Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Int J Mol Sci ; 22(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068881

ABSTRACT

Neuroinflammation is a major component of central nervous system (CNS) injuries and neurological diseases, including Alzheimer's disease, multiple sclerosis, neuropathic pain, and brain trauma. The activation of innate immune cells at the damage site causes the release of pro-inflammatory cytokines and chemokines, which alter the functionality of nearby tissues and might mediate the recruitment of leukocytes to the injury site. If this process persists or is exacerbated, it prevents the adequate resolution of the inflammation, and ultimately enhances secondary damage. Adenosine 5' triphosphate (ATP) is among the molecules released that trigger an inflammatory response, and it serves as a chemotactic and endogenous danger signal. Extracellular ATP activates multiple purinergic receptors (P2X and P2Y) that have been shown to promote neuroinflammation in a variety of CNS diseases. Recent studies have shown that Pannexin-1 (Panx1) channels are the principal conduits of ATP release from dying cells and innate immune cells in the brain. Herein, we review the emerging evidence that directly implicates Panx-1 channels in the neuroinflammatory response in the CNS.


Subject(s)
Connexins/metabolism , Inflammation/physiopathology , Nerve Tissue Proteins/metabolism , Nervous System Diseases/physiopathology , Animals , Humans , Inflammation/metabolism , Nervous System Diseases/metabolism
2.
J Neuroinflammation ; 17(1): 245, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32819386

ABSTRACT

BACKGROUND: Neuroinflammation is a major component of secondary damage after traumatic brain injury (TBI). We recently reported that pharmacological inhibition of Pannexin-1 (Panx1) channels markedly reduced the inflammatory response after TBI. Panx1 channels have been shown to be important conduits for adenosine 5'-triphosphate (ATP) release and are associated with leukocyte infiltration and pyroptosis. Because Panx1 blockers significantly decrease ATP release and migration of activated microglia and other myeloid cells (such as monocyte-derived macrophages and dendritic cells) in vitro, we hypothesized that myeloid Panx1 channels play a specific role in immune cell infiltration promoting tissue damage following TBI. METHODS: The murine-controlled cortical impact (CCI) model was used on myeloid-specific Panx1 conditional knockout (Cx3cr1-Cre::Panx1fl/fl) mice to determine whether myeloid Panx1 mediates neuroinflammation and brain damage. Immune cell infiltration was measured using flow cytometry. Locomotor and memory functions were measured using the rotarod and Barnes maze test, respectively. The levels of biomarkers for tissue damage and blood-brain barrier leakage were measured using western blot and magnetic resonance imaging. Panx1 channel activity was measured with ex vivo dye uptake assays, using flow cytometry and confocal microscopy. RESULTS: CCI-injured Cx3cr1-Cre::Panx1fl/fl mice showed markedly reduced immune cell infiltration to the brain parenchyma compared with Panx1fl/fl mice. As expected, Panx1 dependent activity, assessed by dye uptake, was markedly reduced only in myeloid cells from Cx3cr1-Cre::Panx1fl/fl mice. The expression of biomarkers of tissue damage was significantly reduced in the CCI-injured Cx3cr1-Cre::Panx1fl/fl mice compared with Panx1fl/fl mice. In line with this, magnetic resonance imaging showed reduced blood-brain barrier leakage in CCI-injured Cx3cr1-Cre::Panx1fl/fl mice. There was also a significant improvement in motor and memory function in Cx3cr1-Cre::Panx1fl/fl mice when compared with Panx1fl/fl mice within a week post-CCI injury. CONCLUSION: Our data demonstrate that CCI-related outcomes correlate with Panx1 channel function in myeloid cells, indicating that activation of Panx1 channels in myeloid cells is a major contributor to acute brain inflammation following TBI. Importantly, our data indicate myeloid Panx1 channels could serve as an effective therapeutic target to improve outcome after TBI.


Subject(s)
Brain Injuries, Traumatic/metabolism , Brain/metabolism , Connexins/metabolism , Leukocytes/metabolism , Myeloid Cells/metabolism , Nerve Tissue Proteins/metabolism , Animals , Brain Injuries, Traumatic/genetics , Connexins/genetics , Disease Models, Animal , Locomotion/physiology , Maze Learning/physiology , Mice , Mice, Knockout , Nerve Tissue Proteins/genetics , Prognosis , Rotarod Performance Test
3.
J Neuroinflammation ; 15(1): 42, 2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29439712

ABSTRACT

BACKGROUND: Trovafloxacin is a broad-spectrum antibiotic, recently identified as an inhibitor of pannexin-1 (Panx1) channels. Panx1 channels are important conduits for the adenosine triphosphate (ATP) release from live and dying cells that enhances the inflammatory response of immune cells. Elevated extracellular levels ATP released upon injury activate purinergic pathways in inflammatory cells that promote migration, proliferation, phagocytosis, and apoptotic signals. Here, we tested whether trovafloxacin administration attenuates the neuroinflammatory response and improves outcomes after brain trauma. METHODS: The murine controlled cortical impact (CCI) model was used to determine whether in vivo delivery of trovafloxacin has anti-inflammatory and neuroprotective actions after brain trauma. Locomotor deficit was assessed using the rotarod test. Levels of tissue damage markers and inflammation were measured using western blot, qPCR, and immunofluorescence. In vitro assays were used to evaluate whether trovafloxacin blocks ATP release and cell migration in a chemotactic-stimulated microglia cell line. RESULTS: Trovafloxacin treatment of CCI-injured mice significantly reduced tissue damage markers and improved locomotor deficits. In addition, trovafloxacin treatment significantly reduced mRNA levels of several pro-inflammatory cytokines (IL-1ß, IL-6, and TNF-α), which correlates with an overall reduction in the accumulation of inflammatory cell types (neutrophils, microglia/macrophages, and astroglia) at the injury zone. To determine whether trovafloxacin exerted these effects by direct action on immune cells, we evaluated its effect on ATP release and cell migration using a chemotactic-stimulated microglial cell line. We found that trovafloxacin significantly inhibited both ATP release and migration of these cells. CONCLUSION: Our results show that trovafloxacin administration has pronounced anti-inflammatory and neuroprotective effects following brain injury. These findings lay the foundation for future studies to directly test a role for Panx1 channels in pathological inflammation following brain trauma.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Brain Injuries, Traumatic/metabolism , Fluoroquinolones/therapeutic use , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Naphthyridines/therapeutic use , Recovery of Function/drug effects , Animals , Anti-Infective Agents/pharmacology , Anti-Infective Agents/therapeutic use , Brain Injuries, Traumatic/physiopathology , Cell Line , Fluoroquinolones/pharmacology , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , Naphthyridines/pharmacology , Recovery of Function/physiology , Treatment Outcome
4.
Medicine (Baltimore) ; 101(38): e30672, 2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36197155

ABSTRACT

BACKGROUND: Functional ankle instability (FAI) is defined as the subjective sensation of instability or "giving way" after an ankle sprain and occurs in approximately 40% of patients with lateral ankle instability. As an ankle joint rehabilitation intervention, heel raising exercises, toe jumping exercises, ankle joint proprioceptive exercises, as well as orthosis and taping are commonly applied to prevent the recurrence of an ankle joint injury. So this study was evaluated effect of quarter heel raising exercise (QHR) on balance and peroneus longus muscle strength in FAI subjects. METHODS: Among 26 FAI subjects, 13 with FAI were assigned to the QHR group, and 13 with FAI were assigned to the control group which was no intervention. All of 30 subjects were evaluated Teskscan included static balance ability, Y balance test included dynamic balance ability with three directions which is anterior, posterolateral, posteromedial direction. Commander muscle testing included eversion/inversion strength ratio at pre- and post-intervention. RESULTS: There was a significant interaction between group and time in static, dynamic balance, and strength. In QHR group, there was simple effect on static, dynamic balance, and strength. But control group showed no simple effect on static, dynamic balance, and strength. In the pre- and post-intervention differences between the groups. There was a significant difference in pre-intervention condition between the groups, but no significant difference between the groups in post-intervention in all conditions. CONCLUSIONS: QHR exercise is useful for improving the balance ability and muscle strength of the peroneus longus muscle in FAI subjects.


Subject(s)
Ankle Injuries , Joint Instability , Ankle , Ankle Joint , Heel , Humans , Postural Balance/physiology
5.
Neural Regen Res ; 17(5): 1059-1064, 2022 May.
Article in English | MEDLINE | ID: mdl-34558533

ABSTRACT

Acupuncture has been shown to be effective on alcohol use disorder. However, the underlying mechanism remains poorly understood. To investigate the effects of Shenmen (HT7) acupoint on brain activation induced by cue-elicited alcohol craving, 30 right-handed healthy light to moderate alcohol drinkers were recruited from the community. They were randomly assigned to undergo acupuncture either at HT7 (experimental acupoint, n = 15) or Jingqu (LU8, control acupoint, n = 15) acupoints. This randomized controlled study was performed in Daegu Haany University and Daegu-Gyeongbuk Medical Innovation Foundation, Republic of Korea. Recruitment and data collection were conducted from December 2018 to May 2019. The results showed that after acupuncture at HT7 acupoint, the activation of orbitofrontal cortex and dorsolateral prefrontal cortex was greatly increased, while the activation of dorsolateral prefrontal cortex was obviously reduced, and subject's craving for alcohol was reduced when he/she seeing alcohol-related video clips involving various alcohols (beer, wine, or soju) or drinking scenarios. Acupuncture at HT7 more greatly reduced subject's alcohol cravings than acupuncture at LU8 acupoint. These findings suggest that acupuncture can improve the self-control of mild to moderate social drinkers through the activation of the orbitofrontal cortex and dorsolateral prefrontal cortex, thereby reducing the craving for alcohol. The study protocol was approved by the Institutional Review Board of Daegu Haany University Korean Medicine Hospital, Republic of Korea (approval No. DHUMC-D-18026-PRO-02) on November 30, 2018.

6.
Biol Psychiatry ; 91(4): 346-358, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34130857

ABSTRACT

BACKGROUND: Obstructive sleep apnea, characterized by sleep fragmentation and chronic intermittent hypoxia (CIH), is a risk factor for Alzheimer's disease (AD) progression. Recent epidemiological studies point to CIH as the best predictor of developing cognitive decline and AD in older adults with obstructive sleep apnea. However, the precise underlying mechanisms remain unknown. This study was undertaken to evaluate the effect of CIH on pathological human tau seeding, propagation, and accumulation; cognition; synaptic plasticity; neuronal network excitability; and gene expression profiles in a P301S human mutant tau mouse model of AD and related tauopathies. METHODS: We exposed 4- to 4.5-month-old male P301S and wild-type mice to an 8-week CIH protocol (6-min cycle: 21% O2 to 8% O2 to 21% O2, 80 cycles per 8 hours during daytime) and assessed its effect on tau pathology and various AD-related phenotypic and molecular signatures. Age- and sex-matched P301S and wild-type mice were reared in normoxia (21% O2) as experimental controls. RESULTS: CIH significantly enhanced pathological human tau seeding and spread across connected brain circuitry in P301S mice; it also increased phosphorylated tau load. CIH also exacerbated memory and synaptic plasticity deficits in P301S mice. However, CIH had no effect on seizure susceptibility and network hyperexcitability in these mice. Finally, CIH exacerbated AD-related pathogenic molecular signaling in P301S mice. CONCLUSIONS: CIH-induced increase in pathologic human tau seeding and spread and exacerbation of other AD-related impairments provide new insights into the role of CIH and obstructive sleep apnea in AD pathogenesis.


Subject(s)
Alzheimer Disease , Tauopathies , Animals , Disease Models, Animal , Hypoxia , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neuronal Plasticity
7.
eNeuro ; 8(2)2021.
Article in English | MEDLINE | ID: mdl-33741601

ABSTRACT

Alzheimer's disease (AD) is the most frequent neurodegenerative disorder that commonly causes dementia in the elderly. Recent evidence indicates that network abnormalities, including hypersynchrony, altered oscillatory rhythmic activity, interneuron dysfunction, and synaptic depression, may be key mediators of cognitive decline in AD. In this review, we discuss characteristics of neuronal network excitability in AD, and the role of Aß and tau in the induction of network hyperexcitability. Many patients harboring genetic mutations that lead to increased Aß production suffer from seizures and epilepsy before the development of plaques. Similarly, pathologic accumulation of hyperphosphorylated tau has been associated with hyperexcitability in the hippocampus. We present common and divergent roles of tau and Aß on neuronal hyperexcitability in AD, and hypotheses that could serve as a template for future experiments.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Aged , Amyloid beta-Peptides/metabolism , Hippocampus/metabolism , Humans , Neurons/metabolism , tau Proteins/metabolism
8.
Brain Behav Immun Health ; 7: 100106, 2020 Aug.
Article in English | MEDLINE | ID: mdl-34589867

ABSTRACT

Meta-analyses have revealed associations between the incidence of maternal infections during pregnancy, premature birth, smaller brain volumes, and subsequent cognitive, motor and behavioral deficits as these children mature. Inflammation during pregnancy in rodents produces cognitive and behavioral deficits in the offspring that are similar to those reported in human studies. These deficits are accompanied by decreased neurogenesis and proliferation in the subgranular zone (SGZ) of the dentate gyrus (DG) of the hippocampus. As systemically administering interleukin-1 ß (IL-1ß) to neonatal mice recapitulates many of the brain abnormalities seen in premature babies including developmental delays, the goal of this study was to determine whether IL-1-mediated neuroinflammation would affect hippocampal growth during development to produce cognitive and behavioral abnormalities. For these studies, 10 â€‹ng/g IL-1ß was administered twice daily to Swiss Webster mice during the first 5 days of life, which increased hippocampal levels of IL-1α and acutely reduced the proliferation of Tbr2+ neural progenitors in the DG. In vitro, both IL-1α and IL-1ß produced G1/S cell cycle arrest that resulted in reduced progenitor cell proliferation within the transit amplifying progenitor cell cohort. By contrast, IL-1ß treatment increased neural stem cell frequency. Upon terminating IL-1ß treatment, the progenitor cell pool regained its proliferative capacity. An earlier study that used this in vivo model of perinatal inflammation showed that mice that received IL-1ß as neonates displayed memory deficits which suggested abnormal hippocampal function. To evaluate whether other cognitive and behavioral traits associated with hippocampal function would also be altered, mice were tested in tasks designed to assess exploratory and anxiety behavior as well as working and spatial memory. Interestingly, mice that received IL-1ß as neonates showed signs of anxiety in several behavioral assays during adolescence that were also evident in adulthood. Additionally, these mice did not display working memory deficits in adulthood, but they did display deficits in long-term spatial memory. Altogether, these data support the view that perinatal inflammation negatively affects the developing hippocampus by producing behavioral deficits that persist into adulthood. These data provide a new perspective into the origin of the cognitive and behavioral impairments observed in prematurely-born sick infants.

9.
Exp Neurol ; 329: 113284, 2020 07.
Article in English | MEDLINE | ID: mdl-32165255

ABSTRACT

Parkinson's disease (PD) is a major neurodegenerative disorder characterized by a variety of non-motor symptoms in addition to the well-recognized motor dysfunctions that have commanded primary interest. We previously described a new PD mouse model based on heterozygous disruption of the B4galnt1 gene leading to partial deficiency of the GM1 family of gangliosides that manifested several nigrostriatal neuropathological features of PD as well as movement impairment. We now show this mouse also suffers three non-motor symptoms characteristic of PD involving the gastrointestinal, sympathetic cardiac, and cerebral cognitive systems. Treatment of these animals with a synthetic form of GM1 ganglioside, produced by transfected E. coli, proved ameliorative of these symptoms as well as the motor defect. These findings further suggest subnormal GM1 to be a systemic defect constituting a major risk factor in sporadic PD and indicate the B4galnt1(+/-) (HT) mouse to be a true neuropathological model that recapitulates both motor and non-motor lesions of this condition.


Subject(s)
Disease Models, Animal , G(M1) Ganglioside/administration & dosage , G(M1) Ganglioside/deficiency , N-Acetylgalactosaminyltransferases/deficiency , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Animals , Female , G(M1) Ganglioside/genetics , Gastrointestinal Diseases/drug therapy , Gastrointestinal Diseases/genetics , Gastrointestinal Diseases/metabolism , Male , Memory Disorders/drug therapy , Memory Disorders/genetics , Memory Disorders/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Motor Skills Disorders/drug therapy , Motor Skills Disorders/genetics , Motor Skills Disorders/metabolism , N-Acetylgalactosaminyltransferases/genetics , Parkinson Disease/genetics
10.
Materials (Basel) ; 12(8)2019 Apr 23.
Article in English | MEDLINE | ID: mdl-31018545

ABSTRACT

The present study prepared calcined oyster shell powder having chemical composition and crystal structure of calcium oxide and lime, respectively, and investigated the fresh and hardened properties of cement mortar incorporating calcined oyster shell powder as an additive. The test results indicated that the hydration of calcined oyster shell powder promoted the additional formation of Ca(OH)2 at the initial reaction stage, thereby increasing the heat of hydration. In particular, the volumetric increase of calcined oyster shell powder during hydration compensated the autogenous shrinkage of mortar at early ages, ultimately leading to a clear difference in the shrinkage values at final readings. However, an excessive incorporation of calcined oyster shell powder affected the rate of C-S-H formation in the acceleratory period of hydration, resulting in a decrease in the compressive strength development. Meanwhile, the degree of flow loss was inconsequential and rapid flow loss was not observed in the specimens with calcined oyster shell powder. Therefore, considering the fresh and hardened properties of cement mortar, the incorporation of calcined oyster shell powder of approximately 3% by weight of cement is recommended to enhance the properties of cement mortar in terms of compressive strength and autogenous shrinkage.

11.
Materials (Basel) ; 12(10)2019 May 23.
Article in English | MEDLINE | ID: mdl-31126014

ABSTRACT

This present study investigates the effects of CaSO4 incorporation on the pore structure and drying shrinkage of alkali-activated slag and fly ash. The slag and fly ash were activated at a 5:5 ratio by weighing with a sodium silicate. Thereafter, 0%, 5%, 10%, and 15% of CaSO4 were incorporated to investigate the changes in phase formation and internal pore structure. X-Ray Diffraction (XRD), thermogravimetry (TG)/derivative thermogravimetry (DTG), mercury intrusion porosimetry (MIP), nuclear magnetic resonance (NMR), and drying shrinkage tests were carried out to find the correlation between the pore structure and drying shrinkage of the specimens. The results showed that CaSO4 incorporation increased the formation of thenardite, and these phase changes affected the pore structure of the activated fly ash and slag. The increase in the CaSO4 content increased the pore distribution in the mesopore. As a result, the capillary tension and drying shrinkage decreased.

12.
Materials (Basel) ; 11(11)2018 Nov 05.
Article in English | MEDLINE | ID: mdl-30400598

ABSTRACT

Accelerated carbonation curing (ACC) as well as partial replacement of cement with natural minerals are examples of many previous approaches, which aimed to produce cementitious products with better properties and environmental amicabilities. In this regard, the present study investigates CO2 uptake of carbonation-cured cement blended with ground Saudi Arabian volcanic ash (VA). Paste samples with cement replacement of 20%, 30%, 40%, and 50% by mass were prepared and carbonation-cured after initial curing of 24 h. A compressive strength test, X-ray diffractometry (XRD), and thermogravimetry were performed. Although pozzolanic reaction of VA hardly occurred, unlike other pozzolana in blended cement, the results revealed that incorporation of VA as a supplementary cementitious material significantly enhanced the compressive strength and diffusion of CO2 in the matrix. This increased the CO2 uptake capacity of cement, reducing the net CO2 emission upon carbonation curing.

SELECTION OF CITATIONS
SEARCH DETAIL