Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Eur J Immunol ; 53(5): e2250048, 2023 05.
Article in English | MEDLINE | ID: mdl-36815313

ABSTRACT

Keratinocytes are pivotal cells in the pathogenesis of atopic dermatitis (AD) as much as Th2 cells. In this sense, regulation of pro-inflammatory features of keratinocytes might be useful for AD patients. P2X7R-mediated activation of NLRP3 inflammasome (N3I) in keratinocytes and myeloid cells plays crucial roles in AD. Nonetheless, inhibition of P2X7R has not been feasible because of polymorphisms and ubiquitous expression of P2X7R. Here, we report that GPCR19 colocalizes with P2X7R, and a GPCR19 agonist (taurodeoxycholate [TDCA]) inhibits the activation of P2X7R. Noncistronically, TDCA inhibits NF-kB activation via the adenylate cyclase-PKA pathway and BzATP-mediated Ca++ mobilization. Cistronically, TDCA suppresses the expression of P2X7R and N3I components in keratinocytes. NLRP3 oligomerization and the production of mature IL-1ß and IL-18 was suppressed by TDCA treatment in keratinocytes. Topical TDCA treatment ameliorates proinflammatory features of AD in mice induced by DNCB, MC903, or oxazolone. Taken together, a GPCR19 agonist such as TDCA might inhibit P2X7R-mediated N3I activation of keratinocytes, which is crucial for the pathogenesis of AD.


Subject(s)
Dermatitis, Atopic , Mice , Animals , Dermatitis, Atopic/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice, Inbred BALB C , Keratinocytes/metabolism , Inflammasomes/metabolism , Cytokines/metabolism
2.
Drug Chem Toxicol ; 44(3): 268-276, 2021 May.
Article in English | MEDLINE | ID: mdl-31215257

ABSTRACT

Taurodeoxycholate (TDCA) inhibits various inflammatory responses suggesting potential clinical application. However, the toxicity of TDCA has not been evaluated in detail in vivo. We investigated the acute toxicity and 4-week repeated-dose toxicity of TDCA following intravenous infusion under Good Laboratory Practice regulations. In the sighting study of acute toxicity, one of two rats (one male and one female) treated with 300 mg/kg TDCA died with hepatotoxicity, suggesting that the approximate 50% lethal dose of TDCA is 300 mg/kg. Edema and discoloration were observed at the injection sites of tails when rats were infused with 150 mg/kg or higher amount of TDCA once. In 4-week repeated-dose toxicity study, no treatment-related mortality or systemic changes in hematology and serum biochemistry, organ weights, gross pathology, or histopathology were observed. However, the tail injection site showed redness, discharge, hardening, and crust formation along with histopathological changes such as ulceration, edema, fibrosis, and thrombosis when rats were infused with 20 mg/kg TDCA. Taken together, TDCA induced no systemic toxicity or macroscopic lesions at the injection site at a dose of 10 mg/kg/day, which is 33 times higher than the median effective dose observed in a mouse sepsis model. These findings suggest that TDCA might have a favorable therapeutic index in clinical applications.


Subject(s)
Cholagogues and Choleretics/toxicity , Taurodeoxycholic Acid/toxicity , Animals , Chemical and Drug Induced Liver Injury/etiology , Cholagogues and Choleretics/administration & dosage , Dose-Response Relationship, Drug , Edema/chemically induced , Female , Infusions, Intravenous , Lethal Dose 50 , Male , Rats , Rats, Sprague-Dawley , Taurodeoxycholic Acid/administration & dosage , Toxicity Tests, Acute , Toxicity Tests, Subacute
3.
Drug Chem Toxicol ; 44(2): 161-169, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31215246

ABSTRACT

Sodium taurodeoxycholate (TDCA) has been investigated for various inflammatory disorders such as sepsis. We recently evaluated nonclinical safety profile of TDCA using rats infused intravenously. As a series of preclinical safety investigations, we further conducted toxicity studies with TDCA delivered to dogs via intravenous administration under Good Laboratory Practice regulation in this study. In dose range-finding study (dose escalation study), dogs given with TDCA at a dose of 150 mg/kg showed marked changes in clinical signs, hematology, and serum biochemistry. And biochemical markers of liver damage and local skin lesions were observed following intravenous infusion of 100 mg/kg TDCA, suggesting that 100 mg/kg was chosen as the highest dose of TDCA for 4-week repeated-dose toxicity study using dogs. Despite no treatment-related significant changes in body weight, food consumption, ophthalmoscopy, and urinalysis, skin lesions were observed at the injection site of animals administered with higher than 50 mg/kg of TDCA along with biochemical and histopathological changes associated with liver injury. However, most of off-target effects were found to be reversible since these were recovered after stopping TDCA infusion. These findings indicate that the no-observed-adverse-effect-level (NOAEL) for TDCA in dogs was considered to be 5 mg/kg/d. Taken together, our results provide important toxicological profiles regarding the safe dose of TDCA for drug development or clinical application.


Subject(s)
Anti-Inflammatory Agents/toxicity , Taurodeoxycholic Acid/toxicity , Animals , Anti-Inflammatory Agents/administration & dosage , Dogs , Dose-Response Relationship, Drug , Female , Male , No-Observed-Adverse-Effect Level , Taurodeoxycholic Acid/administration & dosage , Toxicity Tests, Acute , Toxicity Tests, Subacute
4.
Eur J Immunol ; 48(5): 777-790, 2018 05.
Article in English | MEDLINE | ID: mdl-29313959

ABSTRACT

Mitochondrial defects and antimitochondrial cardiolipin (CL) antibodies are frequently detected in autoimmune disease patients. CL from dysregulated mitochondria activates various pattern recognition receptors, such as NLRP3. However, the mechanism by which mitochondrial CL activates APCs as a damage-associated molecular pattern to prime antigen-specific naïve T cells, which is crucial for T-cell-dependent anticardiolipin IgG antibody production in autoimmune diseases is unelucidated. Here, we show that CL increases the expression of costimulatory molecules in CD11c+ APCs both in vitro and in vivo. CL activates CD11c+ APCs via TLR2-PI3K-PKN1-AKT/p38MAPK-NF-κB signaling. CD11c+ APCs that have been activated by CL are sufficient to prime H-Y peptide-specific naïve CD4+ T cells and OVA-specific naïve CD8+ T cells. TLR2 is necessary for anti-CL IgG antibody responses in vivo. Intraperitoneal injection of CL does not activate CD11c+ APCs in CD14 KO mice to the same extent as in wild-type mice. CL binds to CD14 (Kd = 7 × 10-7 M). CD14, but not MD2, plays a role in NF-kB activation by CL, suggesting that CD14+ macrophages contribute to recognizing CL. In summary, CL activates signaling pathways in CD11c+ APCs through a mechanism similar to gram (+) bacteria and plays a crucial role in priming antigen-specific naïve T cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Cardiolipins/immunology , Dendritic Cells/immunology , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase C/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Toll-Like Receptor 2/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Antiphospholipid Syndrome/immunology , Autoimmunity/immunology , CD11c Antigen/metabolism , Lipopolysaccharide Receptors/genetics , Lipopolysaccharide Receptors/metabolism , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Signal Transduction/immunology
5.
Biochem Biophys Res Commun ; 515(2): 318-324, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31153638

ABSTRACT

Calcium (Ca2+) is an important element for many physiological functions of the uterus, including embryo implantation. Here, we investigated the possible involvement of altered intracellular Ca2+ levels in decidualization in human endometrial stromal cells (hEMSCs). hEMSCs showed high levels of mesenchymal stem cell marker expression (CD73, CD90, and CD105) and did not express markers of hematopoietic progenitor cells (CD31, CD34, CD45, and HLA-DR). Decidualization is a process of ovarian steroid-induced endometrial stromal cell proliferation and differentiation. Several types of ion channels, which are regulated by the ovarian hormones progesterone and estradiol, as well as growth factors, are important for endometrial receptivity and embryo implantation. The combined application of progesterone (1 µM medroxyprogesterone acetate) and cyclic AMP (0.5 mM) for 6 days not only elevated inositol 1,4,5-triphosphate receptor (IP3R)-mediated Ca2+ release and IP3R expression, it also promoted ORAI and STIM expression as well as cyclopiazonic acid-induced Ca2+ release. Finally, intracellular Ca2+ levels and ion channel gene expression influenced hEMSC proliferation. These results suggest that cytosolic Ca2+ dynamics, mediated by specific ion channels, serve as an important step in the decidualization of hEMSCs.


Subject(s)
Calcium/metabolism , Decidua/cytology , Decidua/metabolism , Endometrium/cytology , Endometrium/metabolism , Stromal Cells/metabolism , Adult , Antigens, CD/metabolism , Calcium Release Activated Calcium Channels/metabolism , Calcium Signaling , Cell Differentiation , Cell Proliferation , Cells, Cultured , Endoplasmic Reticulum/metabolism , Female , Humans , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Stromal Interaction Molecules/metabolism
6.
Neurochem Res ; 41(4): 913-23, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26646002

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a devastating human neurodegenerative disease. The precise pathogenic mechanisms of the disease remain uncertain, and as of yet, there is no effective cure. Human adipose stem cells (hASC) can be easily obtained during operative procedures. hASC have a clinically feasible potential to treat neurodegenerative disorders, since cytosolic extract of hASC contain a number of essential neurotrophic factors. In this study, we investigated effects of hASC extract on the SOD1 G93A mouse model of ALS and in vitro test. Administration of hASC extract improved motor function and prolonged the time until symptom onset, rotarod failure, and death in ALS mice. In the hASC extracts group, choline acetyltransferase immunostaining in the ventral horn of the lumbar spinal cord showed a large number of motor neurons, suggesting normal morphology. The neuroprotective effect of hASC extract in ALS mice was also suggested by western blot analysis of spinal cord extract from ALS mice and in vitro test. hASC extract treatment significantly increased expression of p-Akt, p-CREB, and PGC-1α in SOD1 G93A mouse model and in vitro test. Our results indicated that hASC extract reduced apoptotic cell death and recovered mutant SOD1-induced mitochondrial dysfunction. Moreover, hASC extract reduced mitochondrial membrane potential. In conclusion, we have demonstrated, for the first time, that hASC extract exert a potential therapeutic action in the SOD1 G93A mouse model of ALS and in vitro test. These findings suggest that hASC hold promise as a novel therapeutic strategy for treating ALS.


Subject(s)
Adipose Tissue/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Cell Extracts/pharmacology , Neuroprotective Agents/pharmacology , Stem Cells/metabolism , Adipose Tissue/cytology , Amyotrophic Lateral Sclerosis/pathology , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Apoptosis Regulatory Proteins/metabolism , Cell Extracts/therapeutic use , Cell Survival , Cyclic AMP Response Element-Binding Protein/metabolism , Female , Humans , Male , Mice, Transgenic , Mitochondria/metabolism , Motor Neurons/drug effects , Motor Neurons/pathology , Neuroprotective Agents/therapeutic use , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phosphorylation , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , Transcription Factors/metabolism
7.
J Biol Chem ; 289(8): 5310-9, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24385435

ABSTRACT

Hepatitis C virus (HCV) infection in hepatocytes stimulates innate antiviral responses including the production of type III interferons (IFN-λ), including IL-28A, IL-28B, and IL-29. However, the molecular mechanism(s) regulating the expression of IFN-λ genes in HCV-infected hepatocytes remains undefined. In this study, we examined regulatory elements involved in the induction of IFN-λ genes following HCV infection in hepatocytes and further determined the binding of specific transcription factor(s) to promoter regions of IFN-λ genes. Our studies reveal that the regulatory portion for IL-28A, IL-28B, and IL-29 genes is localized to a 1-kb region in their respective promoters. Notably, interferon regulatory factor (IRF)-3 and -7 are the key transcriptional factors for the induction of IL-28A and IL-28B genes, whereas NF-κB is an additional requirement for the induction of the IL-29 gene. Ligation of Toll-like receptors (TLR) 3, 7, 8, and 9, which also activate IRFs and NF-κB, resulted in more robust production of IFN-λ than that observed with HCV infection, verifying the importance of TLR pathways in IFN-λ production. Furthermore, the addition of IFN-λ to HCV-infected hepatocytes decreased viral replication and produced a concurrent reduction in microRNA-122 (miR-122). The decrease in viral replication was enhanced by the co-administration of IFN-λ and miR-122 inhibitor (miRIDIAN), suggesting that such combinatorial therapies may be beneficial for the treatment of chronic HCV infection.


Subject(s)
Gene Expression Regulation , Hepacivirus/physiology , Hepatocytes/virology , Interferon Regulatory Factor-3/metabolism , Interferon Regulatory Factor-7/metabolism , Interleukins/genetics , NF-kappa B/metabolism , Cells, Cultured , Hepatitis C/genetics , Hepatitis C/virology , Hepatocytes/metabolism , Humans , Interferons , Interleukins/metabolism , Ligands , Liver/metabolism , Liver/pathology , Liver/virology , MicroRNAs/metabolism , Promoter Regions, Genetic/genetics , Protein Binding , Transcription, Genetic , Transcriptional Activation/genetics
8.
Muscle Nerve ; 51(3): 333-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24958627

ABSTRACT

INTRODUCTION: Split hand is considered to be a specific feature of amyotrophic lateral sclerosis (ALS). METHODS: We evaluated the pattern difference of intrinsic hand muscles of upper limb-onset ALS (UL-ALS), upper limb-onset progressive muscular atrophy (UL-PMA), brachial amyotrophic diplegia (BAD), and Hirayama disease (HD) by measuring objective electrophysiological markers. RESULTS: The abductor digiti minimi (ADM)/abductor pollicis brevis (APB) compound muscle action potential (CMAP) amplitude ratio was significantly higher in UL-ALS than other variants, but a considerable proportion of UL-ALS cases had an amplitude ratio in the range of other variants. Absent APB CMAP and abnormally high ADM/APB CMAP amplitude ratio (≥4) occurred only with UL-ALS. Conversely, an absent ADM CMAP was identified only in UL-PMA and BAD. CONCLUSIONS: The absolute ADM/APB CMAP amplitude ratio was not specific for ALS; however, several findings from simple electrophysiological measurements may help predict prognosis in patients with motor neuron diseases and may be early diagnostic markers for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/epidemiology , Hand/pathology , Muscular Atrophy/diagnosis , Muscular Atrophy/epidemiology , Action Potentials/physiology , Adolescent , Adult , Aged , Amyotrophic Lateral Sclerosis/physiopathology , Female , Humans , Male , Middle Aged , Muscular Atrophy/physiopathology , Retrospective Studies , Young Adult
10.
BMC Immunol ; 15: 48, 2014 Oct 18.
Article in English | MEDLINE | ID: mdl-25323934

ABSTRACT

BACKGROUND: The application of vaccine adjuvants has been vigorously studied for a diverse range of diseases in order to improve immune responses and reduce toxicity. However, most adjuvants have limited uses in clinical practice due to their toxicity. METHODS: Therefore, to reduce health risks associated with the use of such adjuvants, we developed an advanced non-toxic adjuvant utilizing biodegradable chitosan hydrogel (CH-HG) containing ovalbumin (OVA) and granulocyte-macrophage colony-stimulating factor (GM-CSF) as a local antigen delivery system. RESULTS: After subcutaneous injection into mice, OVA/GM-CSF-loaded CH-HG demonstrated improved safety and enhanced OVA-specific antibody production compared to oil-based adjuvants such as Complete Freund's adjuvant (CFA) or Incomplete Freund's adjuvant (IFA). Moreover, CH-HG system-mediated immune responses was characterized by increased number of OVA-specific CD4(+) and CD8(+) INF-γ(+) T cells, leading to enhanced humoral and cellular immunity. CONCLUSIONS: In this study, the improved safety and enhanced immune response characteristics of our novel adjuvant system suggest the possibility of the extended use of adjuvants in clinical practice with reduced apprehension about toxic side effects.


Subject(s)
Adjuvants, Immunologic/toxicity , Chitosan/toxicity , Epitopes/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Hydrogel, Polyethylene Glycol Dimethacrylate/toxicity , Immunity/drug effects , Animals , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Female , Freund's Adjuvant , Immunization , Immunoglobulin G/immunology , Injections, Subcutaneous , Lipids , Mice, Inbred C57BL , Ovalbumin/immunology
11.
Clin Exp Emerg Med ; 11(1): 43-50, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38204159

ABSTRACT

OBJECTIVE: Ischemia-reperfusion (IR) injury is implicated in various clinical diseases. Kallistatin attenuates oxidative stress, and its deficiency has been associated with poor neurological outcomes after cardiac arrest. The present study investigated the antioxidant mechanism through which kallistatin prevents IR injury. METHODS: Human umbilical vein endothelial cells (HUVECs) were transfected with small interfering RNA (siRNA) targeting the human kallistatin gene (SERPINA4). Following SERPINA4 knockdown, the level of kallistatin expression was measured. To induce IR injury, HUVECs were exposed to 24 h of oxygen-glucose deprivation and reoxygenation (OGD/R). To evaluate the effect of SERPINA4 knockdown on OGD/R, cell viability and the concentration of kallistatin, endothelial nitric oxide synthase (eNOS) and total NO were measured. RESULTS: SERPINA4 siRNA transfection suppressed the expression of kallistatin in HUVECs. Exposure to OGD/R reduced cell viability, and this effect was more pronounced in SERPINA4 knockdown cells compared with controls. SERPINA4 knockdown significantly reduced kallistatin concentration regardless of OGD/R, with a more pronounced effect observed without OGD/R. Furthermore, SERPINA4 knockdown significantly decreased eNOS concentrations induced by OGD/R (P<0.01) but did not significantly affect the change in total NO concentration (P=0.728). CONCLUSION: The knockdown of SERPINA4 resulted in increased vulnerability of HUVECs to OGD/R and significantly affected the change in eNOS level induced by OGD/R. These findings suggest that the protective effect of kallistatin against IR injury may contribute to its eNOS-promoting effect.

12.
Biomed Pharmacother ; 177: 117083, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968793

ABSTRACT

Cancer stem cells (CSCs) can self-renew and differentiate, contributing to tumor heterogeneity, metastasis, and recurrence. Their resistance to therapies, including immunotherapy, underscores the importance of targeting them for complete remission and relapse prevention. Olfactomedin 4 (OLFM4), a marker associated with various cancers such as colorectal cancer, is expressed on CSCs promoting immune evasion and tumorigenesis. However, its potential as a target for CSC-specific immunotherapy remains underexplored. The primary aim of this study is to evaluate the effectiveness of targeting OLFM4 with dendritic cell (DC)-based vaccines in inhibiting tumor growth and metastasis. To improve antigen delivery and immune response, OLFM4 was conjugated with a protein-transduction domain (PTD) from the antennapedia of Drosophila called penetratin, creating a fusion protein (P-OLFM4). The efficacy of DCs pulsed with P-OLFM4 (DCs [P-OLFM4]) was compared to DCs pulsed with OLFM4 (DCs [OLFM4]) and PBS (DCs [PBS]). DCs [P-OLFM4] inhibited tumor growth by 91.2 % and significantly reduced lung metastasis of OLFM4+ melanoma cells by 97 %, compared to the DCs [PBS]. DCs [OLFM4] also demonstrated a reduction in lung metastasis by 59.7 % compared to DCs [PBS]. Immunization with DCs [P-OLFM4] enhanced OLFM4-specific T-cell proliferation, interferon-γ production, and cytotoxic T cell activity in mice. The results indicate that OLFM4 is a viable target for CSC-focused immunotherapy. DC [P-OLFM4] vaccines can elicit robust immune responses, significantly inhibiting tumor growth and metastasis. This strategy holds promise for developing more effective cancer treatments that specifically target CSCs, potentially leading to better patient outcomes by reducing the likelihood of tumor relapse and metastasis.

13.
Front Immunol ; 15: 1390327, 2024.
Article in English | MEDLINE | ID: mdl-38742106

ABSTRACT

Introduction: Tuberculous pleural effusion (TPE) stands as one of the primary forms of extrapulmonary tuberculosis (TB) and frequently manifests in regions with a high prevalence of TB, consequently being a notable cause of pleural effusion in such areas. However, the differentiation between TPE and parapneumonic pleural effusion (PPE) presents diagnostic complexities. This study aimed to evaluate the potential of myeloid-derived suppressor cells (MDSCs) in the pleural fluid as a potential diagnostic marker for distinguishing between TPE and PPE. Methods: Adult patients, aged 18 years or older, who presented to the emergency room of a tertiary referral hospital and received a first-time diagnosis of pleural effusion, were prospectively enrolled in the study. Various immune cell populations, including T cells, B cells, natural killer (NK) cells, and MDSCs, were analyzed in both pleural fluid and peripheral blood samples. Results: In pleural fluid, the frequency of lymphocytes, including T, B, and NK cells, was notably higher in TPE compared to PPE. Conversely, the frequency of polymorphonuclear (PMN)-MDSCs was significantly higher in PPE. Notably, compared to traditional markers such as the neutrophil-to-lymphocyte ratio and adenosine deaminase level, the frequency of PMN-MDSCs emerged as a more effective discriminator between PPE and TPE. PMN-MDSCs demonstrated superior positive and negative predictive values and exhibited a higher area under the curve in the receiver operating characteristic curve analysis. PMN-MDSCs in pleural effusion increased the levels of reactive oxygen species and suppressed the production of interferon-gamma from T cells following nonspecific stimulation. These findings suggest that MDSC-mediated immune suppression may contribute to the pathology of both TPE and PPE. Discussion: The frequency of PMN-MDSCs in pleural fluid is a clinically useful indicator for distinguishing between TPE and PPE.


Subject(s)
Biomarkers , Myeloid-Derived Suppressor Cells , Pleural Effusion , Tuberculosis, Pulmonary , Humans , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Male , Female , Pleural Effusion/immunology , Pleural Effusion/diagnosis , Middle Aged , Diagnosis, Differential , Adult , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/immunology , Aged , Pneumonia/diagnosis , Pneumonia/immunology , Prospective Studies , Tuberculosis, Pleural/diagnosis , Tuberculosis, Pleural/immunology
14.
Biomed Pharmacother ; 176: 116781, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38805966

ABSTRACT

Influenza A virus causes numerous deaths and infections worldwide annually. Therefore, we have considered nanobodies as a potential treatment for patients with severe cases of influenza. We developed a nanobody that was expected to have protective efficacy against the A/California/04/2009 (CA/04; pandemic 2009 flu strain) and evaluated its therapeutic efficacy against CA/04 in mice experiments. This nanobody was derived from the immunization of the alpaca, and the inactivated CA/04 virus was used as an immunogen. We successfully generated a nanobody library through bio-panning, phage ELISA, and Bio-layer interferometry. Moreover, we confirmed that administering nanobodies after lethal doses of CA/04 reduced viral replication in the lungs and influenza-induced clinical signs in mice. These research findings will help to develop nanobodies as viral therapeutics for CA/04 and other infectious viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Single-Domain Antibodies , Animals , Single-Domain Antibodies/immunology , Influenza A Virus, H1N1 Subtype/immunology , Mice , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , Female , Mice, Inbred BALB C , Camelids, New World/immunology , Lung/immunology , Lung/virology , Lung/drug effects , Lung/pathology , Antibodies, Viral/immunology , Virus Replication/drug effects
15.
Int Immunopharmacol ; 122: 110628, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37454634

ABSTRACT

BACKGROUND: Inflammatory bowel disease (IBD) is typically managed using medications such as 5-aminosalicylic acid (5-ASA), glucocorticoids, anti-TNFα Ab, or anti-IL-12/23 Ab. However, some patients do not respond well to these treatments or frequently experience relapses. Therefore, alternative therapeutic options are needed. Since the activation of the inflammasome is crucial to the pathogenesis of IBD, inhibiting the inflammasome may be beneficial for patients. MATERIALS AND METHODS: We tested the efficacy of taurodeoxycholate (TDCA), which is a known G-protein coupled receptor 19 (GPCR19) agonist, in a mouse colitis model induced by dextran sodium sulfate (DSS). RESULTS: In the mouse colitis model, TDCA prevented loss of body weight, shortening of the colon, production of pro-inflammatory cytokines, infiltration of pro-inflammatory cells, and mucosal ulceration in the colon. In vitro, TDCA inhibited the activation of NF-κB in bone marrow-derived macrophages (BMDMs) by activating the cAMP-PKA axis. TDCA downregulated the expression of purinergic receptor P2X7 (P2X7R) and enhanced the colocalization of P2X7R with GPCR19, and inhibited the Ca2+ mobilization of BMDMs when stimulated with ATP or BzATP, which plays a pivotal role in activating the NLRP3 inflammasome (N3I) via P2X7R. TDCA inhibited the oligomerization of NLRP3-ASC and downregulated the expression of NLRP3 and ASC, as well as suppressed the maturation of pro-caspase-1 and pro-IL-1ß. TDCA also increased the percentage of M2 macrophages while decreasing the number of M1 macrophages, Th1, Th2, and Th17 cells in the colon. CONCLUSION: TDCA ameliorated DSS-induced colitis in mice, possibly by inhibiting both the priming phase (via the GPCR19-cAMP-PKA-NF-κB axis) and the activation phase (via the GPCR19-P2X7R-NLRP3-Caspase 1-IL-1ß axis) of N3I signaling.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NF-kappa B/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Inflammatory Bowel Diseases/metabolism , Dextran Sulfate , Mice, Inbred C57BL
16.
Commun Biol ; 6(1): 272, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36922564

ABSTRACT

Myeloid-derived suppressor cells (MDSCs) consist of monocytic (M-) MDSCs and polymorphonuclear (PMN-) MDSCs that contribute to an immunosuppressive environment in tumor-bearing hosts. However, research on the phenotypic and functional heterogeneity of MDSCs in tumor-bearing hosts and across different disease stage is limited. Here we subdivide M-MDSCs based on CD115 expression and report that CD115- M-MDSCs are functionally distinct from CD115+ M-MDSCs. CD115- M-MDSCs increased in bone marrow and blood as tumors progressed. Transcriptome analysis revealed that CD115- M-MDSCs expressed higher levels of neutrophil-related genes. Moreover, isolated CD115- M-MDSCs had higher potential to be differentiated into PMN-MDSCs compared with CD115+ M-MDSCs. Of note, CD115- M-MDSCs were able to differentiate into both olfactomedin 4 (OLFM4)hi and OLFM4lo PMN-MDSCs, whereas CD115+ M-MDSCs differentiated into a smaller proportion of OLFM4lo PMN-MDSCs. In vivo, M-MDSC to PMN-MDSC differentiation occurred most frequently in bone marrow while M-MDSCs preferentially differentiated into tumor-associated macrophages in the tumor mass. Our study reveals the presence of previously unrecognized subtypes of CD115- M-MDSCs in tumor-bearing hosts and demonstrates their cellular plasticity during tumorigenesis.


Subject(s)
Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Myeloid-Derived Suppressor Cells/metabolism , Neoplasms/pathology , Monocytes , Neutrophils , Carcinogenesis/metabolism , Granulocyte Colony-Stimulating Factor
17.
Pharmacology ; 90(3-4): 151-9, 2012.
Article in English | MEDLINE | ID: mdl-22890360

ABSTRACT

BACKGROUND AND PURPOSE: Lipopolysaccharide (LPS) induces intestinal dysmotility by alteration of smooth muscle and enteric neuronal activities. However, there is no report on the modulatory effects of LPS on the interstitial cells of Cajal (ICCs). We investigated the effect of LPS and its signal transduction in ICCs. METHODS: We performed whole-cell patch clamp and RT-PCR in cultured ICCs from mouse small intestine. RESULTS: LPS suppressed the generation of pacemaker currents of ICCs. The mRNA transcripts for Toll-like receptor 4 (TLR4) were expressed in ICCs. However, the inhibitory action of LPS on pacemaker currents from TLR4(+/+) mice was not present in TLR4(-/-) mice. The inhibitory effects of LPS on ICCs were blocked by glibenclamide (an inhibitor of ATP-sensitive K(+) channels), NS-398 (a COX-2 inhibitor), AH6808 [a prostaglandin E(2) (PGE(2))-EP(2) receptor antagonist], ODQ (an inhibitor of guanylate cyclase) and L-NAME [an inhibitor of nitric oxide synthase (NOS)]. Furthermore, genistein and herbimycin A (tyrosine kinase inhibitors) blocked the LPS-induced inhibitory action on pacemaker activity in ICCs. CONCLUSIONS: LPS can activate ICCs to release NO and PGE(2) through TLR4 activation. The released NO and PGE(2) inhibit pacemaker currents by activating ATP-sensitive K(+) channels. The LPS actions are mediated by tyrosine kinase signaling pathways.


Subject(s)
Interstitial Cells of Cajal/drug effects , Lipopolysaccharides/pharmacology , Animals , Dinoprostone/biosynthesis , Interstitial Cells of Cajal/physiology , KATP Channels/physiology , Mice , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , Protein-Tyrosine Kinases/physiology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/physiology
18.
Int Immunopharmacol ; 113(Pt A): 109330, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36274483

ABSTRACT

BACKGROUND: Activation of the nuclear factor B (NF-κB) signaling pathway by pattern recognition receptors (PRRs) is regarded as a crucial mechanism of neuroinflammation and brain injury after acute ischemic stroke. The stimulation of alpha-kinase 1 (ALPK1), a newly identified PRR, triggers NF-κB activation and an inflammatory response. Longitudinal population-based genetic epidemiological studies suggest that the ALPK1 gene is a susceptible site to ischemic stroke. However, the function of ALPK1 in the central nervous system remains unclear. The present study explored the role of ALPK1 in acute ischemic stroke. METHODS: BV2 microglial cells were stimulated with conditioned medium (CM) that was collected from oxygen and glucose deprivation (OGD)-treated HT22 neurons, and a murine brain ischemia model was established to detect the changes of ALPK1 expression. We used lentivirus to knockdown ALPK1 to explore the effects of ALPK1 in cerebral ischemia models in vitro and in vivo. RESULTS: We observed a significant increase of ALPK1 expression in BV2 cells that were stimulated with OGD CM. The knockdown of ALPK1 inhibited the phosphorylation of tumor necrosis factor receptor associated factor-interacting protein with a forkhead-associated domain (TIFA), the expression of tumor necrosis factor receptor-associated factor 6 (TRAF6), the activation of NF-κB, and the levels of proinflammatory factors in the BV2 cells. We also verified a neuroprotective effect of ALPK1 knockdown against ischemic brain injury through inhibition of the TIFA/TRAF6/NF-κB pathway and neuroinflammation in mice. CONCLUSIONS: This study demonstrates that ALPK1 is implicated in sterile inflammatory injury after acute brain ischemia, which provides first evidence for the therapeutic potential of ALPK1 inhibition in ischemic stroke.


Subject(s)
Brain Injuries , Brain Ischemia , Ischemic Stroke , Protein Kinases , Animals , Mice , Brain Injuries/metabolism , Brain Ischemia/metabolism , Cerebral Infarction , Glucose/metabolism , Microglia , Neuroinflammatory Diseases , NF-kappa B/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Protein Kinases/genetics , Neuroprotection
19.
Front Immunol ; 13: 766919, 2022.
Article in English | MEDLINE | ID: mdl-35464490

ABSTRACT

Amyloid ß (Aß) and/or ATP activate the NLRP3 inflammasome (N3I) via P2X7R in microglia, which is crucial in neuroinflammation in Alzheimer's disease (AD). Due to polymorphisms, subtypes, and ubiquitous expression of P2X7R, inhibition of P2X7R has not been effective for AD. We first report that taurodeoxycholate (TDCA), a GPCR19 ligand, inhibited the priming phase of N3I activation, suppressed P2X7R expression and P2X7R-mediated Ca++ mobilization and N3I oligomerization, which is essential for production of IL-1ß/IL-18 by microglia. Furthermore, TDCA enhanced phagocytosis of Aß and decreased the number of Aß plaques in the brains of 5x Familial Alzheimer's disease (5xFAD) mice. TDCA also reduced microgliosis, prevented neuronal loss, and improved memory function in 5xFAD mice. The pleiotropic roles of GPCR19 in P2X7R-mediated N3I activation suggest that targeting GPCR19 might resolve neuroinflammation in AD patients.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Humans , Inflammasomes/metabolism , Mice , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
20.
Int J Cancer ; 128(3): 702-14, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-20473881

ABSTRACT

DNA vaccines have emerged as an attractive approach to generate antigen-specific T-cell immune response. Nevertheless, the potency of DNA vaccines still needs to be improved for cancer immunotherapy. In this study, we explored whether functional linkage of a Th1-polarizing chemokine, IP-10, to a model tumor antigen, human papillomavirus type 16 (HPV-16) E7, enhanced DNA vaccine potency. IP-10 linkage changed the location of E7 from the nucleus to the endoplasmic reticulum and led to the secretion of functionally chemoattractive chimeric IP-10/E7 protein. In addition, this linkage drastically enhanced the endogenous processing of E7 antigen through MHC class I. More importantly, we found that C57BL/6 mice intradermally vaccinated with IP-10/E7 DNA exhibited a dramatic increase in the number of E7-specific CD4(+) Th1 T-cells and CD8(+) T-cells and, consequently, were strongly resistant over the long term to E7-expressing tumors compared to mice vaccinated with wild-type E7 DNA. Thus, because of the increase in tumor antigen-specific T-cell immune responses obtained through both enhanced antigen presentation and chemoattraction, vaccination with DNA encoding IP-10 linked to a tumor antigen holds great promise for treating tumors.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes/immunology , Vaccines, DNA/therapeutic use , Animals , Antibody-Dependent Enhancement , Base Sequence , Cytokines/physiology , DNA Primers , Dendritic Cells/immunology , Gene Amplification , Humans , Immunotherapy/methods , Mice , Mice, Inbred C57BL , Microscopy, Confocal , Microscopy, Fluorescence , Neoplasms/therapy , Polymerase Chain Reaction/methods , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL