Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Pharm ; 19(11): 4333-4344, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36250999

ABSTRACT

Drug-eluting nanoparticles (NPs) administered by an eluting balloon represent a novel tool to prevent restenosis after angioplasty, even if the selection of the suitable drug and biodegradable material is still a matter of debate. Herein, we provide the proof of concept of the use of a novel material obtained by combining the grafting of caffeic acid or resveratrol on a poly(lactide-co-glycolide) backbone (g-CA-PLGA or g-RV-PLGA) and the pleiotropic effects of fluvastatin chosen because of its low lipophilic profile which is challenging for the encapsulation in NPs and delivery to the artery wall cells. NPs made of such materials are biocompatible with macrophages, human smooth muscle cells (SMCs), and endothelial cells (ECs). Their cellular uptake is demonstrated and quantified by confocal microscopy using fluorescent NPs, while their distribution in the cytoplasm is verified by TEM images using NPs stained with an Ag-PVP probe appositely synthetized. g-CA-PLGA assures the best control of the FLV release from NP sizing around 180 nm and the faster SMC uptake, as demonstrated by confocal analyses. Interestingly and surprisingly, g-CA-PLGA improves the FLV efficacy to inhibit the SMC migration, without altering its effects on EC proliferation and migration. The improved trophism of NPs toward SMCs, combined with the excellent biocompatibility and low modification of the microenvironment pH upon polymer degradation, makes g-CA-PLGA a suitable material for the design of drug-eluting balloons.


Subject(s)
Nanoparticles , Polyglycolic Acid , Humans , Polylactic Acid-Polyglycolic Acid Copolymer , Lactic Acid , Fluvastatin , Hyperplasia , Endothelial Cells , Drug Carriers
2.
Drug Dev Ind Pharm ; 47(4): 636-644, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33826438

ABSTRACT

OBJECTIVE: The possible application of a hot-melt ram extrusion printing to the preparation of diclofenac orodispersible films (ODF) made of maltodextrin was studied focusing the attention on the effects of taste-masking agents (i.e. namely mint, licorice-mint, and sucralose) and an opacifier (titanium dioxide [TiO2]). SIGNIFICANCE: This is a proof-of-concept of the feasibility to print ODF loaded with a thermosensitive drug substance by hot-melt technologies. METHODS: Diclofenac sodium (DNa) ODF made of maltodextrin (dextrose equivalent (DE) = 6 ) plasticized with glycerol were prepared by hot-melt extrusion printing. ODF were characterized for disintegration time, drug content, and solid state, in vitro dissolution in deionized water and simulated salivary fluid at pH 5.7, tensile, and adhesive properties. Moreover, the stability of ODF was assessed in accelerated conditions over six months. RESULTS: After the preparation, no variation in drug solid state was evident and the formation of impurity A of DNa was detected, even if it remained below the Pharmacopoeia (Ph. Eur.) limits (< 0.2%). Only the addition of DNa significantly improved the ODF tensile properties: the tensile strength increased from 0.17 ± 0.03 MPa (placebo ODF) to 2.21 ± 0.54 MPa (p ≤ 0.03). All ODF disintegrated in about 1 min, and the t80% was lower than 3 min. TiO2 reduced the static and dynamic peel forces (p ≤ 0.006) favoring the ODF detachment from the primary packaging material. During the accelerated stability study, ODF were easy to handle without fracture; the drug content, impurity A, and dissolution profiles remained superimposable. CONCLUSION: Hot-melt printing can be suitable to prepare palatable ODF loaded with bitter thermosensitive drugs.


Subject(s)
Diclofenac , Pediatrics , Child , Drug Compounding , Humans , Printing, Three-Dimensional , Solubility , Tensile Strength
3.
J Pept Sci ; 23(2): 182-188, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28093876

ABSTRACT

The development of mitochondria-targeting cell permeable vectors represents a promising therapeutic approach for several diseases, such as cancer and oxidative pathologies. Nevertheless, access to mitochondria can be difficult. A new hybrid material composed by poly(lactide-co-glycolide) (PLGA) functionalized with a 6-mer mitochondria penetrating peptide (MPP), consisting in alternating arginine and unnatural cyclohexylalanine, was developed. Circular dichroism, FT-IR and DSC studies indicated that the conjugation of the peptide with the polymer led to the obtainment of a more rigid material with respect to both PLGA and MPP as such. In particular, a conformational rearrangement to a helical structure was observed for MPP. MPP-PLGA conjugates were used for the preparation of nanoparticles that showed no cytotoxicity in MTT assay, suggesting their putative use for future studies on mitochondria targeting. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Subject(s)
Drug Carriers/chemical synthesis , Nanoparticles/chemistry , Peptides/chemical synthesis , Polyglactin 910/chemical synthesis , Cell Survival/drug effects , Drug Carriers/pharmacology , Fluorenes/chemistry , HCT116 Cells , Humans , Mitochondria/metabolism , Peptides/pharmacology , Permeability , Polyglactin 910/pharmacology , Solid-Phase Synthesis Techniques/methods
4.
J Nanobiotechnology ; 15(1): 14, 2017 Feb 17.
Article in English | MEDLINE | ID: mdl-28212635

ABSTRACT

BACKGROUND: This work aimed to provide useful information on the incidence of the choice of formulation in semi-solid preparations of iron-oxide nanoparticles (IONs). The appropriate analytical methods to assess the IONs physical stability and the effect of the semi-solid preparations on IONs human skin penetration were discussed. The physical stability of IONs (Dh = 31 ± 4 nm; ζ = -65 ± 5 mV) loaded in five semi-solid preparations (0.3% w/v), namely Carbopol gel (CP), hydroxyethyl cellulose gel (HEC), carboxymethylcellulose gel (CMC), cetomacrogol cream (Cet) and cold cream was assessed by combining DLS and low-field pulsed NMR data. The in vitro penetration of IONs was studied using human epidermis or isolated stratum corneum (SC). RESULTS: Reversible and irreversible IONs aggregates were evidenced only in HEC and CMC, respectively. IONs diffused massively through SC preferentially by an intercellular pathway, as assessed by transmission electron microscopy. The semi-solid preparations differently influenced the IONs penetration as compared to the aqueous suspension. Cet cream allowed the highest permeation and the lowest retained amount, while cold cream and CP favored the accumulation into the skin membrane. CONCLUSION: Basic cutaneous semi-solid preparations could be used to administer IONs without affecting their permeation profile if they maintained their physical stability over time. This property is better discriminated by low-field pulsed NMR measurements than the commonly used DLS measurements.


Subject(s)
Drug Carriers/chemistry , Ferric Compounds/administration & dosage , Magnetite Nanoparticles/administration & dosage , Skin Absorption , Carboxymethylcellulose Sodium/chemistry , Cellulose/chemistry , Cetomacrogol/chemistry , Diffusion , Drug Stability , Epidermis/metabolism , Gels/chemistry , Humans , In Vitro Techniques , Microscopy, Electron, Transmission , Particle Size , Skin Cream/chemistry
5.
Planta Med ; 83(5): 405-411, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27286328

ABSTRACT

Epigallocatechin gallate, one of the most active antioxidant compounds, has a low chemical stability and ability to permeate the human epidermis. The encapsulation in polymeric micelles would be beneficial to improve both stability and permeation of epigallocatechin gallate and, therefore, to facilitate the pharmacological effects. Polymeric micelles containing epigallocatechin gallate were incorporated in O/W emulsions prepared by using different types of emulsifying systems. All emulsions were uniform in colour and aspect, without evidences of phase separation after centrifugation at the preparation time and over a 6-month period of storage at room temperature. Emulsions containing epigallocatechin gallate incorporated in polymeric micelles showed a colour variation, probably due to epigallocatechin gallate degradation, over the stability period. The skin permeability study evidenced a significant increase in epigallocatechin gallate permeation after encapsulation in micelles. Pure epigallocatechin gallate was not able to permeate the skin and only limited amounts were retained in the epidermis, while both permeated and retained amounts after 24 h were measured in the case of polymeric micelles containing epigallocatechin gallate. Moreover, the epigallocatechin gallate release and human skin permeability were affected by the type of emulsifier. The epigallocatechin gallate release in the presence of an emulsifier system based on cereal and fruit fibres never occurred. The best results in terms of release and skin permeability were obtained using glycerides of synthetic or semisynthetic origin or esters.


Subject(s)
Antioxidants/administration & dosage , Catechin/analogs & derivatives , Drug Delivery Systems , Emulsifying Agents , Micelles , Administration, Cutaneous , Catechin/administration & dosage , Humans , In Vitro Techniques , Skin/drug effects
6.
J Vasc Surg ; 63(3): 788-94, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25446284

ABSTRACT

OBJECTIVE: Restenosis due to intimal hyperplasia is a major clinical problem that compromises the success of angioplasty and endovascular surgery. Resveratrol (RSV) has demonstrated a beneficial effect on restenosis from angioplasty. Unfortunately, the physicochemical characteristics of RSV reduce the practicality of its immediate clinical application. This work proposes an experimental model aiming to setup an intravessel, elutable, RSV-containing compound. METHODS: A 140 µg/mL RSV sterile injectable solution with a suitable viscosity for intravascular administration by drug-delivery catheter (RSV-c) was prepared. This solution was locally administered in the common iliac artery of adult male New Zealand White rabbits using a dedicated device (Genie; Acrostak, Geneva, Switzerland) after the induction of intimal hyperplasia by traumatic angioplasty. The RSV concentrations in the wall artery were determined, and the thickness of the harvested iliac arteries was measured over a 1-month period. RESULTS: The Genie catheter was applied in rabbit vessels, and the local delivery resulted in an effective reduction in restenosis after plain angioplasty. Notably, RSV-c forced into the artery wall by balloon expansion might accumulate in the interstitial areas or within cells, avoiding the washout of solutions. Magnification micrographs showed intimal proliferation was significantly inhibited when RSV-c was applied. Moreover, no adverse events were documented in in vitro or in vivo studies. CONCLUSIONS: RSV can be advantageously administered in the arterial walls by a drug-delivery catheter to reduce the risk of restenosis.


Subject(s)
Angioplasty, Balloon/adverse effects , Angioplasty, Balloon/instrumentation , Cardiovascular Agents/administration & dosage , Coated Materials, Biocompatible , Iliac Artery/drug effects , Neointima , Stilbenes/administration & dosage , Vascular Access Devices , Vascular System Injuries/prevention & control , Animals , Cell Proliferation/drug effects , Cells, Cultured , Disease Models, Animal , Equipment Design , Humans , Hyperplasia , Iliac Artery/injuries , Iliac Artery/pathology , Male , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/injuries , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Rabbits , Resveratrol , Vascular System Injuries/pathology
7.
Drug Dev Ind Pharm ; 41(2): 183-9, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24164486

ABSTRACT

Abstract This work aims to establish if the assays recently introduced by EMA (Guideline on quality of transdermal patches-draft) and USP (Specific tests for transdermal delivery systems) to characterize transdermal patches (TP) are suitable for medicated plasters (MP). Six approved MP differing for type and characteristics of adhesive and backing layer were selected and characterized in terms of adhesive performances by tack, shear adhesion, peel adhesion and release liner removal tests and in vitro skin permeation. As far as the adhesive properties are concerned, the major drawback is related to the measurement of shear adhesion of MP made of an adhesive hydrogel and/or a stretchable backing layer which could be solved by reducing the applied load. Moreover, a concern on the mass balance prescribed by EMA draft for the acceptance of the results of in vitro penetration studies remains. Indeed, the acceptance range is narrow than that reported by Ph. Eur. requirement for uniformity of content. Finally, a novel calculation for evaluating the in vitro efficiency of MP in releasing the loaded drug through the skin was proposed.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Transdermal Patch/standards , Adhesiveness , Adhesives , Administration, Cutaneous , Drug Delivery Systems/standards , Europe , Humans , In Vitro Techniques , Pharmacopoeias as Topic , Skin Absorption , United States
8.
Mol Pharm ; 11(3): 1014-21, 2014 Mar 03.
Article in English | MEDLINE | ID: mdl-24446970

ABSTRACT

This work aims to elucidate the mechanism by which N-methylpyrrolidone (NMP) enhances the skin permeation of a compound by combining experimental data with molecular dynamic (MD) simulations. The addition of 10% NMP significantly increased the propranolol (PR) permeation through the human epidermis (∼ 15 µg/cm(2) vs ∼ 30 µg/cm(2)) while resulting inefficacious on hydrocortisone (HC) diffusion. No significant alterations in the stratum corneum structure were found after the in vitro treatment of human epidermis with NMP dispersed in mineral oil or water by attenuated total reflectance Fourier transform infrared (ATR-FTIR) analyses. MD simulations revealed the formation of a complex by H-bonds and the π-π stacking interactions between the NMP's amido group and the drug's aromatic systems. The size of the depicted NMP/PR clusters was in line with the hydrodynamic radius derived by dynamic light scattering analyses (∼ 2.00 nm). Conversely, no interaction, and consequently cluster formation, between NMP and HC occurred. These results suggest that NMP is effective in enhancing the drug permeation through human epidermis by a cotransport mechanism when NMP/drug interaction occurs.


Subject(s)
Cell Membrane Permeability/drug effects , Drug Delivery Systems , Hydrocortisone/administration & dosage , Propranolol/administration & dosage , Pyrrolidinones/pharmacokinetics , Skin Absorption/drug effects , Skin/metabolism , Administration, Cutaneous , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacokinetics , Diffusion , Humans , Hydrocortisone/pharmacokinetics , Molecular Dynamics Simulation , Propranolol/pharmacokinetics , Pyrrolidinones/administration & dosage , Skin/drug effects , Spectroscopy, Fourier Transform Infrared , Teratogens/pharmacokinetics , Tissue Distribution , Vasodilator Agents/administration & dosage , Vasodilator Agents/pharmacokinetics
9.
Chem Biodivers ; 11(4): 551-61, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24706625

ABSTRACT

The literature data suggest the capacity of biomacromolecules to permeate the human skin, even though such a transdermal permeation appears to be governed by physicochemical parameters which are significantly different compared to those ruling the skin permeation of small molecules. On these grounds, the present study was undertaken to investigate the in vitro diffusion properties through the human epidermis of hyaluronic acid and their sulfates. Low- and medium-molecular-weight hyaluronic acids and the corresponding derivatives at two degrees of sulfation were then tested. In vitro studies evidenced that the sulfated polymers permeate better than the corresponding hyaluronic acid, despite their vastly greater polarity, while the observed permeation markedly decreases when increasing the polymer's molecular weight regardless of the sulfation degree. Using a fluorescent-labeled polysaccharide, it was also evidenced that hyaluronans have a great affinity for corneocytes and likely cross the stratum corneum mainly through a transcellular route. The molecular-dynamics study revealed how the observed permeations for the investigated polysaccharides can be rationalized by monitoring their conformational profiles, since the permeation was found to be directly related to their capacity to assume extended and flexible conformations.


Subject(s)
Hyaluronic Acid/administration & dosage , Hyaluronic Acid/chemistry , Skin/drug effects , Administration, Cutaneous , Carbohydrate Conformation , Computer Simulation , Epidermis/drug effects , Humans , Hyaluronic Acid/pharmacokinetics , Microscopy, Confocal , Molecular Dynamics Simulation , Molecular Weight , Sulfates
10.
Drug Dev Ind Pharm ; 40(1): 17-22, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23301830

ABSTRACT

OBJECTIVE: To evaluate the feasibility of a transdermal patch containing propranolol (PR). METHOD: Skin penetration enhancers (SPEs) able to improve the skin permeability of PR were selected and a quality by design approach was applied to the development of the patch by a 2(4) full factorial design. The permeation profile of PR from the formulations was assessed in in vitro permeation studies performed by using Franz diffusion cells and human epidermis as membrane. Finally, skin irritation was evaluated by the Draize test. RESULTS: N-methyl pyrrolidone (NMP) resulted as the best SPE: in addition, the critical factors influencing the PR diffusion through the human epidermis when loaded in the patch resulted in the matrix thickness (X1, p = 0.0957) and PR content (X3, p = 0.0004) which improved the flux; conversely, NMP lacked its enhancement effect when loaded in the patch and the increase in its concentration (X4, p = 0.006) affected the drug permeation through human epidermis. The flux of optimal formulation was 12.7 µg/cm(2)/h. On the basis of the steady-state concentration and clearance of PR, the estimated patch surface was 100-120 cm(2), since the activity of PR is related to its Senantiomer and no in vivo bioconversion occurs. CONCLUSION: A patch containing (S)-PR was prepared and the (S)-PR flux (13.3 µg/cm(2)/h) permitted to confirm the suitability of a transdermal administration of PR. In particular, the use of a 50 µm thick methacrylic matrix containing 8% (S)-PR and 15% NMP can allow to develop a patch non-irritating to the skin, in order to ensure a constant permeation flux of PR over 48 h.


Subject(s)
Adrenergic beta-Antagonists/pharmacokinetics , Drug Delivery Systems , Propranolol/pharmacokinetics , Skin Absorption , Administration, Cutaneous , Adrenergic beta-Antagonists/administration & dosage , Adrenergic beta-Antagonists/toxicity , Animals , Chemistry, Pharmaceutical , Delayed-Action Preparations , Epidermis/metabolism , Excipients/chemistry , Feasibility Studies , Humans , Male , Permeability , Propranolol/administration & dosage , Propranolol/toxicity , Rats , Skin/metabolism , Skin Irritancy Tests , Time Factors , Transdermal Patch
11.
AAPS PharmSciTech ; 13(4): 1465-72, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23090111

ABSTRACT

The influence of a tertiary amine, namely risperidone (pKa = 7.9) on the degradation of poly(D, L lactide-co-glycolide) (PLGA) microspheres was elucidated. Risperidone and blank microspheres were fabricated at two lactide/glycolide ratios, 65:35 and 85:15. The microspheres were characterized for drug loading by high-performance liquid chromatography, particle size by laser diffractometry, and surface morphology by scanning electron microscopy. Polymer degradation studies were carried out with drug-loaded microspheres and blank microspheres in presence of free risperidone in 0.02 M PBS containing 0.02% Tween®80 at 37°C. Molecular weight was monitored by gel permeation chromatography. Risperidone and blank microspheres had similar size distribution and were spherical with a relatively nonporous smooth surface. The presence of risperidone within the microspheres enhanced the hydrolytic degradation in both polymeric matrices with faster degradation occurring in 65:35 PLGA. The molecular weight decreased according to pseudo-first-order kinetics for all the formulations. During the degradation study, the surface morphology of drug-loaded microspheres was affected by the presence of risperidone and resulted in shriveled microspheres in which there appeared to be an intrabatch variation with the larger microspheres being less shriveled than the smaller ones. When blank microspheres were incubated in free risperidone solutions, a concentration-dependent effect on the development of surface porosity could be observed. Risperidone accelerates the hydrolytic degradation of PLGA, presumably within the microenvironment of the drug-loaded particles, and this phenomenon must be taken into consideration in designing PLGA dosage forms of tertiary amine drugs.


Subject(s)
Lactic Acid/chemistry , Microspheres , Polyglycolic Acid/chemistry , Polymers/chemistry , Risperidone/chemistry , Chemistry, Pharmaceutical/methods , Chromatography, High Pressure Liquid/methods , Hydrolysis , Kinetics , Microscopy, Electron, Scanning/methods , Molecular Weight , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Polysorbates/chemistry
12.
Pharmaceutics ; 14(10)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36297520

ABSTRACT

Psoriasis is a lifelong disease which requires treatment adherence for successful management. Considering the complexity of this pathology, the combination of active pharmaceutical ingredients with a synergistic mechanism of action can improve the safety and efficacy of the treatment with respect to the conventional monotherapy. Moreover, a fixed dose of therapeutic agents in a topical formulation offers the possibility to simplify administration, reduce the doses of each active ingredient, and improve patient's compliance. Among the first-line treatments in mild to moderate psoriasis, the formulation of calcipotriol (Cal) and betamethasone dipropionate (BD) in a single vehicle is challenging due to their chemical incompatibility in an aqueous environment and the formation of degradation products. Based on these considerations, this review aims to provide an overview on the biopharmaceutical properties of Cal/BD fixed-dose combination products available on the market (namely ointment, oleogel, foam, and O/W cream), highlighting also the novel approaches under evaluation. The main differences among topical formulations are discussed considering the different features of the anatomic districts involved in psoriasis and the patient's adherence. Moreover, since in vitro experiments are fundamental to evaluate the skin permeation profile during the development of an efficacious medicinal product, special emphasis is given to models proposed to mimic psoriatic lesions.

13.
Drug Discov Today ; 27(10): 103321, 2022 10.
Article in English | MEDLINE | ID: mdl-35850432

ABSTRACT

Pain is a constant in our lives. The efficacy of drug therapy administered by the parenteral route is often limited either by the physicochemical characteristics of the drug itself or its adsorption-distribution-metabolism-excretion (ADME) mechanisms. One promising alternative is the design of innovative drug delivery systems that can improve the pharmacokinetics |(PK) and/or reduce the toxicity of traditionally used drugs. In this review, we discuss several products that have been approved by the main regulatory agencies (i.e., nano- and microsystems, implants, and oil-based solutions), highlighting the newest technologies that govern both locally and systemically the delivery of drugs. Finally, we also discuss the risk assessment of the scale-up process required, given the impact that this approach could have on drug manufacturing. Teaser: The management of pain by way of the parenteral route can be improved using complex drug delivery systems (e.g., micro- and nanosystems) which require high-level assessment and shorten the regulatory pathway.


Subject(s)
Drug Delivery Systems , Drug Repositioning , Humans , Pain/drug therapy , Pharmaceutical Preparations/chemistry
14.
Pharmaceutics ; 14(12)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36559212

ABSTRACT

Over the past 20 years, the interest in Cannabis oily extracts for medicinal use compounded in pharmacy has consistently grown, along with the need to have preparations of adequate quality. Hot maceration (M) is the most frequently used method to compound oily solutions. In this work, we systematically studied the possibility of using an ultrasonic homogenizer and a sonotrode (US) as an alternative extraction method. Oily solutions were prepared using two available varieties of Cannabis for medicinal use, called FM2 and Bedrocan. All preparations resulted with an equivalent content in CBD and THC, with the advantage of a faster process using US. In particular, 10 min sonication at the amplitude optimized for the sonotrode used (2 or 7 mm) provides not statistically different total Δ9-tetrahydrocannabinol (M-FM2: 0.26 ± 0.02 % w/w; US-FM2: 0.19 ± 0.004 % w/w; M-Bedrocan: 1.83 ± 0.17 % w/w; US-Bedrocan: 1.98 ± 0.01 % w/w) and total cannabidiol (M-FM2: 0.59 ± 0.04 % w/w; US-FM2: 0.58 ± 0.01 % w/w) amounts extracted in refined olive oil. It can therefore be confirmed that sonotrode is an efficient and fast extraction technique and its use is without negative consequence on the solvent properties. Despite DSC evidencing that both maceration and sonication modify the Tonset and enthalpy of the event at about -10 °C, the qualitative characteristics of the oil remained constant for the two treatments and similar to the starting material.

15.
Viruses ; 14(6)2022 05 27.
Article in English | MEDLINE | ID: mdl-35746629

ABSTRACT

Pyridobenzothiazolone derivatives are a promising class of broad-spectrum antivirals. However, the mode of action of these compounds remains poorly understood. The HeE1-17Y derivative has already been shown to be a potent compound against a variety of flaviviruses of global relevance. In this work, the mode of action of HeE1-17Y has been studied for West Nile virus taking advantage of reporter replication particles (RRPs). Viral infectivity was drastically reduced by incubating the compound with the virus before infection, thus suggesting a direct interaction with the viral particles. Indeed, RRPs incubated with the inhibitor appeared to be severely compromised in electron microscopy analysis. HeE1-17Y is active against other enveloped viruses, including SARS-CoV-2, but not against two non-enveloped viruses, suggesting a virucidal mechanism that involves the alteration of the viral membrane.


Subject(s)
COVID-19 , Flavivirus , RNA Viruses , Viruses , Antiviral Agents/pharmacology , Humans , SARS-CoV-2
17.
AAPS PharmSciTech ; 12(2): 604-9, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21553165

ABSTRACT

The current work aimed to propose a system of scoring to rationalize and support the selection of the optimal diameter and length of needles. Four formulations at different viscosity and needles ranging from 21 to 26 G and length ranging from 16 to 40 mm were used. Plunger-stopper breakloose force, maximum force (F(max)), and dynamic glide force were measured by a texture analyzer at the crosshead speed of 1 mm/s. Testing was carried out into air or human subcutaneous tissue. The manual injectability of the highest viscosity product was assessed by ten evaluators. The comparison of the panel test score and the quantitative measurements of the forces permitted to score a given needle-syringe-formulation system keeping also in consideration the pressure created in the subcutaneous space and muscles at the injection site. In particular, the following relationship was drawn: at the F(max) up to 250 mPa, the injection was practically impossible; at F(max) ranging from 160 to 250 mPa, the injection was very difficult; at F(max) in the 125-160 mPa range, the injection was feasible, though with some difficulty; when the values of F(max) were lower 125 mPa, the injection went smoothly. On the basis of these preliminary data, a system of scoring the needle-syringe-formulation system is proposed to rationalize and support the selection of the optimal diameter and length of needles, keeping also in consideration the pressure created in the subcutaneous space and muscles at the injection site.


Subject(s)
Chemistry, Pharmaceutical/methods , Needles/standards , Pharmaceutical Preparations/chemistry , Chemistry, Pharmaceutical/standards , Injections/instrumentation , Injections/standards , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/standards , Viscosity
18.
Eur J Pharm Sci ; 167: 106039, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34644599

ABSTRACT

Stringent formulation requirements are defined to intrathecally administer drug substances, avoiding neurological complications. In case of pediatric patients, these are further complicated due to the limited volumes of the celebrospinal fluid and, therefore, high concentrated solutions of methotrexate (MTX), cytarabine and corticosteroids (i.e., methylprednisolone or hydrocortisone) are prepared based on the patient's age. This work aims to assess the chemical and physical stability of triple intrathecal mixtures differing in volume and composition by a bracketing approach and to identify possible stress causes and mitigation strategies. Low solubility of MTX was the main factor limiting the physical stability of triple mixtures. Regarding solutions containing methylprednisolone, the amount of MTX remaining was about 95% in the solution at highest concentrations with the concomitant formation of a visible particulate sizing bigger than 1 µm after 24 h of storage at 25 °C. This behavior was mainly driven by the pH reduction due to the pH value of the cytarabine solution used; the shear stress also induced drug precipitation. In the case of the hydrocortisone based mixtures, the precipitate formation occurred at a slow rate. To improve the physical stability, a better control of the mixture pH (optimal value ≈ 7) is required or, as an alternative, the addition of the cytarabine solution to a pre-mixed binary mixture containing MTX and a corticosteroid should be preferred.


Subject(s)
Cytarabine , Pediatrics , Child , Drug Stability , Humans , Hydrocortisone , Injections, Spinal , Methotrexate
19.
Pharmaceutics ; 13(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34834378

ABSTRACT

The availability of liquid oral preparations compounded by pharmacists is essential to meet paediatric needs which remain unanswered by the pharmaceutical industry. Unfortunately, compendial monographs are often not available and, in many cases, pre-formulation studies (e.g., compatibility with other excipients and solubility evaluations) are not performed in-depth, leading, in some rare cases, to the inadvertent administration of a toxic dose. In this study, the preparation of an oral liquid formulation for paediatric use, containing flecainide acetate at different strengths, was considered, taking into account the possible effects of conventionally used excipients. First, the optimal vehicle was selected based on a solubility study, evidencing some unexpected formations of precipitates. As a matter of fact, the buffers commonly used for oral solutions significantly reduced flecainide solubility, and the concomitant presence of citrate buffer and methylparaben even caused the formation of non-resuspendable crystals. Then, chemical, physical, and microbiological stability were assessed. Solutions at strengths of 10 and 20 mg/mL flecainide acetate were stable up to 8 weeks when compounded by using a 40% sucrose solution as a vehicle. Microbiological data showed that the use of methylparaben was not necessary over this time period.

20.
Pharmaceutics ; 13(7)2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34371721

ABSTRACT

Moving towards a real mass vaccination in the context of COVID-19, healthcare professionals are required to face some criticisms due to limited data on the stability of a mRNA-based vaccine (Pfizer-BioNTech COVID-19 Vaccine in the US or Comirnaty in EU) as a dose in a 1 mL-syringe. The stability of the lipid nanoparticles and the encapsulated mRNA was evaluated in a "real-life" scenario. Specifically, we investigated the effects of different storing materials (e.g., syringes vs. glass vials), as well as of temperature and mechanical stress on nucleic acid integrity, number, and particle size distribution of lipid nanoparticles. After 5 h in the syringe, lipid nanoparticles maintained the regular round shape, and the hydrodynamic diameter ranged between 80 and 100 nm with a relatively narrow polydispersity (<0.2). Samples were stable independently of syringe materials and storage conditions. Only strong mechanical stress (e.g., shaking) caused massive aggregation of lipid nanoparticles and mRNA degradation. These proof-of-concept experiments support the hypothesis that vaccine doses can be safely prepared in a dedicated area using an aseptic technique and transferred without affecting their stability.

SELECTION OF CITATIONS
SEARCH DETAIL