Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neuroinflammation ; 21(1): 122, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720343

ABSTRACT

Pneumonia is a common comorbidity in patients with severe traumatic brain injury (TBI), and is associated with increased morbidity and mortality. In this study, we established a model of intratracheal Klebsiella pneumoniae administration in young adult male and female mice, at 4 days following an experimental TBI, to investigate how K. pneumoniae infection influences acute post-TBI outcomes. A dose-response curve determined the optimal dose of K. pneumoniae for inoculation (1 x 10^6 colony forming units), and administration at 4 days post-TBI resulted in transient body weight loss and sickness behaviors (hypoactivity and acute dyspnea). K. pneumoniae infection led to an increase in pro-inflammatory cytokines in serum and bronchoalveolar lavage fluid at 24 h post-infection, in both TBI and sham (uninjured) mice. By 7 days, when myeloperoxidase + neutrophil numbers had returned to baseline in all groups, lung histopathology was observed with an increase in airspace size in TBI + K. pneumoniae mice compared to TBI + vehicle mice. In the brain, increased neuroinflammatory gene expression was observed acutely in response to TBI, with an exacerbated increase in Ccl2 and Hmox1 in TBI + K. pneumoniae mice compared to either TBI or K. pneumoniae alone. However, the presence of neuroinflammatory immune cells in the injured brain, and the extent of damage to cortical and hippocampal brain tissue, was comparable between K. pneumoniae and vehicle-treated mice by 7 days. Examination of the fecal microbiome across a time course did not reveal any pronounced effects of either injury or K. pneumoniae on bacterial diversity or abundance. Together, these findings demonstrate that K. pneumoniae lung infection after TBI induces an acute and transient inflammatory response, primarily localized to the lungs with some systemic effects. However, this infection had minimal impact on secondary injury processes in the brain following TBI. Future studies are needed to evaluate the potential longer-term consequences of this dual-hit insult.


Subject(s)
Brain Injuries, Traumatic , Disease Models, Animal , Klebsiella Infections , Klebsiella pneumoniae , Mice, Inbred C57BL , Animals , Brain Injuries, Traumatic/microbiology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Mice , Klebsiella Infections/pathology , Klebsiella Infections/microbiology , Female , Male , Cytokines/metabolism , Bronchoalveolar Lavage Fluid
2.
J Neuroinflammation ; 21(1): 14, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195485

ABSTRACT

Traumatic brain injury (TBI) is a key contributor to global morbidity that lacks effective treatments. Microbial infections are common in TBI patients, and their presence could modify the physiological response to TBI. It is estimated that one-third of the human population is incurably infected with the feline-borne parasite, Toxoplasma gondii, which can invade the central nervous system and result in chronic low-grade neuroinflammation, oxidative stress, and excitotoxicity-all of which are also important pathophysiological processes in TBI. Considering the large number of TBI patients that have a pre-existing T. gondii infection prior to injury, and the potential mechanistic synergies between the conditions, this study investigated how a pre-existing T. gondii infection modified TBI outcomes across acute, sub-acute and chronic recovery in male and female mice. Gene expression analysis of brain tissue found that neuroinflammation and immune cell markers were amplified in the combined T. gondii + TBI setting in both males and females as early as 2-h post-injury. Glutamatergic, neurotoxic, and oxidative stress markers were altered in a sex-specific manner in T. gondii + TBI mice. Structural MRI found that male, but not female, T. gondii + TBI mice had a significantly larger lesion size compared to their uninfected counterparts at 18-weeks post-injury. Similarly, diffusion MRI revealed that T. gondii + TBI mice had exacerbated white matter tract abnormalities, particularly in male mice. These novel findings indicate that a pre-existing T. gondii infection affects the pathophysiological aftermath of TBI in a sex-dependent manner, and may be an important modifier to consider in the care and prognostication of TBI patients.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Toxoplasmosis , Humans , Animals , Cats , Female , Male , Mice , Neuroinflammatory Diseases , Brain Injuries/complications , Brain Injuries, Traumatic/complications , Toxoplasmosis/complications , Brain
3.
J Neuroinflammation ; 19(1): 291, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482407

ABSTRACT

The pathophysiology of traumatic brain injury (TBI) requires further characterization to fully elucidate changes in molecular pathways. Cerebrospinal fluid (CSF) provides a rich repository of brain-associated proteins. In this retrospective observational study, we implemented high-resolution mass spectrometry to evaluate changes to the CSF proteome after severe TBI. 91 CSF samples were analyzed with mass spectrometry, collected from 16 patients with severe TBI (mean 32 yrs; 81% male) on day 0, 1, 2, 4, 7 and/or 10 post-injury (8-16 samples/timepoint) and compared to CSF obtained from 11 non-injured controls. We quantified 1152 proteins with mass spectrometry, of which approximately 80% were associated with CSF. 1083 proteins were differentially regulated after TBI compared to control samples. The most highly-upregulated proteins at each timepoint included neutrophil elastase, myeloperoxidase, cathepsin G, matrix metalloproteinase-8, and S100 calcium-binding proteins A8, A9 and A12-all proteins involved in neutrophil activation, recruitment, and degranulation. Pathway enrichment analysis confirmed the robust upregulation of proteins associated with innate immune responses. Conversely, downregulated pathways included those involved in nervous system development, and several proteins not previously identified after TBI such as testican-1 and latrophilin-1. We also identified 7 proteins (GM2A, Calsyntenin 1, FAT2, GANAB, Lumican, NPTX1, SFRP2) positively associated with an unfavorable outcome at 6 months post-injury. Together, these findings highlight the robust innate immune response that occurs after severe TBI, supporting future studies to target neutrophil-related processes. In addition, the novel proteins we identified to be differentially regulated by severe TBI warrant further investigation as potential biomarkers of brain damage or therapeutic targets.


Subject(s)
Brain Injuries, Traumatic , Proteomics , Humans , Male , Female
4.
Brain Behav Immun ; 100: 29-47, 2022 02.
Article in English | MEDLINE | ID: mdl-34808288

ABSTRACT

Traumatic brain injury (TBI) is a major contributor to death and disability worldwide. Children are at particularly high risk of both sustaining a TBI and experiencing serious long-term consequences, such as cognitive deficits, mental health problems and post-traumatic epilepsy. Severe TBI patients are highly susceptible to nosocomial infections, which are mostly acquired within the first week of hospitalization post-TBI. Yet the potential chronic impact of such acute infections following pediatric TBI remains unclear. In this study, we hypothesized that a peripheral immune challenge, such as lipopolysaccharide (LPS)-mimicking a hospital-acquired infection-would worsen inflammatory, neurobehavioral, and seizure outcomes after experimental pediatric TBI. To test this, three-week old male C57Bl/6J mice received a moderate controlled cortical impact or sham surgery, followed by 1 mg/kg i.p. LPS (or 0.9% saline vehicle) at 4 days TBI. Mice were randomized to four groups; sham-saline, sham-LPS, TBI-saline or TBI-LPS (n = 15/group). Reduced general activity and increased anxiety-like behavior were observed within 24 h in LPS-treated mice, indicating a transient sickness response. LPS-treated mice also exhibited a reduction in body weights, which persisted chronically. From 2 months post-injury, mice underwent a battery of tests for sensorimotor, cognitive, and psychosocial behaviors. TBI resulted in hyperactivity and spatial memory deficits, independent of LPS; whereas LPS resulted in subtle deficits in spatial memory retention. At 5 months post-injury, video-electroencephalographic recordings were obtained to evaluate both spontaneous seizure activity as well as the evoked seizure response to pentylenetetrazol (PTZ). TBI increased susceptibility to PTZ-evoked seizures; whereas LPS appeared to increase the incidence of spontaneous seizures. Post-mortem analyses found that TBI, but not LPS, resulted in robust glial reactivity and loss of cortical volume. A TBI × LPS interaction in hippocampal volume suggested that TBI-LPS mice had a subtle increase in ipsilateral hippocampus tissue loss; however, this was not reflected in neuronal cell counts. Both TBI and LPS independently had modest effects on chronic hippocampal gene expression. Together, contrary to our hypothesis, we observed minimal synergy between TBI and LPS. Instead, pediatric TBI and a subsequent transient immune challenge independently influenced chronic outcomes. These findings have implications for future preclinical modeling as well as acute post-injury patient management.


Subject(s)
Brain Injuries, Traumatic , Cognition Disorders , Animals , Male , Mice , Brain Injuries, Traumatic/metabolism , Cognition Disorders/complications , Disease Models, Animal , Mice, Inbred C57BL , Seizures/etiology , Spatial Memory
5.
Epilepsia ; 63(11): 2802-2812, 2022 11.
Article in English | MEDLINE | ID: mdl-35996866

ABSTRACT

Posttraumatic epilepsy (PTE) is a well-known chronic complication following traumatic brain injury (TBI). Despite some evidence that age at the time of injury may influence the likelihood of PTE, the incidence of PTE in pediatric populations remains unclear. We therefore conducted a systematic review to determine the overall reported incidence of PTE, and explore potential risk factors associated with PTE after pediatric TBI. A comprehensive literature search of the PubMed, Embase, and Web of Science databases was conducted, including randomized controlled trials and cohort studies assessing the incidence of PTE in TBI pediatric patients. We excluded studies with a sample size of <10 patients and those in which a pediatric cohort was not clearly discernable. The review was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We found that the overall incidence of PTE following pediatric TBI was 10% (95% confidence interval [CI] = 5.9%-15%). Subgroup analysis of a small number of studies demonstrated that the occurrence of early seizures (cumulative incidence ratio [CIR] = 7.28, 95% CI = 1.09-48.4, p = .040), severe TBI (CIR = 1.81, 95% CI = 1.23-2.67, p < .001), and intracranial hemorrhage (CIR = 1.60, 95% CI = 1.06-2.40, p = .024) increased the risk of PTE in this population. Other factors, including male sex and neurosurgical intervention, were nonsignificantly associated with a higher incidence of PTE. In conclusion, PTE is a significant chronic complication following childhood TBI, similar to in the adult population. Further standardized investigation into clinical risk factors and management guidelines is warranted. PROSPERO ID# CRD42021245802.


Subject(s)
Brain Injuries, Traumatic , Epilepsy, Post-Traumatic , Adult , Humans , Child , Male , Incidence , Epilepsy, Post-Traumatic/etiology , Epilepsy, Post-Traumatic/complications , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/epidemiology , Risk Factors , Cohort Studies
6.
J Neuroinflammation ; 18(1): 276, 2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34838047

ABSTRACT

Microglia are integral mediators of innate immunity within the mammalian central nervous system. Typical microglial responses are transient, intending to restore homeostasis by orchestrating the removal of pathogens and debris and the regeneration of damaged neurons. However, prolonged and persistent microglial activation can drive chronic neuroinflammation and is associated with neurodegenerative disease. Recent evidence has revealed that abnormalities in microglial signaling pathways involving phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT) may contribute to altered microglial activity and exacerbated neuroimmune responses. In this scoping review, the known and suspected roles of PI3K-AKT signaling in microglia, both during health and pathological states, will be examined, and the key microglial receptors that induce PI3K-AKT signaling in microglia will be described. Since aberrant signaling is correlated with neurodegenerative disease onset, the relationship between maladapted PI3K-AKT signaling and the development of neurodegenerative disease will also be explored. Finally, studies in which microglial PI3K-AKT signaling has been modulated will be highlighted, as this may prove to be a promising therapeutic approach for the future treatment of a range of neuroinflammatory conditions.


Subject(s)
Brain/metabolism , Microglia/metabolism , Neuroinflammatory Diseases/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Signal Transduction/physiology , Animals , Humans
7.
J Neuroinflammation ; 18(1): 72, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33731173

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a major cause of disability in young children, yet the factors contributing to poor outcomes in this population are not well understood. TBI patients are highly susceptible to nosocomial infections, which are mostly acquired within the first week of hospitalization, and such infections may modify TBI pathobiology and recovery. In this study, we hypothesized that a peripheral immune challenge such as lipopolysaccharide (LPS)-mimicking a hospital-acquired infection-would worsen outcomes after experimental pediatric TBI, by perpetuating the inflammatory immune response. METHODS: Three-week-old male mice received either a moderate controlled cortical impact or sham surgery, followed by a single LPS dose (1 mg/kg i.p.) or vehicle (0.9% saline) at 4 days post-surgery, then analysis at 5 or 8 days post-injury (i.e., 1 or 4 days post-LPS). RESULTS: LPS-treated mice exhibited a time-dependent reduction in general activity and social investigation, and increased anxiety, alongside substantial body weight loss, indicating transient sickness behaviors. Spleen-to-body weight ratios were also increased in LPS-treated mice, indicative of persistent activation of adaptive immunity at 4 days post-LPS. TBI + LPS mice showed an impaired trajectory of weight gain post-LPS, reflecting a synergistic effect of TBI and the LPS-induced immune challenge. Flow cytometry analysis demonstrated innate immune cell activation in blood, brain, and spleen post-LPS; however, this was not potentiated by TBI. Cytokine protein levels in serum, and gene expression levels in the brain, were altered in response to LPS but not TBI across the time course. Immunofluorescence analysis of brain sections revealed increased glia reactivity due to injury, but no additive effect of LPS was observed. CONCLUSIONS: Together, we found that a transient, infection-like systemic challenge had widespread effects on the brain and immune system, but these were not synergistic with prior TBI in pediatric mice. These findings provide novel insight into the potential influence of a secondary immune challenge to the injured pediatric brain, with future studies needed to elucidate the chronic effects of this two-hit insult.


Subject(s)
Brain Injuries, Traumatic/immunology , Brain Injuries, Traumatic/pathology , Cross Infection/immunology , Encephalitis/immunology , Encephalitis/pathology , Adaptive Immunity/immunology , Animals , Anxiety/etiology , Anxiety/psychology , Behavior, Animal , Brain Injuries, Traumatic/psychology , Cerebral Cortex/pathology , Disease Models, Animal , Encephalitis/psychology , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Motor Activity , Social Behavior , Weight Loss
8.
J Neuroinflammation ; 17(1): 222, 2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32711529

ABSTRACT

Traumatic brain injury (TBI) is one of the leading causes of morbidity and mortality worldwide; however, treatment development is hindered by the heterogenous nature of TBI presentation and pathophysiology. In particular, the degree of neuroinflammation after TBI varies between individuals and may be modified by other factors such as infection. Toxoplasma gondii, a parasite that infects approximately one-third of the world's population, has a tropism for brain tissue and can persist as a life-long infection. Importantly, there is notable overlap in the pathophysiology between TBI and T. gondii infection, including neuroinflammation. This paper will review current understandings of the clinical problems, pathophysiological mechanisms, and functional outcomes of TBI and T. gondii, before considering the potential synergy between the two conditions. In particular, the discussion will focus on neuroinflammatory processes such as microglial activation, inflammatory cytokines, and peripheral immune cell recruitment that occur during T. gondii infection and after TBI. We will present the notion that these overlapping pathologies in TBI individuals with a chronic T. gondii infection have the strong potential to exacerbate neuroinflammation and related brain damage, leading to amplified functional deficits. The impact of chronic T. gondii infection on TBI should therefore be investigated in both preclinical and clinical studies as the possible interplay could influence treatment strategies.


Subject(s)
Brain Injuries, Traumatic/microbiology , Brain Injuries, Traumatic/pathology , Brain Injuries, Traumatic/physiopathology , Toxoplasmosis/complications , Toxoplasmosis/pathology , Animals , Brain/microbiology , Brain/pathology , Cats , Humans , Inflammation , Toxoplasma
9.
J Neurochem ; 151(5): 542-557, 2019 12.
Article in English | MEDLINE | ID: mdl-30644560

ABSTRACT

Epilepsy is a serious neurological condition exhibiting complex pathology and deserving of more serious attention. More than 30% of people with epilepsy are not responsive to more than 20 anti-epileptic drugs currently available, reflecting an unmet clinical need for novel therapeutic strategies. Not much is known about the pathogenesis of epilepsy, but evidence indicates that neuroinflammation might contribute to the onset and progression of epilepsy following acquired brain insults. However, the molecular mechanisms underlying these pathophysiological processes are yet to be fully understood. The emerging research suggests that high-mobility group box protein 1 (HMGB1), a DNA-binding protein that is both actively secreted by inflammatory cells and released by necrotic cells, might contribute to the pathogenesis of epilepsy. HMGB1 as an initiator and amplifier of neuroinflammation, and its activation is implicated in the propagation of seizures in animal models. The current review will highlight the potential role of HMGB1 in the pathogenesis of epilepsy, and implications of HMGB1-targeted therapies against epilepsy. HMGB1 in this context is an emerging concept deserving further exploration. Increased understanding of HMGB1 in seizures and epilepsy will pave the way in designing novel and innovative therapeutic strategies that could modify the disease course or prevent its development.


Subject(s)
Epilepsy/metabolism , HMGB1 Protein/metabolism , Animals , Humans
10.
Neurobiol Dis ; 123: 27-41, 2019 03.
Article in English | MEDLINE | ID: mdl-30059725

ABSTRACT

Survivors of traumatic brain injury (TBI) often develop chronic neurological, neurocognitive, psychological, and psychosocial deficits that can have a profound impact on an individual's wellbeing and quality of life. TBI is also a common cause of acquired epilepsy, which is itself associated with significant behavioral morbidity. This review considers the clinical and preclinical evidence that post-traumatic epilepsy (PTE) acts as a 'second-hit' insult to worsen chronic behavioral outcomes for brain-injured patients, across the domains of emotional, cognitive, and psychosocial functioning. Surprisingly, few well-designed studies have specifically examined the relationship between seizures and behavioral outcomes after TBI. The complex mechanisms underlying these comorbidities remain incompletely understood, although many of the biological processes that precipitate seizure occurrence and epileptogenesis may also contribute to the development of chronic behavioral deficits. Further, the relationship between PTE and behavioral dysfunction is increasingly recognized to be a bidirectional one, whereby premorbid conditions are a risk factor for PTE. Clinical studies in this arena are often challenged by the confounding effects of anti-seizure medications, while preclinical studies have rarely examined an adequately extended time course to fully capture the time course of epilepsy development after a TBI. To drive the field forward towards improved treatment strategies, it is imperative that both seizures and neurobehavioral outcomes are assessed in parallel after TBI, both in patient populations and preclinical models.


Subject(s)
Affect , Brain Injuries, Traumatic/psychology , Epilepsy, Post-Traumatic/psychology , Mental Disorders/psychology , Neurocognitive Disorders/psychology , Animals , Brain Injuries, Traumatic/complications , Epilepsy, Post-Traumatic/complications , Humans , Mental Disorders/etiology , Neurocognitive Disorders/etiology , Risk Factors , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL