Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Cancer Sci ; 115(3): 791-803, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38258342

ABSTRACT

Cancer cells adopt multiple strategies to escape tumor surveillance by the host immune system and aberrant amino acid metabolism in the tumor microenvironment suppresses the immune system. Among the amino acid-metabolizing enzymes is an L-amino-acid oxidase called interleukin-4 induced 1 (IL4I1), which depletes essential amino acids in immune cells and is associated with a poor prognosis in various cancer types. Although IL4I1 is involved in immune metabolism abnormalities, its effect on the therapeutic efficacy of immune checkpoint inhibitors is unknown. In this study, we established murine melanoma cells overexpressing IL4I1 and investigated their effects on the intratumor immune microenvironment and the antitumor efficacy of anti-programmed death-ligand 1 (PD-L1) antibodies (Abs) in a syngeneic mouse model. As a result, we found that IL4I1-overexpressing B16-F10-derived tumors showed resistance to anti-PD-L1 Ab therapy. Transcriptome analysis revealed that immunosuppressive genes were globally upregulated in the IL4I1-overexpressing tumors. Consistently, we showed that IL4I1-overexpressing tumors exhibited an altered subset of lymphoid cells and particularly significant suppression of cytotoxic T cell infiltration compared to mock-infected B16-F10-derived tumors. After treatment with anti-PD-L1 Abs, we also found a more prominent elevation of tumor-associated macrophage (TAM) marker, CD68, in the IL4I1-overexpressing tumors than in the mock tumors. Consistently, we confirmed an enhanced TAM infiltration in the IL4I1-overexpressing tumors and a functional involvement of TAMs in the tumor growth. These observations indicate that IL4I1 reprograms the tumor microenvironment into an immunosuppressive state and thereby confers resistance to anti-PD-L1 Abs.


Subject(s)
Melanoma , Mice , Animals , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Interleukin-4/metabolism , CD8-Positive T-Lymphocytes , Amino Acids/metabolism , Tumor Microenvironment , B7-H1 Antigen
2.
Biochem Biophys Res Commun ; 721: 150108, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38762931

ABSTRACT

Drug-tolerant persister (DTP) cells remain following chemotherapy and can cause cancer relapse. However, it is unclear when acquired resistance to chemotherapy emerges. Here, we compared the gene expression profiles of gastric cancer patient-derived cells (GC PDCs) and their respective xenograft tumors with different sensitivities to 5-fluorouracil (5-FU) by using immunodeficient female BALB/c-nu mice. RNA sequencing analysis of 5-FU-treated PDCs demonstrated that DNA replication/cell cycle-related genes were transiently induced in the earlier phase of DTP cell emergence, while extracellular matrix (ECM)-related genes were sustainably upregulated during long-term cell survival in 5-FU-resistant residual tumors. NicheNet analysis, which uncovers cell-cell signal interactions, indicated the transforming growth factor-ß (TGF-ß) pathway as the upstream regulator in response to 5-FU treatment. This induced ECM-related gene expression in the 5-FU-resistant tumor model. In the 5-FU-resistant residual tumors, there was a marked upregulation of cancer cell-derived TGF-ß1 expression and increased phosphorylation of SMAD3, a downstream regulator of the TGF-ß receptor. By contrast, these responses were not observed in a 5-FU-sensitive tumor model. We further found that TGF-ß-related upregulation of ECM genes was preferentially observed in non-responders to chemotherapy with 5-FU and/or oxaliplatin among 22 patient-derived xenograft tumors. These observations suggest that chemotherapy-induced activation of the TGF-ß1/SMAD3/ECM-related gene axis is a potential biomarker for the emergence of drug resistance in GCs.


Subject(s)
Drug Resistance, Neoplasm , Extracellular Matrix , Fluorouracil , Gene Expression Regulation, Neoplastic , Mice, Inbred BALB C , Signal Transduction , Stomach Neoplasms , Transforming Growth Factor beta , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Drug Resistance, Neoplasm/genetics , Humans , Animals , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Female , Signal Transduction/drug effects , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Mice , Transforming Growth Factor beta/metabolism , Mice, Nude , Cell Line, Tumor , Smad3 Protein/metabolism , Smad3 Protein/genetics , Xenograft Model Antitumor Assays
3.
Cancer Lett ; 584: 216632, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38216082

ABSTRACT

WNT/ß-catenin signaling is aberrantly activated in colorectal cancer (CRC) mainly by loss-of-function mutations in adenomatous polyposis coli (APC) and is involved in tumor progression. Tankyrase inhibitors, which suppress WNT/ß-catenin signaling, are currently in pre-clinical and clinical trials. However, the mechanisms of resistance to tankyrase inhibitors remain unclear. In this study, we established tankyrase inhibitor-resistant CRC cells, JC73-RK100, from APC-mutated patient-derived CRC cells. JC73-RK100 cells and several CRC cell lines were sensitive to tankyrase inhibitors at low concentrations but were resistant at high concentrations, showing an intrinsic/acquired bell-shaped dose response. Mechanistically, tankyrase inhibitors at high concentrations promoted BRD3/4-dependent E2F target gene transcription and over-activated cell cycle progression in these cells. BET inhibitors canceled the bell-shaped dose response to tankyrase inhibitors. Combination of tankyrase and BET inhibitors significantly suppressed tumor growth in a mouse xenograft model. These observations suggest that the combination of tankyrase and BET inhibitors may be a useful therapeutic approach to overcome the resistance of a subset of CRCs to tankyrase inhibitors.


Subject(s)
Adenomatous Polyposis Coli , Antineoplastic Agents , Colorectal Neoplasms , Tankyrases , Animals , Humans , Mice , Adenomatous Polyposis Coli/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , beta Catenin/metabolism , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Disease Models, Animal , Wnt Signaling Pathway
4.
Cancer Res Commun ; 4(5): 1307-1320, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38669046

ABSTRACT

Anticancer drug-tolerant persister (DTP) cells at an early phase of chemotherapy reshape refractory tumors. Aldehyde dehydrogenase 1 family member A3 (ALDH1A3) is commonly upregulated by various anticancer drugs in gastric cancer patient-derived cells (PDC) and promotes tumor growth. However, the mechanism underlying the generation of ALDH1A3-positive DTP cells remains elusive. Here, we investigated the mechanism of ALDH1A3 expression and a combination therapy targeting gastric cancer DTP cells. We found that gastric cancer tissues treated with neoadjuvant chemotherapy showed high ALDH1A3 expression. Chromatin immunoprecipitation (ChIP)-PCR and ChIP sequencing analyses revealed that histone H3 lysine 27 acetylation was enriched in the ALDH1A3 promoter in 5-fluorouracil (5-FU)-tolerant persister PDCs. By chemical library screening, we found that the bromodomain and extraterminal (BET) inhibitors OTX015/birabresib and I-BET-762/molibresib suppressed DTP-related ALDH1A3 expression and preferentially inhibited DTP cell growth. In DTP cells, BRD4, but not BRD2/3, was recruited to the ALDH1A3 promoter and BRD4 knockdown decreased drug-induced ALDH1A3 upregulation. Combination therapy with 5-FU and OTX015 significantly suppressed in vivo tumor growth. These observations suggest that BET inhibitors are efficient DTP cell-targeting agents for gastric cancer treatment. SIGNIFICANCE: Drug resistance hampers the cure of patients with cancer. To prevent stable drug resistance, DTP cancer cells are rational therapeutic targets that emerge during the early phase of chemotherapy. This study proposes that the epigenetic regulation by BET inhibitors may be a rational therapeutic strategy to eliminate DTP cells.


Subject(s)
Drug Resistance, Neoplasm , Fluorouracil , Histones , Stomach Neoplasms , Transcription Factors , Stomach Neoplasms/drug therapy , Stomach Neoplasms/pathology , Stomach Neoplasms/metabolism , Stomach Neoplasms/genetics , Humans , Animals , Histones/metabolism , Mice , Acetylation/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Fluorouracil/pharmacology , Fluorouracil/therapeutic use , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Cell Line, Tumor , Xenograft Model Antitumor Assays , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Gene Expression Regulation, Neoplastic/drug effects , Mice, Nude , Aldehyde Oxidoreductases/metabolism , Aldehyde Oxidoreductases/genetics , Cell Proliferation/drug effects , Male , Female , Antineoplastic Agents/pharmacology , Promoter Regions, Genetic/drug effects , Mice, Inbred BALB C , Bromodomain Containing Proteins
SELECTION OF CITATIONS
SEARCH DETAIL