Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
RNA Biol ; 21(1): 1-18, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38361426

ABSTRACT

Protein aggregation, a consequence of misfolding and impaired proteostasis, can lead to cellular malfunctions such as various proteinopathies. The mechanisms protecting proteins from aggregation in complex cellular environments have long been investigated, often from a protein-centric viewpoint. However, our study provides insights into a crucial, yet overlooked actor: RNA. We found that depleting RNAs from Escherichia coli lysates induces global protein aggregation. Our quantitative mass spectrometry analysis identified over 900 statistically significant proteins from the Escherichia coli proteome whose solubility depends on RNAs. Proteome-wide characterization showed that the RNA dependency is particularly enriched among acidic proteins, intrinsically disordered proteins, and structural hub proteins. Moreover, we observed distinct differences in RNA-binding mode and Gene Ontology categories between RNA-dependent acidic and basic proteins. Notably, the solubility of key molecular chaperones [Trigger factor, DnaJ, and GroES] is largely dependent on RNAs, suggesting a yet-to-be-explored hierarchical relationship between RNA-based chaperone (termed as chaperna) and protein-based chaperones, both of which constitute the whole chaperone network. These findings provide new insights into the RNA-centric role in maintaining healthy proteome solubility in vivo, where proteins associate with a variety of RNAs, either stably or transiently.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Proteome/metabolism , Protein Folding , RNA/metabolism , Solubility , Proteomics , Isoelectric Point , Protein Aggregates , Escherichia coli Proteins/metabolism , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mass Spectrometry
2.
EMBO J ; 38(10)2019 05 15.
Article in English | MEDLINE | ID: mdl-30979777

ABSTRACT

The multifunctional influenza virus protein PB1-F2 plays several roles in deregulation of host innate immune responses and is a known immunopathology enhancer of the 1918 influenza pandemic. Here, we show that the 1918 PB1-F2 protein not only interferes with the mitochondria-dependent pathway of type I interferon (IFN) signaling, but also acquired a novel IFN antagonist function by targeting the DEAD-box helicase DDX3, a key downstream mediator in antiviral interferon signaling, toward proteasome-dependent degradation. Interactome analysis revealed that 1918 PB1-F2, but not PR8 PB1-F2, binds to DDX3 and causes its co-degradation. Consistent with intrinsic protein instability as basis for this gain-of-function, internal structural disorder is associated with the unique cytotoxic sequences of the 1918 PB1-F2 protein. Infusing mice with recombinant DDX3 protein completely rescued them from lethal infection with the 1918 PB1-F2-producing virus. Alongside NS1 protein, 1918 PB1-F2 therefore constitutes a potent IFN antagonist causative for the severe pathogenicity of the 1918 influenza strain. Our identification of molecular determinants of pathogenesis should be useful for the future design of new antiviral strategies against influenza pandemics.


Subject(s)
DEAD-box RNA Helicases/metabolism , Influenza, Human/virology , Interferons/metabolism , Orthomyxoviridae/pathogenicity , Viral Proteins/physiology , A549 Cells , Animals , Dogs , Female , HEK293 Cells , History, 20th Century , Humans , Influenza, Human/epidemiology , Influenza, Human/history , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred BALB C , Orthomyxoviridae/metabolism , Pandemics , Proteolysis , Signal Transduction , U937 Cells , Viral Proteins/metabolism , Virulence/physiology
3.
RNA Biol ; 18(1): 16-23, 2021 01.
Article in English | MEDLINE | ID: mdl-32781880

ABSTRACT

As a mental framework for the transition of self-replicating biological forms, the RNA world concept stipulates a dual function of RNAs as genetic substance and catalyst. The chaperoning function is found intrinsic to ribozymes involved in protein synthesis and tRNA maturation, enriching the primordial RNA world with proteins of biological relevance. The ribozyme-resident protein folding activity, even before the advent of protein-based molecular chaperone, must have expedited the transition of the RNA world into the present protein theatre.


Subject(s)
Molecular Chaperones/metabolism , Proteins/genetics , Proteins/metabolism , RNA/genetics , Animals , Host-Pathogen Interactions , Humans , Protein Binding , Protein Biosynthesis , Protein Folding , Proteins/chemistry , RNA/chemistry , RNA/metabolism , RNA, Catalytic/genetics , RNA, Catalytic/metabolism , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism
4.
Nanomedicine ; 37: 102438, 2021 10.
Article in English | MEDLINE | ID: mdl-34256061

ABSTRACT

Highly pathogenic avian influenza viruses (HPAIVs) pose a significant threat to human health, with high mortality rates, and require effective vaccines. We showed that, harnessed with novel RNA-mediated chaperone function, hemagglutinin (HA) of H5N1 HPAIV could be displayed as an immunologically relevant conformation on self-assembled chimeric nanoparticles (cNP). A tri-partite monomeric antigen was designed including: i) an RNA-interaction domain (RID) as a docking tag for RNA to enable chaperna function (chaperna: chaperone + RNA), ii) globular head domain (gd) of HA as a target antigen, and iii) ferritin as a scaffold for 24 mer-assembly. The immunization of mice with the nanoparticles (~46 nm) induced a 25-30 fold higher neutralizing capacity of the antibody and provided cross-protection from homologous and heterologous lethal challenges. This study suggests that cNP assembly is conducive to eliciting antibodies against the conserved region in HA, providing potent and broad protective efficacy.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/immunology , Influenza A Virus, H5N1 Subtype/drug effects , Influenza Vaccines/immunology , Influenza in Birds/immunology , RNA/immunology , Animals , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/immunology , Antibodies, Viral/therapeutic use , Birds/virology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/therapeutic use , Humans , Influenza A Virus, H5N1 Subtype/immunology , Influenza A Virus, H5N1 Subtype/pathogenicity , Influenza Vaccines/chemistry , Influenza Vaccines/therapeutic use , Influenza in Birds/prevention & control , Influenza in Birds/virology , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Pandemics , RNA/genetics , RNA/therapeutic use
5.
Biochem Biophys Res Commun ; 524(2): 484-489, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32007271

ABSTRACT

DNA-binding proteins from starved cells (Dps) in Escherichia coli protects DNA from multiple stresses during the stationary phase by forming a stable Dps-DNA complex. In contrast, Dps cannot bind to DNA during the exponential phase and it has not been clear why Dps conditionally binds to DNA depending on the growth phase. In this study, we show that DNA-free Dps in the exponential phase can also bind to RNA and the preemptive binding of RNA precludes DNA from interacting with Dps. The critical role of RNA in modulating the stability and functional competence of Dps and their morphology, leads us to propose a two-state model of Dps in executing stress responses. In the exponential phase, Dps is present predominantly as ribonucleoprotein complex. Under starvation, RNAs are degraded by up-regulated RNases, activating Dps to bind with chromosomal DNAs protecting them from diverse stresses. A dual role of RNA as an inhibitor of DNA binding and chaperone to keep dynamic functional status of Dps would be crucial for operating an immediate protection of chromosomal DNAs on starvation. The holdase-type chaperoning role of RNA in Dps-mediated stress responses would shed light on the role of RNAs as chaperone (Chaperna).


Subject(s)
DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , RNA, Bacterial/metabolism , DNA, Bacterial/metabolism , Escherichia coli/cytology , Escherichia coli Infections/microbiology , Humans , Stress, Physiological
6.
Biotechnol Bioeng ; 117(7): 1990-2007, 2020 07.
Article in English | MEDLINE | ID: mdl-32297972

ABSTRACT

High-quality antibody (Ab) production depends on the availability of immunologically relevant antigens. We present a potentially universal platform for generating soluble antigens from bacterial hosts, tailored to immunized animals for Ab production. A novel RNA-dependent chaperone, in which the target antigen is genetically fused with an RNA-interacting domain (RID) docking tag derived from the immunized host, promotes the solubility and robust folding of the target antigen. We selected the N-terminal tRNA-binding domain of lysyl-tRNA synthetase (LysRS) as the RID for fusion with viral proteins and demonstrated the expression of the RID fusion proteins in their soluble and native conformations; immunization predominantly elicited Ab responses to the target antigen, whereas the "self" RID tag remained nonimmunogenic. Differential immunogenicity of the fusion proteins greatly enriched and simplified the screening of hybridoma clones of monoclonal antibodies (mAbs), enabling specific and sensitive serodiagnosis of MERS-CoV infection. Moreover, mAbs against the consensus influenza hemagglutinin stalk domain enabled a novel assay for trivalent seasonal influenza vaccines. The Fc-mediated effector function was demonstrated, which could be harnessed for the design of next-generation "universal" influenza vaccines. The nonimmunogenic built-in antigen folding module tailored to a repertoire of immunized animal hosts will drive immunochemical diagnostics, therapeutics, and designer vaccines.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Antibodies, Viral/biosynthesis , Antigens, Viral/chemistry , Coronavirus Infections/diagnosis , Hybridomas/immunology , Middle East Respiratory Syndrome Coronavirus/immunology , Molecular Chaperones , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/isolation & purification , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Antigens, Viral/genetics , Antigens, Viral/immunology , Coronavirus Infections/blood , Enzyme-Linked Immunosorbent Assay , Female , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Immunization , Influenza Vaccines , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/genetics , Mice , Mice, Inbred BALB C , Protein Conformation , Protein Domains , Protein Folding , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Serologic Tests , Solubility
7.
Biotechnol Bioeng ; 116(3): 490-502, 2019 03.
Article in English | MEDLINE | ID: mdl-30475402

ABSTRACT

Transglutaminase (TGase) induces the cross-linking of proteins by catalyzing an acyl transfer reaction. TGase is a zymogen, activated by the removal of its pro-region. Because the pro-region is crucial for folding and inhibition of the TGase activity, the recombinant expression of the mature TGase (mTGase) without the pro-region, usually results in inactive inclusion bodies or low protein yield. Here, Streptomyces netropsis TGase was fused with Escherichia coli lysyl-tRNA synthetase (LysRS), as a module with chaperoning activity in an RNA dependent manner (chaperna). The TGase activity from purified fusion protein induced via the removal of LysRS by tev protease in vitro. Moreover, active mTGase was produced in E. coli via an intracellular cleavage system, wherein LysRS-mTGase was cleaved by the coexpressed tev protease in vivo. The results suggest that LysRS essentially mimics pro-region, which exerts a dual function-folding of TGase into active conformation and keeping it as dormant state-in an RNA-dependent manner. Thus, trans-acting RNAs, prompt the cis-acting chaperone function of LysRS, while being mechanistically similar to the intramolecular chaperone function of the pro-region. These results could be implemented and extended for the folding of "difficult-to-express" recombinant proteins, by harnessing the chaperna function.


Subject(s)
Bacterial Proteins/metabolism , Molecular Chaperones/metabolism , RNA/metabolism , Recombinant Proteins/metabolism , Transglutaminases/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Escherichia coli , Models, Molecular , Molecular Chaperones/chemistry , Molecular Chaperones/genetics , Protein Engineering , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Transglutaminases/chemistry , Transglutaminases/genetics
8.
Int J Mol Sci ; 20(4)2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30791505

ABSTRACT

Solubility is the prime criterion for determining the quality of recombinant proteins, yet it often fails to represent functional activity due to the involvement of non-functional, misfolded, soluble aggregates, which compromise the quality of recombinant proteins. However, guidelines for the quality assessment of soluble proteins have neither been proposed nor rigorously validated experimentally. Using the aggregation-prone enhanced green-fluorescent protein (EGFP) folding reporter system, we evaluated the folding status of recombinant proteins by employing the commonly used sonication and mild lysis of recombinant host cells. We showed that the differential screening of solubility and folding competence is crucial for improving the quality of recombinant proteins without sacrificing their yield. These results highlight the importance of screening out incorrectly folded soluble aggregates at the initial purification step to ensure the functional quality of recombinant proteins.


Subject(s)
Protein Aggregates , Protein Folding , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Chromatography, Gel , Particle Size , Recombinant Fusion Proteins , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Solubility , Sonication
9.
Int J Mol Sci ; 20(11)2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31212691

ABSTRACT

Intrinsic disorders are a common feature of hub proteins in eukaryotic interactomes controlling the signaling pathways. The intrinsically disordered proteins (IDPs) are prone to misfolding, and maintaining their functional stability remains a major challenge in validating their therapeutic potentials. Considering that IDPs are highly enriched in RNA-binding proteins (RBPs), here we reasoned and confirmed that IDPs could be stabilized by fusion to RBPs. Dickkopf2 (DKK2), Wnt antagonist and a prototype IDP, was fused with lysyl-tRNA synthetase (LysRS), with or without the fragment crystallizable (Fc) domain of an immunoglobulin and expressed predominantly as a soluble form from a bacterial host. The functional competence was confirmed by in vitro Wnt signaling reporter and tube formation in human umbilical vein endothelial cells (HUVECs) and in vivo Matrigel plug assay. The removal of LysRS by site-specific protease cleavage prompted the insoluble aggregation, confirming that the linkage to RBP chaperones the functional competence of IDPs. While addressing to DKK2 as a key modulator for cancer and ischemic vascular diseases, our results suggest the use of RBPs as stabilizers of disordered proteinaceous materials for acquiring and maintaining the structural stability and functional competence, which would impact the druggability of a variety of IDPs from human proteome.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/genetics , Lysine-tRNA Ligase/metabolism , RNA-Binding Motifs , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Wnt Signaling Pathway/genetics , Wnt Signaling Pathway/physiology
10.
Gut ; 67(1): 166-178, 2018 01.
Article in English | MEDLINE | ID: mdl-28341749

ABSTRACT

OBJECTIVE: Interferons (IFNs) mediate direct antiviral activity. They play a crucial role in the early host immune response against viral infections. However, IFN therapy for HBV infection is less effective than for other viral infections. DESIGN: We explored the cellular targets of HBV in response to IFNs using proteome-wide screening. RESULTS: Using LC-MS/MS, we identified proteins downregulated and upregulated by IFN treatment in HBV X protein (HBx)-stable and control cells. We found several IFN-stimulated genes downregulated by HBx, including TRIM22, which is known as an antiretroviral protein. We demonstrated that HBx suppresses the transcription of TRIM22 through a single CpG methylation in its 5'-UTR, which further reduces the IFN regulatory factor-1 binding affinity, thereby suppressing the IFN-stimulated induction of TRIM22. CONCLUSIONS: We verified our findings using a mouse model, primary human hepatocytes and human liver tissues. Our data elucidate a mechanism by which HBV evades the host innate immune system.


Subject(s)
5' Untranslated Regions/genetics , CpG Islands/genetics , Hepatitis B virus/immunology , Interferons/immunology , Minor Histocompatibility Antigens/genetics , Repressor Proteins/genetics , Tripartite Motif Proteins/genetics , Animals , Down-Regulation/genetics , Down-Regulation/immunology , Epigenesis, Genetic , Gene Expression Regulation/immunology , Hepatocytes/metabolism , Humans , Immune Evasion , Liver/metabolism , Methylation , Mice , Minor Histocompatibility Antigens/biosynthesis , Proteome , Repressor Proteins/biosynthesis , Tripartite Motif Proteins/biosynthesis
11.
Int J Mol Sci ; 19(10)2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30282926

ABSTRACT

Eukaryotic lysyl-tRNA synthetases (LysRS) have an N-terminal appended tRNA-interaction domain (RID) that is absent in their prokaryotic counterparts. This domain is intrinsically disordered and lacks stable structures. The disorder-to-order transition is induced by tRNA binding and has implications on folding and subsequent assembly into multi-tRNA synthetase complexes. Here, we expressed and purified RID from human LysRS (hRID) in Escherichia coli and performed a detailed mutagenesis of the appended domain. hRID was co-purified with nucleic acids during Ni-affinity purification, and cumulative mutations on critical amino acid residues abolished RNA binding. Furthermore, we identified a structural ensemble between disordered and helical structures in non-RNA-binding mutants and an equilibrium shift for wild-type into the helical conformation upon RNA binding. Since mutations that disrupted RNA binding led to an increase in non-functional soluble aggregates, a stabilized RNA-mediated structural transition of the N-terminal appended domain may have implications on the functional organization of human LysRS and multi-tRNA synthetase complexes in vivo.


Subject(s)
Lysine-tRNA Ligase/chemistry , Lysine-tRNA Ligase/metabolism , Nucleic Acids/chemistry , Nucleic Acids/metabolism , Protein Interaction Domains and Motifs , Humans , Mutation , Protein Binding , Protein Structure, Secondary , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Structure-Activity Relationship
12.
RNA Biol ; 12(11): 1198-208, 2015.
Article in English | MEDLINE | ID: mdl-26517763

ABSTRACT

It is one of the fundamental questions in biology how proteins efficiently fold into their native conformations despite off-pathway events such as misfolding and aggregation in living cells. Although molecular chaperones have been known to assist the de novo folding of certain types of proteins, the role of a binding partner (or a ligand) in the folding and in-cell solubility of its interacting protein still remains poorly defined. RNase P is responsible for the maturation of tRNAs as adaptor molecules of amino acids in ribosomal protein synthesis. The RNase P from Escherichia coli, composed of M1 RNA and C5 protein, is a prototypical ribozyme in which the RNA subunit contains the catalytic activity. Using E. coli RNase P, we demonstrate that M1 RNA plays a pivotal role in the in-cell solubility of C5 protein both in vitro and in vivo. Mutations in either the C5 protein or M1 RNA that affect their interactions significantly abolished the folding of C5 protein. Moreover, we find that M1 RNA provides quality insurance of interacting C5 protein, either by promoting the degradation of C5 mutants in the presence of functional proteolytic machinery, or by abolishing their solubility if the machinery is non-functional. Our results describe a crucial role of M1 RNA in the folding, in-cell solubility, and, consequently, the proteostasis of the client C5 protein, giving new insight into the biological role of RNAs as chaperones and mediators that ensure the quality of interacting proteins.


Subject(s)
Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Protein Folding , RNA, Bacterial/metabolism , Ribonuclease P/genetics , Ribonuclease P/metabolism , Amino Acid Sequence , Escherichia coli Proteins/chemistry , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Models, Biological , Molecular Sequence Data , Mutation , Protein Binding , Protein Interaction Domains and Motifs , Protein Refolding , Protein Stability , Recombinant Proteins , Ribonuclease P/chemistry , Sequence Alignment , Solubility
13.
Hepatology ; 58(2): 762-76, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23483589

ABSTRACT

UNLABELLED: Liver regeneration after liver damage caused by toxins and pathogens is critical for liver homeostasis. Retardation of liver proliferation was reported in hepatitis B virus (HBV) X protein (HBx)-transgenic mice. However, the underlying mechanism of the HBx-mediated disturbance of liver regeneration is unknown. We investigated the molecular mechanism of the inhibition of liver regeneration using liver cell lines and a mouse model. The mouse model of acute HBV infection was established by hydrodynamic injection of viral DNA. Liver regeneration after partial hepatectomy was significantly inhibited in the HBV DNA-treated mice. Mechanism studies have revealed that the expression of urokinase-type plasminogen activator (uPA), which regulates the activation of hepatocyte growth factor (HGF), was significantly decreased in the liver tissues of HBV or HBx-expressing mice. The down-regulation of uPA was further confirmed using liver cell lines transiently or stably transfected with HBx and the HBV genome. HBx suppressed uPA expression through the epigenetic regulation of the uPA promoter in mouse liver tissues and human liver cell lines. Expression of HBx strongly induced hypermethylation of the uPA promoter by recruiting DNA methyltransferase (DNMT) 3A2. CONCLUSION: Taken together, these results suggest that infection of HBV impairs liver regeneration through the epigenetic dysregulation of liver regeneration signals by HBx.


Subject(s)
Epigenesis, Genetic/physiology , Hepatitis B virus/genetics , Hepatitis B virus/physiology , Hepatitis B/physiopathology , Liver Regeneration/physiology , Urokinase-Type Plasminogen Activator/physiology , Animals , Cell Line , Cell Proliferation , DNA (Cytosine-5-)-Methyltransferases/physiology , DNA Methyltransferase 3A , DNA, Viral/genetics , Disease Models, Animal , Hepatectomy , Hepatitis B/pathology , Hepatocyte Growth Factor/physiology , Hepatocytes/pathology , In Vitro Techniques , Male , Mice , Mice, Inbred BALB C , Mice, Transgenic , Signal Transduction/physiology , Trans-Activators/physiology , Viral Regulatory and Accessory Proteins
14.
Int J Mol Sci ; 13(8): 10368-10386, 2012.
Article in English | MEDLINE | ID: mdl-22949867

ABSTRACT

In the processes of protein synthesis and folding, newly synthesized polypeptides are tightly connected to the macromolecules, such as ribosomes, lipid bilayers, or cotranslationally folded domains in multidomain proteins, representing a hallmark of de novo protein folding environments in vivo. Such linkage effects on the aggregation of endogenous polypeptides have been largely neglected, although all these macromolecules have been known to effectively and robustly solubilize their linked heterologous proteins in fusion or display technology. Thus, their roles in the aggregation of linked endogenous polypeptides need to be elucidated and incorporated into the mechanisms of de novo protein folding in vivo. In the classic hydrophobic interaction-based stabilizing mechanism underlying the molecular chaperone-assisted protein folding, it has been assumed that the macromolecules connected through a simple linkage without hydrophobic interactions and conformational changes would make no effect on the aggregation of their linked polypeptide chains. However, an increasing line of evidence indicates that the intrinsic properties of soluble macromolecules, especially their surface charges and excluded volume, could be important and universal factors for stabilizing their linked polypeptides against aggregation. Taken together, these macromolecules could act as folding helpers by keeping their linked nascent chains in a folding-competent state. The folding assistance provided by these macromolecules in the linkage context would give new insights into de novo protein folding inside the cell.


Subject(s)
Macromolecular Substances/chemistry , Protein Folding , Proteins/chemistry , Animals , Humans , Protein Binding , Protein Conformation
15.
Int J Mol Sci ; 12(3): 1979-90, 2011.
Article in English | MEDLINE | ID: mdl-21673934

ABSTRACT

The principles obtained from studies on molecular chaperones have provided explanations for the assisted protein folding in vivo. However, the majority of proteins can fold without the assistance of the known molecular chaperones, and little attention has been paid to the potential chaperoning roles of other macromolecules. During protein biogenesis and folding, newly synthesized polypeptide chains interact with a variety of macromolecules, including ribosomes, RNAs, cytoskeleton, lipid bilayer, proteolytic system, etc. In general, the hydrophobic interactions between molecular chaperones and their substrates have been widely believed to be mainly responsible for the substrate stabilization against aggregation. Emerging evidence now indicates that other features of macromolecules such as their surface charges, probably resulting in electrostatic repulsions, and steric hindrance, could play a key role in the stabilization of their linked proteins against aggregation. Such stabilizing mechanisms are expected to give new insights into our understanding of the chaperoning functions for de novo protein folding. In this review, we will discuss the possible chaperoning roles of these macromolecules in de novo folding, based on their charge and steric features.


Subject(s)
Molecular Chaperones/metabolism , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , HSP70 Heat-Shock Proteins/chemistry , HSP70 Heat-Shock Proteins/metabolism , Molecular Chaperones/chemistry , Protein Folding , Protein Structure, Tertiary , RNA/chemistry , RNA/metabolism , Substrate Specificity
16.
Vaccines (Basel) ; 9(4)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33916924

ABSTRACT

Influenza virus infection remains a major public health challenge, causing significant morbidity and mortality by annual epidemics and intermittent pandemics. Although current seasonal influenza vaccines provide efficient protection, antigenic changes of the viruses often significantly compromise the protection efficacy of vaccines, rendering most populations vulnerable to the viral infection. Considerable efforts have been made to develop a universal influenza vaccine (UIV) able to confer long-lasting and broad protection. Recent studies have characterized multiple immune correlates required for providing broad protection against influenza viruses, including neutralizing antibodies, non-neutralizing antibodies, antibody effector functions, T cell responses, and mucosal immunity. To induce broadly protective immune responses by vaccination, various strategies using live attenuated influenza vaccines (LAIVs) and novel vaccine platforms are under investigation. Despite superior cross-protection ability, very little attention has been paid to LAIVs for the development of UIV. This review focuses on immune responses induced by LAIVs, with special emphasis placed on the breadth and the potency of individual immune correlates. The promising prospect of LAIVs to serve as an attractive and reliable vaccine platforms for a UIV is also discussed. Several important issues that should be addressed with respect to the use of LAIVs as UIV are also reviewed.

17.
Life (Basel) ; 11(7)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202456

ABSTRACT

How proteins properly fold and maintain solubility at the risk of misfolding and aggregation in the cellular environments still remains largely unknown. Aggregation has been traditionally treated as a consequence of protein folding (or misfolding). Notably, however, aggregation can be generally inhibited by affecting the intermolecular interactions leading to aggregation, independently of protein folding and conformation. We here point out that rigorous distinction between protein folding and aggregation as two independent processes is necessary to reconcile and underlie all observations regarding the combined cellular protein folding and aggregation. So far, the direct attractive interactions (e.g., hydrophobic interactions) between cellular macromolecules including chaperones and interacting polypeptides have been widely believed to mainly stabilize polypeptides against aggregation. However, the intermolecular repulsions by large excluded volume and surface charges of cellular macromolecules can play a key role in stabilizing their physically connected polypeptides against aggregation, irrespective of the connection types and induced conformational changes, underlying the generic intrinsic chaperone activity of cellular macromolecules. Such rigorous distinction and intermolecular repulsive force-driven aggregation inhibition by cellular macromolecules could give new insights into understanding the complex cellular protein landscapes that remain uncharted.

18.
Curr Opin Struct Biol ; 66: 104-111, 2021 02.
Article in English | MEDLINE | ID: mdl-33238232

ABSTRACT

Protein folding in vivo has been largely understood in the context of molecular chaperones preventing aggregation of nascent polypeptides in the crowded cellular environment. Nascent chains utilize the crowded environment in favor of productive folding by direct physical connection with cellular macromolecules. The intermolecular repulsive forces by large excluded volume and surface charges of interacting cellular macromolecules, exerting 'social distancing' measure among folding intermediates, could play an important role in stabilizing their physically connected polypeptides against aggregation regardless of the physical connection types. The generic intrinsic chaperone activity of cellular macromolecules likely provides a robust cellular environment for the productive protein folding and solubility maintenance at the whole proteome level.


Subject(s)
Physical Distancing , Proteome , Macromolecular Substances , Molecular Chaperones/metabolism , Protein Folding
19.
Biomaterials ; 269: 120650, 2021 02.
Article in English | MEDLINE | ID: mdl-33465537

ABSTRACT

Representing highly ordered repetitive structures of antigen macromolecular assemblies, virus-like particles (VLPs) serve as a high-priority vaccine platform against emerging viral infections, as alternatives to traditional cell culture-based vaccines. RNAs can function as chaperones (Chaperna) and are extremely effective in promoting protein folding. Beyond their canonical function as translational adaptors, tRNAs may moonlight as chaperones for the kinetic control of macromolecular antigen assembly. Capitalizing on genomic RNA co-assembly in infectious virions, we present the first report of a biomimetic assembly of viral capsids that was assisted by non-viral host RNAs into genome-free, non-infectious empty particles. Here, we demonstrate the assembly of bacterially-produced soluble norovirus VP1 forming VLPs (n = 180) in vitro. A tRNA-interacting domain (tRID) was genetically fused with the VP1 capsid protein, as a tRNA docking tag, in the bacterial host to transduce chaperna function for de novo viral antigen folding. tRID/tRNA removal prompted the in vitro assembly of monomeric antigens into highly ordered repetitive structures that elicited robust protective immune responses after immunization. The chaperna-based assembly of monomeric antigens will impact the development and deployment of VLP vaccines for emerging and re-emerging viral infections.


Subject(s)
Capsid Proteins , RNA , Vaccines, Synthetic , Vaccines, Virus-Like Particle , Antibodies, Viral , Antigens, Viral , Capsid Proteins/genetics , Immunization
20.
Biochem Biophys Res Commun ; 391(2): 1177-81, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-19962961

ABSTRACT

Although accumulating evidence has revealed that most proteins can fold without the assistance of molecular chaperones, little attention has been paid to other types of chaperoning macromolecules. A variety of proteins interact with diverse RNA molecules in vivo, suggesting a potential role of RNAs for folding of their interacting proteins. Here we show that the in vitro refolding of a representative molecular chaperone, DnaK, an Escherichia coli homolog of Hsp70, could be assisted by its interacting 5S rRNA. The folding enhancement occurred in RNA concentration and its size dependent manner whereas neither the RNA with the reverse sequence of 5S rRNA nor the RNase pretreated 5S rRNA stimulated the folding in vitro. Based on our results, we propose that 5S rRNA could exert the chaperoning activity on DnaK during the folding process. The results suggest an interesting possibility that the folding of RNA-interacting proteins could be assisted by their cognate RNA ligands.


Subject(s)
Escherichia coli Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , RNA, Ribosomal, 5S/metabolism , Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , Ligands , Nucleic Acid Conformation , Protein Folding , RNA, Ribosomal, 23S/chemistry , RNA, Ribosomal, 23S/metabolism , RNA, Ribosomal, 5S/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL