Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Cell ; 185(4): 614-629.e21, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35148840

ABSTRACT

Activation of the innate immune system via pattern recognition receptors (PRRs) is key to generate lasting adaptive immunity. PRRs detect unique chemical patterns associated with invading microorganisms, but whether and how the physical properties of PRR ligands influence the development of the immune response remains unknown. Through the study of fungal mannans, we show that the physical form of PRR ligands dictates the immune response. Soluble mannans are immunosilent in the periphery but elicit a potent pro-inflammatory response in the draining lymph node (dLN). By modulating the physical form of mannans, we developed a formulation that targets both the periphery and the dLN. When combined with viral glycoprotein antigens, this mannan formulation broadens epitope recognition, elicits potent antigen-specific neutralizing antibodies, and confers protection against viral infections of the lung. Thus, the physical properties of microbial ligands determine the outcome of the immune response and can be harnessed for vaccine development.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antigens, Viral/immunology , Candida albicans/chemistry , Mannans/immunology , Aluminum Hydroxide/chemistry , Animals , Antibodies, Neutralizing/immunology , Antibody Specificity/immunology , B-Lymphocytes/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Chlorocebus aethiops , Epitopes/immunology , Immunity, Innate , Immunization , Inflammation/pathology , Interferons/metabolism , Lectins, C-Type/metabolism , Ligands , Lung/immunology , Lung/pathology , Lung/virology , Lymph Nodes/immunology , Lymph Nodes/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Paranasal Sinuses/metabolism , Protein Subunits/metabolism , Sialic Acid Binding Ig-like Lectin 1/metabolism , Solubility , Spike Glycoprotein, Coronavirus/metabolism , T-Lymphocytes/immunology , Transcription Factor RelB/metabolism , Vero Cells , beta-Glucans/metabolism
2.
Cell ; 183(5): 1219-1233.e18, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33242418

ABSTRACT

Cancer therapies kill tumors either directly or indirectly by evoking immune responses and have been combined with varying levels of success. Here, we describe a paradigm to control cancer growth that is based on both direct tumor killing and the triggering of protective immunity. Genetic ablation of serine protease inhibitor SerpinB9 (Sb9) results in the death of tumor cells in a granzyme B (GrB)-dependent manner. Sb9-deficient mice exhibited protective T cell-based host immunity to tumors in association with a decline in GrB-expressing immunosuppressive cells within the tumor microenvironment (TME). Maximal protection against tumor development was observed when the tumor and host were deficient in Sb9. The therapeutic utility of Sb9 inhibition was demonstrated by the control of tumor growth, resulting in increased survival times in mice. Our studies describe a molecular target that permits a combination of tumor ablation, interference within the TME, and immunotherapy in one potential modality.


Subject(s)
Cytotoxicity, Immunologic , Immunotherapy , Membrane Proteins/metabolism , Neoplasms/immunology , Neoplasms/therapy , Serpins/metabolism , Animals , Apoptosis/drug effects , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Line, Tumor , Cell Proliferation/drug effects , Cytotoxicity, Immunologic/drug effects , Disease Progression , Female , Gene Deletion , Granzymes/metabolism , Immunity/drug effects , Melanoma/pathology , Mice, Inbred C57BL , Neoplasms/prevention & control , Small Molecule Libraries/pharmacology , Stromal Cells/drug effects , Stromal Cells/pathology , Tumor Microenvironment/drug effects
3.
Cell ; 179(6): 1342-1356.e23, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31759698

ABSTRACT

Mammalian switch/sucrose non-fermentable (mSWI/SNF) complexes are multi-component machines that remodel chromatin architecture. Dissection of the subunit- and domain-specific contributions to complex activities is needed to advance mechanistic understanding. Here, we examine the molecular, structural, and genome-wide regulatory consequences of recurrent, single-residue mutations in the putative coiled-coil C-terminal domain (CTD) of the SMARCB1 (BAF47) subunit, which cause the intellectual disability disorder Coffin-Siris syndrome (CSS), and are recurrently found in cancers. We find that the SMARCB1 CTD contains a basic α helix that binds directly to the nucleosome acidic patch and that all CSS-associated mutations disrupt this binding. Furthermore, these mutations abrogate mSWI/SNF-mediated nucleosome remodeling activity and enhancer DNA accessibility without changes in genome-wide complex localization. Finally, heterozygous CSS-associated SMARCB1 mutations result in dominant gene regulatory and morphologic changes during iPSC-neuronal differentiation. These studies unmask an evolutionarily conserved structural role for the SMARCB1 CTD that is perturbed in human disease.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromosomal Proteins, Non-Histone/metabolism , Mutation/genetics , Nucleosomes/metabolism , SMARCB1 Protein/genetics , Transcription Factors/metabolism , Amino Acid Sequence , Enhancer Elements, Genetic/genetics , Female , Genome, Human , HEK293 Cells , HeLa Cells , Heterozygote , Humans , Male , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Protein Binding , Protein Domains , SMARCB1 Protein/chemistry , SMARCB1 Protein/metabolism
4.
Mol Cell ; 83(11): 1903-1920.e12, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37267907

ABSTRACT

Exercise benefits the human body in many ways. Irisin is secreted by muscle, increased with exercise, and conveys physiological benefits, including improved cognition and resistance to neurodegeneration. Irisin acts via αV integrins; however, a mechanistic understanding of how small polypeptides like irisin can signal through integrins is poorly understood. Using mass spectrometry and cryo-EM, we demonstrate that the extracellular heat shock protein 90α (eHsp90α) is secreted by muscle with exercise and activates integrin αVß5. This allows for high-affinity irisin binding and signaling through an Hsp90α/αV/ß5 complex. By including hydrogen/deuterium exchange data, we generate and experimentally validate a 2.98 Å RMSD irisin/αVß5 complex docking model. Irisin binds very tightly to an alternative interface on αVß5 distinct from that used by known ligands. These data elucidate a non-canonical mechanism by which a small polypeptide hormone like irisin can function through an integrin receptor.


Subject(s)
Cell Communication , Fibronectins , Humans , Fibronectins/metabolism , Signal Transduction
5.
Mol Cell ; 82(5): 950-968.e14, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35202574

ABSTRACT

A unifying feature of the RAS superfamily is a conserved GTPase cycle by which these proteins transition between active and inactive states. We demonstrate that autophosphorylation of some GTPases is an intrinsic regulatory mechanism that reduces nucleotide hydrolysis and enhances nucleotide exchange, altering the on/off switch that forms the basis for their signaling functions. Using X-ray crystallography, nuclear magnetic resonance spectroscopy, binding assays, and molecular dynamics on autophosphorylated mutants of H-RAS and K-RAS, we show that phosphoryl transfer from GTP requires dynamic movement of the switch II region and that autophosphorylation promotes nucleotide exchange by opening the active site and extracting the stabilizing Mg2+. Finally, we demonstrate that autophosphorylated K-RAS exhibits altered effector interactions, including a reduced affinity for RAF proteins in mammalian cells. Thus, autophosphorylation leads to altered active site dynamics and effector interaction properties, creating a pool of GTPases that are functionally distinct from their non-phosphorylated counterparts.


Subject(s)
GTP Phosphohydrolases , Signal Transduction , Animals , Crystallography, X-Ray , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Guanosine Triphosphate/metabolism , Mammals/metabolism , Nucleotides , Proteins
6.
Nature ; 616(7958): 790-797, 2023 04.
Article in English | MEDLINE | ID: mdl-36921622

ABSTRACT

Lactate is abundant in rapidly dividing cells owing to the requirement for elevated glucose catabolism to support proliferation1-6. However, it is not known whether accumulated lactate affects the proliferative state. Here we use a systematic approach to determine lactate-dependent regulation of proteins across the human proteome. From these data, we identify a mechanism of cell cycle regulation whereby accumulated lactate remodels the anaphase promoting complex (APC/C). Remodelling of APC/C in this way is caused by direct inhibition of the SUMO protease SENP1 by lactate. We find that accumulated lactate binds and inhibits SENP1 by forming a complex with zinc in the SENP1 active site. SENP1 inhibition by lactate stabilizes SUMOylation of two residues on APC4, which drives UBE2C binding to APC/C. This direct regulation of APC/C by lactate stimulates timed degradation of cell cycle proteins, and efficient mitotic exit in proliferative human cells. This mechanism is initiated upon mitotic entry when lactate abundance reaches its apex. In this way, accumulation of lactate communicates the consequences of a nutrient-replete growth phase to stimulate timed opening of APC/C, cell division and proliferation. Conversely, persistent accumulation of lactate drives aberrant APC/C remodelling and can overcome anti-mitotic pharmacology via mitotic slippage. In sum, we define a biochemical mechanism through which lactate directly regulates protein function to control the cell cycle and proliferation.


Subject(s)
Anaphase-Promoting Complex-Cyclosome , Cell Cycle Proteins , Cell Cycle , Lactic Acid , Humans , Anaphase , Anaphase-Promoting Complex-Cyclosome/metabolism , Cell Cycle Proteins/metabolism , Lactic Acid/metabolism , Mitosis
7.
Nat Chem Biol ; 19(7): 815-824, 2023 07.
Article in English | MEDLINE | ID: mdl-36823351

ABSTRACT

Creatine kinases (CKs) provide local ATP production in periods of elevated energetic demand, such as during rapid anabolism and growth. Thus, creatine energetics has emerged as a major metabolic liability in many rapidly proliferating cancers. Whether CKs can be targeted therapeutically is unknown because no potent or selective CK inhibitors have been developed. Here we leverage an active site cysteine present in all CK isoforms to develop a selective covalent inhibitor of creatine phosphagen energetics, CKi. Using deep chemoproteomics, we discover that CKi selectively engages the active site cysteine of CKs in cells. A co-crystal structure of CKi with creatine kinase B indicates active site inhibition that prevents bidirectional phosphotransfer. In cells, CKi and its analogs rapidly and selectively deplete creatine phosphate, and drive toxicity selectively in CK-dependent acute myeloid leukemia. Finally, we use CKi to uncover an essential role for CKs in the regulation of proinflammatory cytokine production in macrophages.


Subject(s)
Creatine Kinase , Creatine , Creatine Kinase/chemistry , Creatine Kinase/metabolism , Creatine/pharmacology , Cysteine , Phosphotransferases , Protein Isoforms
8.
J Allergy Clin Immunol ; 152(5): 1107-1120.e6, 2023 11.
Article in English | MEDLINE | ID: mdl-37595760

ABSTRACT

BACKGROUND: Obesity and type 2 diabetes mellitus (T2DM) are associated with an increased risk of severe outcomes from infectious diseases, including coronavirus disease 2019. These conditions are also associated with distinct responses to immunization, including an impaired response to widely used severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccines. OBJECTIVE: We sought to establish a connection between reduced immunization efficacy via modeling the effects of metabolic diseases on vaccine immunogenicity that is essential for the development of more effective vaccines for this distinct vulnerable population. METHODS: A murine model of diet-induced obesity and insulin resistance was used to model the effects of comorbid T2DM and obesity on vaccine immunogenicity and protection. RESULTS: Mice fed a high-fat diet (HFD) developed obesity, hyperinsulinemia, and glucose intolerance. Relative to mice fed a normal diet, HFD mice vaccinated with a SARS-CoV-2 mRNA vaccine exhibited significantly lower anti-spike IgG titers, predominantly in the IgG2c subclass, associated with a lower type 1 response, along with a 3.83-fold decrease in neutralizing titers. Furthermore, enhanced vaccine-induced spike-specific CD8+ T-cell activation and protection from lung infection against SARS-CoV-2 challenge were seen only in mice fed a normal diet but not in HFD mice. CONCLUSIONS: The study demonstrated impaired immunity following SARS-CoV-2 mRNA immunization in a murine model of comorbid T2DM and obesity, supporting the need for further research into the basis for impaired anti-SARS-CoV-2 immunity in T2DM and investigation of novel approaches to enhance vaccine immunogenicity among those with metabolic diseases.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Insulin Resistance , Viral Vaccines , Animals , Humans , Mice , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Disease Models, Animal , Immunogenicity, Vaccine , Diet , Obesity , RNA, Messenger , Antibodies, Viral , Antibodies, Neutralizing
9.
Nat Chem Biol ; 17(9): 954-963, 2021 09.
Article in English | MEDLINE | ID: mdl-33972797

ABSTRACT

The peptidyl-prolyl isomerase, Pin1, is exploited in cancer to activate oncogenes and inactivate tumor suppressors. However, despite considerable efforts, Pin1 has remained an elusive drug target. Here, we screened an electrophilic fragment library to identify covalent inhibitors targeting Pin1's active site Cys113, leading to the development of Sulfopin, a nanomolar Pin1 inhibitor. Sulfopin is highly selective, as validated by two independent chemoproteomics methods, achieves potent cellular and in vivo target engagement and phenocopies Pin1 genetic knockout. Pin1 inhibition had only a modest effect on cancer cell line viability. Nevertheless, Sulfopin induced downregulation of c-Myc target genes, reduced tumor progression and conferred survival benefit in murine and zebrafish models of MYCN-driven neuroblastoma, and in a murine model of pancreatic cancer. Our results demonstrate that Sulfopin is a chemical probe suitable for assessment of Pin1-dependent pharmacology in cells and in vivo, and that Pin1 warrants further investigation as a potential cancer drug target.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors , Proto-Oncogene Proteins c-myc/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Proto-Oncogene Proteins c-myc/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
10.
Nature ; 543(7644): 270-274, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28241139

ABSTRACT

Recurrent chromosomal translocations producing a chimaeric MLL oncogene give rise to a highly aggressive acute leukaemia associated with poor clinical outcome. The preferential involvement of chromatin-associated factors as MLL fusion partners belies a dependency on transcription control. Despite recent progress made in targeting chromatin regulators in cancer, available therapies for this well-characterized disease remain inadequate, prompting the need to identify new targets for therapeutic intervention. Here, using unbiased CRISPR-Cas9 technology to perform a genome-scale loss-of-function screen in an MLL-AF4-positive acute leukaemia cell line, we identify ENL as an unrecognized gene that is specifically required for proliferation in vitro and in vivo. To explain the mechanistic role of ENL in leukaemia pathogenesis and dynamic transcription control, a chemical genetic strategy was developed to achieve targeted protein degradation. Acute loss of ENL suppressed the initiation and elongation of RNA polymerase II at active genes genome-wide, with pronounced effects at genes featuring a disproportionate ENL load. Notably, an intact YEATS chromatin-reader domain was essential for ENL-dependent leukaemic growth. Overall, these findings identify a dependency factor in acute leukaemia and suggest a mechanistic rationale for disrupting the YEATS domain in disease.


Subject(s)
Gene Expression Regulation, Neoplastic , Leukemia/genetics , Leukemia/metabolism , Protein Domains , Transcription, Genetic , Transcriptional Elongation Factors/chemistry , Transcriptional Elongation Factors/metabolism , Animals , CRISPR-Cas Systems , Cell Line, Tumor , Cell Proliferation , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Epigenesis, Genetic , Gene Editing , Genome/genetics , Histone-Lysine N-Methyltransferase/metabolism , Humans , Leukemia/pathology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Myeloid-Lymphoid Leukemia Protein/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Proteolysis , RNA Polymerase II/metabolism , Transcription Elongation, Genetic , Transcription Factors/chemistry , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptional Elongation Factors/genetics
11.
Nat Chem Biol ; 16(9): 979-987, 2020 09.
Article in English | MEDLINE | ID: mdl-32483379

ABSTRACT

Peptidyl-prolyl cis/trans isomerase NIMA-interacting 1 (Pin1) is commonly overexpressed in human cancers, including pancreatic ductal adenocarcinoma (PDAC). While Pin1 is dispensable for viability in mice, it is required for activated Ras to induce tumorigenesis, suggesting a role for Pin1 inhibitors in Ras-driven tumors, such as PDAC. We report the development of rationally designed peptide inhibitors that covalently target Cys113, a highly conserved cysteine located in the Pin1 active site. The inhibitors were iteratively optimized for potency, selectivity and cell permeability to give BJP-06-005-3, a versatile tool compound with which to probe Pin1 biology and interrogate its role in cancer. In parallel to inhibitor development, we employed genetic and chemical-genetic strategies to assess the consequences of Pin1 loss in human PDAC cell lines. We demonstrate that Pin1 cooperates with mutant KRAS to promote transformation in PDAC, and that Pin1 inhibition impairs cell viability over time in PDAC cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , NIMA-Interacting Peptidylprolyl Isomerase/antagonists & inhibitors , NIMA-Interacting Peptidylprolyl Isomerase/metabolism , Animals , Antineoplastic Agents/chemistry , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cell Transformation, Neoplastic/genetics , Crystallography, X-Ray , Cysteine/metabolism , Drug Design , Enzyme Inhibitors/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Mice , NIH 3T3 Cells , NIMA-Interacting Peptidylprolyl Isomerase/chemistry , NIMA-Interacting Peptidylprolyl Isomerase/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Protein Conformation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
12.
Nat Chem Biol ; 14(4): 405-412, 2018 04.
Article in English | MEDLINE | ID: mdl-29507391

ABSTRACT

The addressable pocket of a protein is often not functionally relevant in disease. This is true for the multidomain, bromodomain-containing transcriptional regulator TRIM24. TRIM24 has been posited as a dependency in numerous cancers, yet potent and selective ligands for the TRIM24 bromodomain do not exert effective anti-proliferative responses. We therefore repositioned these probes as targeting features for heterobifunctional protein degraders. Recruitment of the VHL E3 ubiquitin ligase by dTRIM24 elicits potent and selective degradation of TRIM24. Using dTRIM24 to probe TRIM24 function, we characterize the dynamic genome-wide consequences of TRIM24 loss on chromatin localization and gene control. Further, we identify TRIM24 as a novel dependency in acute leukemia. Pairwise study of TRIM24 degradation versus bromodomain inhibition reveals enhanced anti-proliferative response from degradation. We offer dTRIM24 as a chemical probe of an emerging cancer dependency, and establish a path forward for numerous selective yet ineffectual ligands for proteins of therapeutic interest.


Subject(s)
Carrier Proteins/chemistry , 3T3 Cells , Animals , Cell Line, Tumor , Cell Proliferation , Crystallography, X-Ray , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Leukemia, Myeloid, Acute/metabolism , Ligands , MCF-7 Cells , Mice , Mutagenesis , Nuclear Proteins/chemistry , Proteasome Endopeptidase Complex/chemistry , Protein Binding , Protein Domains , RNA, Small Interfering/metabolism , Transcription Factors/chemistry
13.
Blood ; 129(10): 1308-1319, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28082445

ABSTRACT

p53-related protein kinase (TP53RK, also known as PRPK) is an upstream kinase that phosphorylates (serine residue Ser15) and mediates p53 activity. Here we show that TP53RK confers poor prognosis in multiple myeloma (MM) patients, and, conversely, that TP53RK knockdown inhibits p53 phosphorylation and triggers MM cell apoptosis, associated with downregulation of c-Myc and E2F-1-mediated upregulation of pro-apoptotic Bim. We further demonstrate that TP53RK downregulation also triggers growth inhibition in p53-deficient and p53-mutant MM cell lines and identify novel downstream targets of TP53RK including ribonucleotide reductase-1, telomerase reverse transcriptase, and cyclin-dependent kinase inhibitor 2C. Our previous studies showed that immunomodulatory drugs (IMiDs) downregulate p21 and trigger apoptosis in wild-type-p53 MM.1S cells, Importantly, we demonstrate by pull-down, nuclear magnetic resonance spectroscopy, differential scanning fluorimetry, and isothermal titration calorimetry that IMiDs bind and inhibit TP53RK, with biologic sequelae similar to TP53RK knockdown. Our studies therefore demonstrate that either genetic or pharmacological inhibition of TP53RK triggers MM cell apoptosis via both p53-Myc axis-dependent and axis-independent pathways, validating TP53RK as a novel therapeutic target in patients with poor-prognosis MM.


Subject(s)
Intracellular Signaling Peptides and Proteins/metabolism , Multiple Myeloma/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/immunology , Apoptosis/physiology , Blotting, Western , Gene Knockdown Techniques , Humans , Immunologic Factors/pharmacology , Multiple Myeloma/mortality , Multiple Myeloma/pathology , Prognosis , Signal Transduction/drug effects
14.
Nat Chem Biol ; 13(12): 1207-1215, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28967922

ABSTRACT

Oncogenic forms of the kinase FLT3 are important therapeutic targets in acute myeloid leukemia (AML); however, clinical responses to small-molecule kinase inhibitors are short-lived as a result of the rapid emergence of resistance due to point mutations or compensatory increases in FLT3 expression. We sought to develop a complementary pharmacological approach whereby proteasome-mediated FLT3 degradation could be promoted by inhibitors of the deubiquitinating enzymes (DUBs) responsible for cleaving ubiquitin from FLT3. Because the relevant DUBs for FLT3 are not known, we assembled a focused library of most reported small-molecule DUB inhibitors and carried out a cellular phenotypic screen to identify compounds that could induce the degradation of oncogenic FLT3. Subsequent target deconvolution efforts allowed us to identify USP10 as the critical DUB required to stabilize FLT3. Targeting of USP10 showed efficacy in preclinical models of mutant-FLT3 AML, including cell lines, primary patient specimens and mouse models of oncogenic-FLT3-driven leukemia.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/pharmacology , Small Molecule Libraries/pharmacology , Thiophenes/pharmacology , Ubiquitin Thiolesterase/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/metabolism , Animals , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Molecular Structure , Mutation , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemistry , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Thiophenes/chemistry , Tumor Cells, Cultured , Ubiquitin/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism , fms-Like Tyrosine Kinase 3/genetics
15.
Nat Chem Biol ; 12(12): 1089-1096, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27775715

ABSTRACT

Cellular signaling is often propagated by multivalent interactions. Multivalency creates avidity, allowing stable biophysical recognition. Multivalency is an attractive strategy for achieving potent binding to protein targets, as the affinity of bivalent ligands is often greater than the sum of monovalent affinities. The bromodomain and extraterminal domain (BET) family of transcriptional coactivators features tandem bromodomains through which BET proteins bind acetylated histones and transcription factors. All reported antagonists of the BET protein BRD4 bind in a monovalent fashion. Here we describe, to our knowledge for the first time, a bivalent BET bromodomain inhibitor-MT1-which has unprecedented potency. Biophysical and biochemical studies suggest MT1 is an intramolecular bivalent BRD4 binder that is more than 100-fold more potent, in cellular assays, than the corresponding monovalent antagonist, JQ1. MT1 significantly (P < 0.05) delayed leukemia progression in mice, as compared to JQ1. These data qualify a powerful chemical probe for BET bromodomains and a rationale for further development of multidomain inhibitors of epigenetic reader proteins.


Subject(s)
Antineoplastic Agents/pharmacology , Azepines/pharmacology , Drug Design , Leukemia/drug therapy , Nuclear Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Transcription Factors/antagonists & inhibitors , Triazoles/pharmacology , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Azepines/administration & dosage , Azepines/chemistry , Cell Cycle Proteins , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Leukemia/pathology , Ligands , Mice , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Nuclear Proteins/metabolism , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Transcription Factors/metabolism , Triazoles/administration & dosage , Triazoles/chemistry
16.
Proc Natl Acad Sci U S A ; 111(25): 9127-32, 2014 Jun 24.
Article in English | MEDLINE | ID: mdl-24927547

ABSTRACT

mRNA export factor 1 (Rae1) and nucleoporin 98 (Nup98) are host cell targets for the matrix (M) protein of vesicular stomatitis virus (VSV). How Rae1 functions in mRNA export and how M protein targets both Rae1 and Nup98 are not understood at the molecular level. To obtain structural insights, we assembled a 1:1:1 complex of M•Rae1•Nup98 and established a crystal structure at 3.15-Å resolution. We found that the M protein contacts the Rae1•Nup98 heterodimer principally by two protrusions projecting from the globular domain of M like a finger and thumb. Both projections clamp to the side of the ß-propeller of Rae1, with the finger also contacting Nup98. The most prominent feature of the finger is highly conserved Methionine 51 (Met51) with upstream and downstream acidic residues. The complementary surface on Rae1 displays a deep hydrophobic pocket, into which Met51 fastens like a bolt, and a groove of basic residues on either side, which bond to the acidic residues of the finger. Notably, the M protein competed for in vitro binding of various oligonucleotides to Rae1•Nup98. We localized this competing activity of M to its finger using a synthetic peptide. Collectively, our data suggest that Rae1 serves as a binding protein for the phosphate backbone of any nucleic acid and that the finger of M mimics this ligand. In the context of mRNA export, we propose that a given mRNA segment, after having been deproteinated by helicase, is transiently reproteinated by Nup98-tethered Rae1. We suggest that such repetitive cycles provide cytoplasmic stopover sites required for ratcheting mRNA across the nuclear pore.


Subject(s)
Multiprotein Complexes/chemistry , Nuclear Matrix-Associated Proteins/chemistry , Nuclear Pore Complex Proteins/chemistry , Nucleocytoplasmic Transport Proteins/chemistry , Vesiculovirus/chemistry , Viral Matrix Proteins/chemistry , Binding Sites , Crystallography, X-Ray , Humans , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Nuclear Matrix-Associated Proteins/genetics , Nuclear Matrix-Associated Proteins/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Nucleocytoplasmic Transport Proteins/genetics , Nucleocytoplasmic Transport Proteins/metabolism , Protein Structure, Quaternary , Vesiculovirus/genetics , Vesiculovirus/metabolism , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism
17.
Angew Chem Int Ed Engl ; 56(21): 5738-5743, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28418626

ABSTRACT

The bromodomain-containing protein BRD9, a subunit of the human BAF (SWI/SNF) nucleosome remodeling complex, has emerged as an attractive therapeutic target in cancer. Despite the development of chemical probes targeting the BRD9 bromodomain, there is a limited understanding of BRD9 function beyond acetyl-lysine recognition. We have therefore created the first BRD9-directed chemical degraders, through iterative design and testing of heterobifunctional ligands that bridge the BRD9 bromodomain and the cereblon E3 ubiquitin ligase complex. Degraders of BRD9 exhibit markedly enhanced potency compared to parental ligands (10- to 100-fold). Parallel study of degraders with divergent BRD9-binding chemotypes in models of acute myeloid leukemia resolves bromodomain polypharmacology in this emerging drug class. Together, these findings reveal the tractability of non-BET bromodomain containing proteins to chemical degradation, and highlight lead compound dBRD9 as a tool for the study of BRD9.


Subject(s)
DNA-Binding Proteins/chemistry , Nuclear Proteins/chemistry , Transcription Factors/chemistry , Drug Delivery Systems , Humans , Ligands , Molecular Structure , Pyrroles/chemistry
18.
Anal Chem ; 88(24): 12248-12254, 2016 12 20.
Article in English | MEDLINE | ID: mdl-28193034

ABSTRACT

The recent approval of covalent inhibitors for multiple clinical indications has reignited enthusiasm for this class of drugs. As interest in covalent drugs has increased, so too has the need for analytical platforms that can leverage their mechanism-of-action to characterize modified protein targets. Here we describe novel gas phase dissociation pathways which yield predictable fragment ions during MS/MS of inhibitor-modified peptides. We find that these dissociation pathways are common to numerous cysteine-directed probes as well as the covalent drugs, Ibrutinib and Neratinib. We leverage the predictable nature of these fragment ions to improve the confidence of peptide sequence assignment in proteomic analyses and explore their potential use in selective mass spectrometry-based assays.


Subject(s)
Peptides/analysis , Protein Kinase Inhibitors/pharmacology , Proteomics/methods , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Quinolines/pharmacology , Tandem Mass Spectrometry/methods , Adenine/analogs & derivatives , Amino Acid Sequence , Cell Line, Tumor , Drug Discovery/methods , Humans , Molecular Targeted Therapy , Peptides/metabolism , Piperidines , Protein Kinases/chemistry , Protein Kinases/metabolism
19.
Mol Cell ; 32(6): 815-26, 2008 Dec 26.
Article in English | MEDLINE | ID: mdl-19111661

ABSTRACT

We recently proposed a cylindrical coat for the nuclear pore membrane in the nuclear pore complex (NPC). This scaffold is generated by multiple copies of seven nucleoporins. Here, we report three crystal structures of the nucleoporin pair Seh1*Nup85, which is part of the coat cylinder. The Seh1*Nup85 assembly bears resemblance in its shape and dimensions to that of another nucleoporin pair, Sec13*Nup145C. Furthermore, the Seh1*Nup85 structures reveal a hinge motion that may facilitate conformational changes in the NPC during import of integral membrane proteins and/or during nucleocytoplasmic transport. We propose that Seh1*Nup85 and Sec13*Nup145C form 16 alternating, vertical rods that are horizontally linked by the three remaining nucleoporins of the coat cylinder. Shared architectural and mechanistic principles with the COPII coat indicate a common evolutionary origin and support the notion that the NPC coat represents another class of membrane coats.


Subject(s)
Nuclear Pore/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Crystallography, X-Ray , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Pliability , Protein Multimerization , Protein Structure, Quaternary , Protein Structure, Secondary , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Solutions , Surface Properties
20.
Proc Natl Acad Sci U S A ; 110(41): 16450-5, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24062435

ABSTRACT

At the center of the nuclear pore complex (NPC) is a uniquely versatile central transport channel. Structural analyses of distinct segments ("protomers") of the three "channel" nucleoporins yielded a model for how this channel is constructed. Its principal feature is a midplane ring that can undergo regulated diameter changes of as much as an estimated 30 nm. To better understand how a family of "adaptor" nucleoporins--concentrically surrounding this channel--might cushion these huge structural changes, we determined the crystal structure of one adaptor nucleoporin, Nup157. Here, we show that a recombinant Saccharomyces cerevisiae Nup157 protomer, representing two-thirds of Nup157 (residues 70-893), folds into a seven-bladed ß-propeller followed by an α-helical domain, which together form a C-shaped architecture. Notably, the structure contains a large patch of positively charged residues, most of which are evolutionarily conserved. Consistent with this surface feature, we found that Nup157(70-893) binds to nucleic acids, although in a sequence-independent manner. Nevertheless, this interaction supports a previously reported role of Nup157, and its paralogue Nup170, in chromatin organization. Based on its nucleic acid binding capacity, we propose a dual location and function of Nup157. Finally, modeling the remaining C-terminal portion of Nup157 shows that it projects as a superhelical stack from the compact C-shaped portion of the molecule. The predicted four hinge regions indicate an intrinsic flexibility of Nup157, which could contribute to structural plasticity within the NPC.


Subject(s)
Models, Molecular , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Nucleic Acids/metabolism , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Chromatography, Affinity , Chromatography, Gel , Cloning, Molecular , Crystallization , Escherichia coli , Surface Properties , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL