of exposure for epidemiological studies are not yet available. We hereby present the first detection of N-acetyl-l-cysteine conjugates (mercapturic acids) of ME in human urine samples after consumption of a popular ME-containing meal, pasta with basil pesto. We synthesized mercapturic acid conjugates of ME, identified the major product as N-acetyl-S-[3'-(3,4-dimethoxyphenyl)allyl]-l-cysteine (E-3'-MEMA), and developed methods for its extraction and LC-MS/MS quantification in human urine. For conducting an exposure study in humans, a basil cultivar with a suitable ME content was grown for the preparation of basil pesto. A defined meal containing 100 g of basil pesto, corresponding to 1.7 mg ME, was served to 12 participants, who collected the complete urine at defined time intervals for 48 h. Using d6-E-3'-MEMA as an internal standard for LC-MS/MS quantification, we were able to detect E-3'-MEMA in urine samples of all participants collected after the ME-containing meal. Excretion was maximal between 2 and 6 h after the meal and was completed within about 12 h (concentrations below the limit of detection). Excreted amounts were only between 1 and 85 ppm of the ME intake, indicating that the ultimate genotoxicant, 1'-sulfooxy-ME, is formed to a subordinate extent or is not efficiently detoxified by glutathione conjugation and subsequent conversion to mercapturic acids. Both explanations may apply cumulatively, with the ubiquitous detection of ME DNA adducts in human lung and liver specimens arguing against an extremely low formation of 1'-sulfooxy-ME. Taken together, we hereby present the first noninvasive human biomarker reflecting an internal exposure toward reactive ME species.


Subject(s)
Acetylcysteine , Ocimum basilicum , Animals , Humans , Acetylcysteine/urine , Carcinogens , Rodentia , Chromatography, Liquid , DNA Adducts , Tandem Mass Spectrometry
3.
Int J Mol Sci ; 22(1)2020 Dec 31.
Article in English | MEDLINE | ID: mdl-33396476

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants produced by incomplete combustion of organic matter. They induce their own metabolism by upregulating xenobiotic-metabolizing enzymes such as cytochrome P450 monooxygenase 1A1 (CYP1A1) by activating the aryl hydrocarbon receptor (AHR). However, previous studies showed that individual PAHs may also interact with the constitutive androstane receptor (CAR). Here, we studied ten PAHs, different in carcinogenicity classification, for their potential to activate AHR- and CAR-dependent luciferase reporter genes in human liver cells. The majority of investigated PAHs activated AHR, while non-carcinogenic PAHs tended to activate CAR. We further characterized gene expression, protein abundancies and activities of the AHR targets CYP1A1 and 1A2, and the CAR target CYP2B6 in human HepaRG hepatoma cells. Enzyme induction patterns strongly resembled the profiles obtained at the receptor level, with AHR-activating PAHs inducing CYP1A1/1A2 and CAR-activating PAHs inducing CYP2B6. In summary, this study provides evidence that beside well-known activation of AHR, some PAHs also activate CAR, followed by subsequent expression of respective target genes. Furthermore, we found that an increased PAH ring number is associated with AHR activation as well as the induction of DNA double-strand breaks, whereas smaller PAHs activated CAR but showed no DNA-damaging potential.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Carcinoma, Hepatocellular/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Liver Neoplasms/metabolism , Polycyclic Aromatic Hydrocarbons/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Xenobiotics/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Constitutive Androstane Receptor , Cytochrome P-450 Enzyme System/metabolism , Enzyme Induction , Hep G2 Cells , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Receptors, Aryl Hydrocarbon/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Transcriptional Activation
4.
Chem Res Toxicol ; 31(11): 1277-1288, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30406992

ABSTRACT

3-Nitrobenzanthrone (3-NBA) is a potent mutagen and suspected human carcinogen detected in diesel exhaust particulate and ambient air pollution. It requires metabolic activation via nitroreduction to promote DNA adduct formation and tumorigenesis. NAD(P)H:quinone oxidoreductase 1 (NQO1) has been previously implicated as the major nitroreductase responsible for 3-NBA activation, but it has recently been reported that human aldo-keto reductase 1C3 (AKR1C3) displays nitroreductase activity toward the chemotherapeutic agent PR-104A. We sought to determine whether AKR1C isoforms could display nitroreductase activity toward other nitrated compounds and bioactivate 3-NBA. Using discontinuous enzymatic assays monitored by UV-HPLC, we determined that AKR1C1-1C3 catalyze three successive two-electron nitroreductions toward 3-NBA to form the reduced product 3-aminobenzanthrone (3-ABA). Evidence of the nitroso- and hydroxylamino- intermediates were obtained by UPLC-HRMS. Km, kcat, and kcat/ Km values were determined for recombinant AKR1C and NQO1 and compared. We found that AKR1C1, AKR1C3, and NQO1 have very similar apparent catalytic efficiencies (8 vs 7 min-1 mM-1) despite the higher kcat of NQO1 (0.058 vs 0.012 min-1). AKR1C1-1C3 possess a Km much lower than that of NQO1, which suggests that they may be more important than NQO1 at the low concentrations of 3-NBA to which humans are exposed. Given that inhalation represents the primary source of 3-NBA exposure, we chose to evaluate the relative importance of AKR1C1-1C3 and NQO1 in human lung epithelial cell lines. Our data suggest that the combined activities of AKR1C1-1C3 and NQO1 contribute equally to the reduction of 3-NBA in A549 and HBEC3-KT cell lines and together represent approximately 50% of the intracellular nitroreductase activity toward 3-NBA. These findings have significant implications for the metabolism of nitrated polycyclic aromatic hydrocarbons and suggest that the hitherto unrecognized nitroreductase activity of AKR1C enzymes should be further investigated.


Subject(s)
Air Pollutants/metabolism , Aldo-Keto Reductase Family 1 Member C3/metabolism , Benz(a)Anthracenes/metabolism , A549 Cells , Activation, Metabolic , Air Pollutants/analysis , Aldo-Keto Reductase Family 1 Member C3/antagonists & inhibitors , Aldo-Keto Reductase Family 1 Member C3/genetics , Benz(a)Anthracenes/analysis , Biocatalysis , Cell Line , Chromatography, High Pressure Liquid , Humans , Mass Spectrometry , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
5.
Arch Toxicol ; 92(1): 15-40, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29302712

ABSTRACT

Exposure assessment is a fundamental part of the risk assessment paradigm, but can often present a number of challenges and uncertainties. This is especially the case for process contaminants formed during the processing, e.g. heating of food, since they are in part highly reactive and/or volatile, thus making exposure assessment by analysing contents in food unreliable. New approaches are therefore required to accurately assess consumer exposure and thus better inform the risk assessment. Such novel approaches may include the use of biomarkers, physiologically based kinetic (PBK) modelling-facilitated reverse dosimetry, and/or duplicate diet studies. This review focuses on the state of the art with respect to the use of biomarkers of exposure for the process contaminants acrylamide, 3-MCPD esters, glycidyl esters, furan and acrolein. From the overview presented, it becomes clear that the field of assessing human exposure to process-related contaminants in food by biomarker monitoring is promising and strongly developing. The current state of the art as well as the existing data gaps and challenges for the future were defined. They include (1) using PBK modelling and duplicate diet studies to establish, preferably in humans, correlations between external exposure and biomarkers; (2) elucidation of the possible endogenous formation of the process-related contaminants and the resulting biomarker levels; (3) the influence of inter-individual variations and how to include that in the biomarker-based exposure predictions; (4) the correction for confounding factors; (5) the value of the different biomarkers in relation to exposure scenario's and risk assessment, and (6) the possibilities of novel methodologies. In spite of these challenges it can be concluded that biomarker-based exposure assessment provides a unique opportunity to more accurately assess consumer exposure to process-related contaminants in food and thus to better inform risk assessment.


Subject(s)
Biomarkers/analysis , Dietary Exposure/analysis , Food Contamination/analysis , Food Handling , Acrolein/blood , Acrolein/chemistry , Acrolein/urine , Acrylamide/blood , Acrylamide/chemistry , Acrylamide/urine , Animals , Furans/blood , Furans/chemistry , Furans/urine , Humans , Models, Biological , Risk Assessment/methods , alpha-Chlorohydrin/chemistry , alpha-Chlorohydrin/urine
6.
Ecotoxicol Environ Saf ; 163: 340-348, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30059878

ABSTRACT

Little is known about the ecotoxicity of heterocyclic aromatic hydrocarbons (NSO-HETs) to aquatic organisms. In the environment, NSO-HETs have been shown to occur in a strong association with their unsubstituted carbocyclic analogues, the polycyclic aromatic hydrocarbons (PAH), for which much more information is available. The present study addressed this issue by investigating the toxicity of four selected NSO-HETs in green algae (Desmodesmus subspicatus), daphnids (Daphnia magna) and fish embryos (Danio rerio). The four high molecular weight NSO-HETs dibenz[a,j]acridine (DBA), 7H-dibenzo[c,g]carbazole (DBC), benzo[b]naphtho[2,1-d]thiophene (BNT) and benzo[b]naphtho[1,2-d]furan (BNF) were selected, based on the results of a previous research project, indicating a lack of toxicity data and a high potential for persistence and bioaccumulation. The solubilities of the NSO-HETs in the test media were determined and turned out to be comparatively low (2.7-317 µg/L) increasing in the following order: DBA < BNT « DBC « BNF. Exposure concentrations during the toxicity tests were quantified with GC-MS and decreased strongly possibly due to sorption or metabolising during the test periods (48-96 h). Therefore, the estimated effect concentrations were related to the mean measured concentrations, as endpoints related to nominal concentrations would have underestimated the toxicity many times over. Within the range of the substance solubilities, BNF affected all test organisms with fish embryos being the most sensitive (fish: EC50 6.7 µg/L, algae: EC10 17.8 µg/L, daphnids: EC50 55.8 µg/L). DBC affected daphnids (EC50 2.5 µg/L,) and algae (EC10 3.1 µg/L), but not fish embryos. The lowest toxicity endpoint was observed for BNT affecting only algae (NOEC 0.556 µg/L) and neither daphnids nor fish embryos. DBA did not show any effects on the tested organisms in the range of the water solubility. However, we would expect effects in long-term toxicity studies to fish and aquatic invertebrates for all substances at lower concentrations, which needs further investigation. All four NSO-HETs were identified in mussels (Mytilus edulis) from the German coasts, in green kale (Brassica oleracea var. acephala) and in freshwater harbor sediment in concentrations between 0.07 and 2 µg/kg, highlighting their relevance as environmental contaminants. There is a need to regulate the four NSO-HETs within the REACH regulation due to their intrinsic properties and their environmental relevance. However, acquisition of additional experimental data appears to be pivotal for a regulation under REACH.


Subject(s)
Heterocyclic Compounds/toxicity , Hydrocarbons, Aromatic/toxicity , Water Pollutants, Chemical/toxicity , Animals , Brassica/chemistry , Chlorophyta/drug effects , Daphnia/drug effects , Environmental Monitoring , Europe , Gas Chromatography-Mass Spectrometry , Government Regulation , Heterocyclic Compounds/analysis , Heterocyclic Compounds/chemistry , Hydrocarbons, Aromatic/analysis , Hydrocarbons, Aromatic/chemistry , Molecular Weight , Mytilus , Risk Assessment , Toxicity Tests , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Zebrafish
7.
Arch Toxicol ; 90(1): 137-48, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25370010

ABSTRACT

5-Hydroxymethylfurfural (HMF) and furfuryl alcohol (FFA) are moderately potent rodent carcinogens that are present in thermally processed foodstuffs. The carcinogenic effects were hypothesized to originate from sulfotransferase (SULT)-mediated bioactivation yielding DNA-reactive and mutagenic sulfate esters, a confirmed metabolic pathway of HMF and FFA in mice. It is known that orthologous SULT forms substantially differ in substrate specificity and tissue distribution. This could influence HMF- and FFA-induced carcinogenic effects. Here, we studied HMF and FFA sulfoconjugation by 30 individual SULT forms of humans, mice and rats. The catalytic efficiencies (k cat/K M) of HMF sulfoconjugation of human SULT1A1 (13.7 s(-1) M(-1)), mouse Sult1a1 (15.8 s(-1) M(-1)) and 1d1 (4.8 s(-1) M(-1)) and rat Sult1a1 (5.3 s(-1) M(-1)) were considerably higher than those of all other SULT forms investigated (≤0.73 s(-1 )M(-1)). FFA sulfoconjugation was monitored using adenosine as a nucleophilic scavenger for the reactive 2-sulfoxymethylfuran (t 1/2 = 20 s at 37 °C). The resulting adduct N (6)-((furan-2-yl)methyl)-adenosine (N (6)-MF-A) was quantified by isotope-dilution UPLC-MS/MS. The rates of N (6)-MF-A formation showed that hSULT1A1 and its orthologues in mice and rats were also the most important contributors to FFA sulfoconjugation in each of the species. Taken together, the catalytic capacity of hSULT1A1 is comparable to that of mSult1a1 in mice, the species in which carcinogenic effects of HMF and FFA were detected. This is of primary concern due to the expression of hSULT1A1 in many different tissues.


Subject(s)
Arylsulfotransferase/metabolism , Carcinogens/metabolism , Food Contamination , Furaldehyde/analogs & derivatives , Furans/metabolism , Activation, Metabolic , Carcinogens/toxicity , Catalysis , Chromatography, Liquid , Furaldehyde/metabolism , Furaldehyde/toxicity , Furans/toxicity , Humans , Isoenzymes , Kinetics , Recombinant Proteins/metabolism , Risk Assessment , Species Specificity , Tandem Mass Spectrometry
8.
Arch Toxicol ; 90(2): 291-304, 2016 Feb.
Article in English | MEDLINE | ID: mdl-25398514

ABSTRACT

The tumour suppressor gene TP53 is mutated in more than 50 % of human tumours, making it one of the most important cancer genes. We have investigated the role of TP53 in cytochrome P450 (CYP)-mediated metabolic activation of three polycyclic aromatic hydrocarbons (PAHs) in a panel of isogenic colorectal HCT116 cells with differing TP53 status. Cells that were TP53(+/+), TP53(+/-), TP53(-/-), TP53(R248W/+) or TP53(R248W/-) were treated with benzo[a]pyrene (BaP), dibenz[a,h]anthracene and dibenzo[a,l]pyrene, and the formation of DNA adducts was measured by (32)P-postlabelling analysis. Each PAH formed significantly higher DNA adduct levels in TP53(+/+) cells than in the other cell lines. There were also significantly lower levels of PAH metabolites in the culture media of these other cell lines. Bypass of the need for metabolic activation by treating cells with the corresponding reactive PAH-diol-epoxide metabolites resulted in similar adduct levels in all cell lines, which confirms that the influence of p53 is on the metabolism of the parent PAHs. Western blotting showed that CYP1A1 protein expression was induced to much greater extent in TP53(+/+) cells than in the other cell lines. CYP1A1 is inducible via the aryl hydrocarbon receptor (AHR), but we did not find that expression of AHR was dependent on p53; rather, we found that BaP-induced CYP1A1 expression was regulated through p53 binding to a p53 response element in the CYP1A1 promoter region, thereby enhancing its transcription. This study demonstrates a new pathway for CYP1A1 induction by environmental PAHs and reveals an emerging role for p53 in xenobiotic metabolism.


Subject(s)
Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 Enzyme Inducers/pharmacology , Cytochrome P-450 Enzyme Inducers/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Tumor Suppressor Protein p53/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Benzo(a)pyrene/toxicity , Carcinogens/toxicity , Cell Survival/drug effects , Cytochrome P-450 CYP1B1/genetics , Cytochrome P-450 CYP1B1/metabolism , Cytochrome P-450 Enzyme Inducers/poisoning , DNA Adducts , DNA Damage/drug effects , DNA Damage/genetics , HCT116 Cells/drug effects , Humans , Inactivation, Metabolic , NAD(P)H Dehydrogenase (Quinone)/genetics , NAD(P)H Dehydrogenase (Quinone)/metabolism , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Receptors, Aryl Hydrocarbon/metabolism , Toxicity Tests , Tumor Suppressor Protein p53/genetics
9.
Arch Toxicol ; 90(4): 839-51, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25995008

ABSTRACT

The tumour suppressor p53 is one of the most important cancer genes. Previous findings have shown that p53 expression can influence DNA adduct formation of the environmental carcinogen benzo[a]pyrene (BaP) in human cells, indicating a role for p53 in the cytochrome P450 (CYP) 1A1-mediated biotransformation of BaP in vitro. We investigated the potential role of p53 in xenobiotic metabolism in vivo by treating Trp53(+/+), Trp53(+/-) and Trp53(-/-) mice with BaP. BaP-DNA adduct levels, as measured by (32)P-postlabelling analysis, were significantly higher in liver and kidney of Trp53(-/-) mice than of Trp53(+/+) mice. Complementarily, significantly higher amounts of BaP metabolites were also formed ex vivo in hepatic microsomes from BaP-pretreated Trp53(-/-) mice. Bypass of the need for metabolic activation by treating mice with BaP-7,8-dihydrodiol-9,10-epoxide resulted in similar adduct levels in liver and kidney in all mouse lines, confirming that the influence of p53 is on the biotransformation of the parent compound. Higher BaP-DNA adduct levels in the livers of Trp53(-/-) mice correlated with higher CYP1A protein levels and increased CYP1A enzyme activity in these animals. Our study demonstrates a role for p53 in the metabolism of BaP in vivo, confirming previous in vitro results on a novel role for p53 in CYP1A1-mediated BaP metabolism. However, our results also suggest that the mechanisms involved in the altered expression and activity of the CYP1A1 enzyme by p53 in vitro and in vivo are different.


Subject(s)
Benzo(a)pyrene/pharmacokinetics , Carcinogens, Environmental/pharmacokinetics , DNA Damage/genetics , Tumor Suppressor Protein p53/genetics , Activation, Metabolic , Animals , Benzo(a)pyrene/metabolism , Carcinogens, Environmental/metabolism , Cytochrome P-450 CYP1A1/metabolism , DNA Adducts/metabolism , DNA Damage/drug effects , Inactivation, Metabolic , Kidney/drug effects , Kidney/metabolism , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , NAD(P)H Dehydrogenase (Quinone)/metabolism , Tumor Suppressor Protein p53/metabolism
10.
Int Arch Occup Environ Health ; 89(8): 1251-1267, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27510526

ABSTRACT

PURPOSE: This study investigates the diol epoxide pathway of phenanthrene (PHE) together with phenolic metabolites of PHE and pyrene (PYR) in workers with and without exposure to bitumen fumes. METHODS: The metabolite concentrations were determined in urine samples collected from 91 mastic asphalt workers and 42 construction workers as reference group before and after shift. During shift, vapours and aerosols of bitumen were measured according to a German protocol in the workers' breathing zone. RESULTS: The median concentration of vapours and aerosols of bitumen in mastic asphalt workers was 6.3 mg/m3. Metabolite concentrations were highest in post-shift urines of smokers with bitumen exposure and showed an increase during shift. The Spearman correlations between the creatinine-adjusted concentrations of metabolites and vapours and aerosols of bitumen in non-smokers were weak (e.g. sum of Di-OH-PYR: 0.28) or negligible (e.g. 1,2-PHE-diol: 0.08; PHE-tetrol: 0.12). Metabolites from the diol epoxide pathway of PHE were excreted in higher concentrations than phenolic metabolites (post-shift, non-smoking asphalt workers: 1,2-PHE-diol 2.59 µg/g crea vs. sum of all OH-PHE 1.87 µg/g crea). 1,2-PHE-diol was weakly correlated with PHE-tetrol (Spearman coefficient 0.30), an endpoint of the diol epoxide pathway. By contrast, we found a close correlation between the sum of 1,6-DiOH-PYR and 1,8-DiOH-PYR with 1-OH-PYR (Spearman coefficient 0.76). CONCLUSIONS: Most urinary PAH metabolites were higher after shift in bitumen-exposed workers, although the association with bitumen was weak or negligible likely due to the small PAH content. The additional metabolites of PHE and PYR complete the picture of the complex metabolic pathways. Nevertheless, none of the PAH metabolites can be considered to be a specific biomarker for bitumen exposure.


Subject(s)
Air Pollutants, Occupational/analysis , Hydrocarbons/analysis , Inhalation Exposure/analysis , Occupational Exposure/analysis , Phenanthrenes/urine , Pyrenes/urine , Adult , Aerosols/analysis , Air Pollutants, Occupational/urine , Biomarkers/urine , Construction Industry , Cross-Sectional Studies , Environmental Monitoring/methods , Germany , Humans , Middle Aged , Risk Assessment , Statistics, Nonparametric
12.
Anal Bioanal Chem ; 406(5): 1519-30, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24390408

ABSTRACT

Stable adducts to serum albumin (SA) from electrophilic and genotoxic compounds/metabolites can be used as biomarkers for quantification of the corresponding in vivo dose. In the present study, conditions for specific analysis of stable adducts to SA formed from carcinogenic polycyclic aromatic hydrocarbons (PAH) were evaluated in order to achieve a sensitive and reproducible quantitative method. Bulky adducts from diolepoxides (DE) of PAH, primarily DE of benzo[a]pyrene (BPDE) and also DE of dibenzo[a,l]pyrene (DBPDE) and dibenzo[a,h]anthracene (DBADE), were used as model compounds. The alkylated peptides obtained after enzymatic hydrolysis of human SA modified with the different PAHDE were principally PAHDE-His-Pro, PAHDE-His-Pro-Tyr and PAHDE-Lys. Alkaline hydrolysis under optimised conditions gave the BPDE-His as the single analyte of alkylated His, but also indicated degradation of this adduct. It was not possible to obtain the BPDE-His as one analyte from BPDE-alkylated SA through modifications of the enzymatic hydrolysis. The BPDE-His adduct was shown to be stable during the weak acidic conditions used in the isolation of SA. Enrichment by HPLC or SPE, but not butanol extraction, gave good recovery, using Protein LoBind tubes. A simple internal standard (IS) approach using SA modified with other PAHDE as IS was shown to be applicable. A robust analytical procedure based on digestion with pronase, enrichment by HPLC or SPE, and analysis with HPLC/MS-MS electrospray ionisation was achieved. A good reproducibility (coefficient of variation (CV) 11 %) was obtained, and the achieved limit of detection for the studied PAHDE, using standard instrumentation, was approximately 1 fmol adduct/mg SA analysing extract from 5 mg SA.


Subject(s)
Benz(a)Anthracenes/chemistry , Benzo(a)pyrene/chemistry , Benzopyrenes/chemistry , Peptide Fragments/analysis , Serum Albumin/chemistry , Chromatography, High Pressure Liquid , Humans , Hydrogen-Ion Concentration , Hydrolysis , Pronase/chemistry , Reproducibility of Results , Tandem Mass Spectrometry
13.
Arch Toxicol ; 88(3): 823-36, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24154822

ABSTRACT

1-Methoxy-3-indolylmethyl (1-MIM) glucosinolate, a secondary metabolite of Brassicales species, and its breakdown product 1-MIM alcohol are mutagenic in cells in culture after activation by plant ß-thioglucosidase and human sulphotransferase, respectively. In the present study, we administered these compounds orally to mice to study time course, dose dependence, tissue distribution and cellular localization of the 1-MIM DNA adducts formed. We used isotope-dilution ultra-performance liquid chromatography-tandem mass spectrometry to quantify the adducts and raised an antiserum for their immunohistochemical localization. Both compounds formed the same adducts, N(2)-(1-MIM)-2'-deoxyguanosine and N(6)-(1-MIM)-2'-deoxyadenosine, approximately in a 3.3:1 ratio. 1-MIM glucosinolate primarily formed these adducts in the large intestine, with a luminal-basal gradient, probably due to activation by thioglucosidase from intestinal bacteria. 1-MIM alcohol formed higher levels of adduct than the glucosinolate. Unlike after treatment with the glucosinolate, luminal and basal enterocytes were similarly affected in caecum, and liver and stomach were additional important target tissues. Maximal adduct levels were reached 8 h after the administration of both compounds. The hepatic DNA adducts persisted for the entire observation period (48 h), whereas those in large intestine rapidly declined due to cell turnover, as verified by immunohistochemistry. Hepatic adduct formation was focused on the periportal hepatocytes with concomitant depletion of glycogen, p53 activation and p21 induction. Adduct formation in caecum was associated with massive apoptosis, p53 activation and p21 induction, in particular after treatment with 1-MIM alcohol. It remains to be studied whether similar effects occur in humans after the consumption of Brassicales species.


Subject(s)
DNA Adducts/metabolism , Glucosinolates/chemistry , Glucosinolates/pharmacokinetics , Indoles/chemistry , Indoles/metabolism , Indoles/pharmacokinetics , Administration, Oral , Animals , Brassicaceae/metabolism , Cecum/drug effects , Cecum/pathology , DNA Adducts/analysis , Deoxyadenosines/chemistry , Dose-Response Relationship, Drug , Glucosinolates/administration & dosage , Indoles/administration & dosage , Intestine, Large/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred Strains , Tandem Mass Spectrometry/methods , Tissue Distribution , Tumor Suppressor Protein p53/metabolism
14.
Biomarkers ; 18(2): 165-73, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23384313

ABSTRACT

Exposure of the general population to polycyclic aromatic hydrocarbons (PAH) is ubiquitous. The aim of this study was to analyze biomarkers associated with the uptake of PAH in 428 non-smoking women from Lodz (Poland), Viterbo (Italy), Belgrade (Serbia) and from the Pancevo area, where the petrochemical complex was destroyed by the air raids in 1999. Urinary excretion of PAH metabolites was lowest in Italian women, intermediary for Serbian and highest in Polish women, who predominantly excreted hydroxy phenanthrenes as metabolites of phenanthrene. Bulky DNA adduct levels were highest in Italian and Polish women. Genotype or PAH ambient air levels could not explain the dissimilarities between the study groups with respect to biomarker patterns, which probably reflected differences in life style-associated factors.


Subject(s)
Diet , Environmental Pollutants/urine , Polycyclic Aromatic Hydrocarbons/urine , Adult , Biomarkers/urine , Blood Proteins/analysis , Blood Proteins/genetics , DNA Adducts/blood , DNA Damage , Environmental Pollutants/pharmacokinetics , Environmental Pollutants/toxicity , Female , Fruit/chemistry , Genotype , Genotyping Techniques , Humans , Italy , Middle Aged , Poland , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Polycyclic Aromatic Hydrocarbons/toxicity , Serbia , Vegetables/chemistry
15.
Arch Toxicol ; 87(2): 269-80, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22899102

ABSTRACT

A wide variety of contaminants are ingested through food, among them the pro-carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene (BP) that is resorbed and partially metabolized in the enterocytes of the small intestine. Previous in vitro studies have revealed that BP phenols are excreted as Phase II metabolites including glucuronides and sulfates. This export is mediated by the breast cancer resistance protein (ABCG2). The ultimate carcinogenic Phase I BP metabolite anti-BP-7,8-dihydrodiol-9,10-epoxide (BPDE) can be detoxified by glutathione conjugate formation catalyzed by glutathione S-transferases. In the present study, differentiated human intestinal Caco-2 cells were used as a model for the human small intestine to investigate the detoxification of BPDE and excretion of stereoisomeric glutathione conjugates in the presence of an inhibitor of the glutathione-cleaving enzyme γ-glutamyl transpeptidase at the cell surface. The results indicate that the glutathione conjugates of BPDE are formed and excreted mainly to the apical and to a minor extent to the basolateral side of polarized Caco-2 monolayers. Inhibition studies revealed that the multidrug resistance-associated proteins (ABCCs) are involved in the transport of BPDE glutathione conjugates. Stable ABCC1, ABCC2 and ABCC3 knockdown cell lines were generated, thus making it possible to demonstrate that ABCC1 mediates the basolateral and ABCC2 the apical excretion of BPDE glutathione conjugates. In conclusion, the ultimate carcinogen BPDE is detoxified via glutathione conjugation and subsequently excreted by Caco-2 cells in both apical and basolateral directions. This finding is equivalent to a transport into feces as well as blood system in the in vivo situation.


Subject(s)
7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/toxicity , Caco-2 Cells/drug effects , Carcinogens/toxicity , Drug Resistance, Multiple/physiology , Glutathione/metabolism , Multidrug Resistance-Associated Proteins/metabolism , 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide/metabolism , Biological Transport/drug effects , Caco-2 Cells/metabolism , Carcinogens/metabolism , Gene Expression , Gene Knockdown Techniques , Glutathione Transferase/metabolism , Humans , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/genetics , Time Factors
16.
Anal Chem ; 84(14): 6256-62, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22816785

ABSTRACT

1-Methoxy-3-indolylmethyl (1-MIM) glucosinolate, present at substantial levels in several food crops (e.g., broccoli and cabbage), forms DNA adducts in vitro and is mutagenic to bacterial and mammalian cells after activation by the plant enzyme myrosinase. Moreover, a breakdown product, 1-MIM alcohol, is metabolized to a secondary reactive intermediate by some mammalian sulfotransferases (SULTs). First, we incubated herring-sperm DNA with 1-MIM glucosinolate in the presence of myrosinase. We identified and synthesized the predominant adducts, N(2)-(1-MIM)-dG and N(6)-(1-MIM)-dA, and developed an UPLC-ESI-MS/MS method for their specific detection using isotopic dilution. Second, we demonstrated both DNA adducts in target cells (Salmonella typhimurium TA100 and Chinese hamster V79) of standard mutagenicity tests treated with 1-MIM glucosinolate/myrosinase as well as in 1-MIM alcohol-treated Salmonella and V79 cells engineered for expression of human SULT1A1. Similar excesses of N(2)-(1-MIM)-dG over N(6)-(1-MIM)-dA adducts were found in all cellular models independent of the test compound (1-MIM glucosinolate or alcohol), whereas dA adducts predominated in the cell-free system. Finally, we detected both DNA adducts in colon tissue of a mouse orally treated with 1-MIM glucosinolate. We are going to use this specific and sensitive method for investigating genotoxic risks of food-borne exposure to 1-MIM glucosinolate in animal and human studies.


Subject(s)
Chromatography, High Pressure Liquid/methods , DNA Adducts/metabolism , Glucosinolates/metabolism , Indoles/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Animals , Cell Line , Cricetinae , Cricetulus , Fishes , Humans , Hydrolysis , Isotopes , Limit of Detection , Male , Mice , Salmonella typhimurium/cytology , Spermatozoa/metabolism
17.
Chem Res Toxicol ; 25(7): 1484-92, 2012 Jul 16.
Article in English | MEDLINE | ID: mdl-22563731

ABSTRACT

5-Hydroxymethylfurfural (HMF), a heterocyclic product of the Maillard reaction, is a ubiquitous food contaminant. It has demonstrated hepatocarcinogenic activity in female mice. This effect may originate from sulfo conjugation of the benzylic alcohol yielding 5-sulfooxymethylfurfural (SMF), which is prone to react with DNA via nucleophilic substitution. Indeed, we showed that HMF induces gene mutations in Chinese hamster V79 cells engineered for the expression of human (h) sulfotransferase (SULT)1A1 but not in parental V79 cells. In order to identify potential DNA adducts, we incubated DNA samples with SMF or HMF in aqueous solution. Modified DNA was digested and surveyed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for adducts that may be formed by nucleosides either via nucleophilic substitution at the electrophilic carbon atom of SMF or via imine formation with the aldehyde group present in HMF and SMF. The most abundant adducts formed from SMF, N(6)-((2-formylfuran-5-yl)methyl)-2'-deoxyadenosine (N(6)-FFM-dAdo) and N(2)-((2-formylfuran-5-yl)methyl)-2'-deoxyguanosine (N(2)-FFM-dGuo), were synthesized, purified, and characterized by (1)H NMR. Imine adducts were only detected when DNA was incubated with very high levels of HMF following reduction of the imines to corresponding secondary amines by NaBH(3)CN. Sensitive techniques based on LC-MS/MS multiple reaction monitoring for the quantification of the adducts in DNA samples were devised using isotope-labeled [(15)N(5)]N(6)-FFM-dAdo and [(13)C(10),(15)N(5)]N(2)-FFM-dGuo as internal standards. Both 5-methylfurfuryl adducts were detected in DNA from V79-hSULT1A1 treated with HMF but not in DNA from V79 control cells. Considering the lack of other known mutagenic metabolites, we hypothesize that the hepatocarcinogenic potential of HMF originates from the formation of mutagenic SMF.


Subject(s)
Arylsulfotransferase/metabolism , DNA Adducts/analysis , Furaldehyde/analogs & derivatives , Animals , Arylsulfotransferase/genetics , Cell Line , Chromatography, High Pressure Liquid , Cricetinae , Cricetulus , DNA/chemistry , Female , Furaldehyde/chemistry , Humans , Isotope Labeling , Mice , Mutagenicity Tests , Tandem Mass Spectrometry
18.
Materials (Basel) ; 15(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36234359

ABSTRACT

At the European level, limits have been set (REACH) for the content of polycyclic aromatic hydrocarbons (PAH) in products with rubber and plastic components that come into contact with human skin or the oral cavity. These limit values reported in Commission Regulation (EU) 1272/2013 are of particular importance for the utilization of end-of-life tires (ELT) as recycled rubber materials for consumer applications, but a suitable analytical method has not yet been specified. On the other hand, comprehensive measurement series of the PAH content of ELT materials are scarce in the context of compliance testing against this regulation and general published PAH levels in ELT materials are often based on very different analytical methods. In the present work, the PAH content of three different rubber granulates from ELT (obtained from whole truck and passenger car tires and truck tire treads) were investigated over a period of two years. The Grimmer method was used for PAH profile analysis, which in terms of extraction intensity and sample preparation not only meets the requirements for a reliable determination of the EU priority PAH, but in addition covers a more comprehensive PAH profile. A total of 26 different PAH compounds, including the 8 EU priority PAH (REACH) and the 16 U.S. EPA priority PAH, were analyzed and their variations over time were examined to obtain reliable current data for PAH content in rubber granulates produced from ELT.

19.
Chem Biol Interact ; 363: 110007, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35671827

ABSTRACT

In recent years concerns over consumer exposure to mineral oil aromatic hydrocarbons (MOAH), especially those containing alkylated polycyclic aromatic hydrocarbons (PAHs), have emerged. This is especially due to the fact that some PAHs are known to be genotoxic and carcinogenic upon metabolic activation. However, available toxicological data on PAHs mainly relate to non-substituted PAHs with limited data on alkyl substituted PAHs. Therefore, the aim of the present study was to characterize in more detail the effect of alkyl substitution on the metabolism and mutagenicity of benzo[a]pyrene (B[a]P), a PAH known to be genotoxic and carcinogenic. To this end, the oxidative metabolism and mutagenicity of B[a]P and a series of its alkyl substituted analogues were quantified using in vitro microsomal incubations and the Ames test. The results obtained reveal that upon alkylation the metabolic oxidation shifts to the aliphatic side chain at the expense of aromatic ring oxidation. The overall metabolism, including metabolism via aromatic ring oxidation resulting potentially in bioactivation, was substantially reduced with elongation of the alkyl side chain, with metabolism of B[a]P with an alkyl substituent of >6 C atoms being seriously hampered. In the Ames test upon metabolic activation, the methyl substitution of B[a]P resulted in an increase or decrease of the mutagenic potency depending on the substitution position. The relevant pathways for mutagenicity of the selected monomethyl substituted B[a]P may involve the formation of a 7,8-dihydrodiol-9,10-epoxide, a 4,5-oxide and/or a benzylic alcohol as an oxidative side chain metabolite which subsequently may give rise to an unstable and reactive sulfate ester conjugate. It is concluded that alkylation of B[a]P does not systematically reduce its mutagenicity in spite of the metabolic shift from aromatic to side chain oxidation.


Subject(s)
Mutagens , Polycyclic Aromatic Hydrocarbons , Benzo(a)pyrene/toxicity , Carcinogens , Mutagenesis , Mutagenicity Tests , Mutagens/toxicity , Polycyclic Aromatic Hydrocarbons/chemistry
20.
Arch Toxicol ; 85 Suppl 1: S11-20, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21360193

ABSTRACT

The chemical complexity of emissions from bitumen applications is a challenge in the assessment of exposure. Personal sampling of vapours and aerosols of bitumen was organized in 320 bitumen-exposed workers and 69 non-exposed construction workers during 2001-2008. Area sampling was conducted at 44 construction sites. Area and personal sampling of vapours and aerosols of bitumen showed similar concentrations between 5 and 10 mg/m(3), while area sampling yielded higher concentrations above the former occupational exposure limit (OEL) of 10 mg/m(3). The median concentration of personal bitumen exposure was 3.46 mg/m(3) (inter-quartile range 1.80-5.90 mg/m(3)). Only few workers were exposed above the former OEL. The specificity of the method measuring C-H stretch vibration is limited. This accounts for a median background level of 0.20 mg/m³ in non-exposed workers which is likely due to ubiquitous aliphatic hydrocarbons. Further, area measurements of polycyclic aromatic hydrocarbons (PAHs) were taken at 25 construction sites. U.S. EPA PAHs were determined with GC/MS, with the result of a median concentration of 2.47 µg/m(3) at 15 mastic asphalt worksites associated with vapours and aerosols of bitumen, with a Spearman correlation coefficient of 0.45 (95% CI -0.13 to 0.78). PAH exposure at mastic-asphalt works was higher than at reference worksites (median 0.21 µg/m(3)), but about one order of magnitude lower compared to coke-oven works. For a comparison of concentrations of vapours and aerosols of bitumen and PAHs in asphalt works, differences in sampling and analytical methods must to be taken into account.


Subject(s)
Air Pollutants, Occupational/analysis , Hydrocarbons/analysis , Occupational Exposure/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Aerosols , Air Pollution, Indoor/analysis , Cross-Sectional Studies , Environmental Monitoring/methods , Humans , Inhalation Exposure/analysis , Male , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL