Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
J Biol Chem ; 295(9): 2601-2613, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31953320

ABSTRACT

The nonreceptor protein-tyrosine phosphatase (PTP) SHP2 is encoded by the proto-oncogene PTPN11 and is a ubiquitously expressed key regulator of cell signaling, acting on a number of cellular processes and components, including the Ras/Raf/Erk, PI3K/Akt, and JAK/STAT pathways and immune checkpoint receptors. Aberrant SHP2 activity has been implicated in all phases of tumor initiation, progression, and metastasis. Gain-of-function PTPN11 mutations drive oncogenesis in several leukemias and cause developmental disorders with increased risk of malignancy such as Noonan syndrome. Until recently, small molecule-based targeting of SHP2 was hampered by the failure of orthosteric active-site inhibitors to achieve selectivity and potency within a useful therapeutic window. However, new SHP2 allosteric inhibitors with excellent potency and selectivity have sparked renewed interest in the selective targeting of SHP2 and other PTP family members. Crucially, drug discovery campaigns focusing on SHP2 would greatly benefit from the ability to validate the cellular target engagement of candidate inhibitors. Here, we report a cellular thermal shift assay that reliably detects target engagement of SHP2 inhibitors. Using this assay, based on the DiscoverX InCell Pulse enzyme complementation technology, we characterized the binding of several SHP2 allosteric inhibitors in intact cells. Moreover, we demonstrate the robustness and reliability of a 384-well miniaturized version of the assay for the screening of SHP2 inhibitors targeting either WT SHP2 or its oncogenic E76K variant. Finally, we provide an example of the assay's ability to identify and characterize novel compounds with specific cellular potency for either WT or mutant SHP2.


Subject(s)
Drug Discovery/methods , Enzyme Inhibitors/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Animals , Carcinogenesis/genetics , Cell Line , Gain of Function Mutation , Humans , Protein Binding , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Mas
2.
Bioorg Med Chem Lett ; 43: 128048, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33887438

ABSTRACT

Nicotinamide phosphoribosyltransferase (NAMPT) catalyzes the rate-limiting step of the NAD+ salvage pathway. Since NAD+ plays a pivotal role in many biological processes including metabolism and aging, activation of NAMPT is an attractive therapeutic target for treatment of diverse array of diseases. Herein, we report the continued optimization of novel urea-containing derivatives which were identified as potent NAMPT activators. Early optimization of HTS hits afforded compound 12, with a triazolopyridine core, as a lead compound. CYP direct inhibition (DI) was identified as an issue of concern, and was resolved through modulation of lipophilicity to culminate in 1-[2-(1-methyl-1H-pyrazol-5-yl)-[1,2,4]triazolo[1,5-a]pyridin-6-yl]-3-(pyridin-4-ylmethyl)urea (21), which showed potent NAMPT activity accompanied with attenuated CYP DI towards multiple CYP isoforms.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Cytokines/metabolism , Drug Discovery , Enzyme Inhibitors/pharmacology , Nicotinamide Phosphoribosyltransferase/metabolism , Urea/pharmacology , Animals , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/chemistry
3.
Bioorg Med Chem Lett ; 41: 128007, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33798699

ABSTRACT

NAD+ is a crucial cellular factor that plays multifaceted roles in wide ranging biological processes. Low levels of NAD+ have been linked to numerous diseases including metabolic disorders, cardiovascular disease, neurodegeneration, and muscle wasting disorders. A novel strategy to boost NAD+ is to activate nicotinamide phosphoribosyltransferase (NAMPT), the putative rate-limiting step in the NAD+ salvage pathway. We previously showed that NAMPT activators increase NAD+ levels in vitro and in vivo. Herein we describe the optimization of our NAMPT activator prototype (SBI-0797812) leading to the identification of 1-(4-((4-chlorophenyl)sulfonyl)phenyl)-3-(oxazol-5-ylmethyl)urea (34) that showed far more potent NAMPT activation and improved oral bioavailability.


Subject(s)
Cytokines/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , Urea/pharmacology , Dose-Response Relationship, Drug , Humans , Molecular Structure , Structure-Activity Relationship , Urea/analogs & derivatives , Urea/chemistry
4.
Nat Chem Biol ; 13(5): 486-493, 2017 05.
Article in English | MEDLINE | ID: mdl-28244987

ABSTRACT

The proteasome is a vital cellular machine that maintains protein homeostasis, which is of particular importance in multiple myeloma and possibly other cancers. Targeting of proteasome 20S peptidase activity with bortezomib and carfilzomib has been widely used to treat myeloma. However, not all patients respond to these compounds, and those who do eventually suffer relapse. Therefore, there is an urgent and unmet need to develop new drugs that target proteostasis through different mechanisms. We identified quinoline-8-thiol (8TQ) as a first-in-class inhibitor of the proteasome 19S subunit Rpn11. A derivative of 8TQ, capzimin, shows >5-fold selectivity for Rpn11 over the related JAMM proteases and >2 logs selectivity over several other metalloenzymes. Capzimin stabilized proteasome substrates, induced an unfolded protein response, and blocked proliferation of cancer cells, including those resistant to bortezomib. Proteomic analysis revealed that capzimin stabilized a subset of polyubiquitinated substrates. Identification of capzimin offers an alternative path to develop proteasome inhibitors for cancer therapy.


Subject(s)
Proteasome Inhibitors/pharmacology , Quinolines/pharmacology , Trans-Activators/antagonists & inhibitors , Dose-Response Relationship, Drug , Humans , Molecular Structure , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Quinolines/chemistry , Structure-Activity Relationship , Trans-Activators/metabolism
5.
Hepatology ; 66(4): 1197-1218, 2017 10.
Article in English | MEDLINE | ID: mdl-28543567

ABSTRACT

Hepatic cystogenesis in polycystic liver disease is associated with increased levels of cyclic adenosine monophosphate (cAMP) in cholangiocytes lining liver cysts. Takeda G protein receptor 5 (TGR5), a G protein-coupled bile acid receptor, is linked to cAMP and expressed in cholangiocytes. Therefore, we hypothesized that TGR5 might contribute to disease progression. We examined expression of TGR5 and Gα proteins in cultured cholangiocytes and in livers of animal models and humans with polycystic liver disease. In vitro, we assessed cholangiocyte proliferation, cAMP levels, and cyst growth in response to (1) TGR5 agonists (taurolithocholic acid, oleanolic acid [OA], and two synthetic compounds), (2) a novel TGR5 antagonist (m-tolyl 5-chloro-2-[ethylsulfonyl] pyrimidine-4-carboxylate [SBI-115]), and (3) a combination of SBI-115 and pasireotide, a somatostatin receptor analogue. In vivo, we examined hepatic cystogenesis in OA-treated polycystic kidney rats and after genetic elimination of TGR5 in double mutant TGR5-/- ;Pkhd1del2/del2 mice. Compared to control, expression of TGR5 and Gαs (but not Gαi and Gαq ) proteins was increased 2-fold to 3-fold in cystic cholangiocytes in vitro and in vivo. In vitro, TGR5 stimulation enhanced cAMP production, cell proliferation, and cyst growth by ∼40%; these effects were abolished after TGR5 reduction by short hairpin RNA. OA increased cystogenesis in polycystic kidney rats by 35%; in contrast, hepatic cystic areas were decreased by 45% in TGR5-deficient TGR5-/- ;Pkhd1del2/del2 mice. TGR5 expression and its colocalization with Gαs were increased ∼2-fold upon OA treatment. Levels of cAMP, cell proliferation, and cyst growth in vitro were decreased by ∼30% in cystic cholangiocytes after treatment with SBI-115 alone and by ∼50% when SBI-115 was combined with pasireotide. CONCLUSION: TGR5 contributes to hepatic cystogenesis by increasing cAMP and enhancing cholangiocyte proliferation; our data suggest that a TGR5 antagonist alone or concurrently with somatostatin receptor agonists represents a potential therapeutic approach in polycystic liver disease. (Hepatology 2017;66:1197-1218).


Subject(s)
Cyclic AMP/metabolism , Cysts/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , Liver Diseases/metabolism , Pyrimidines/therapeutic use , Receptors, G-Protein-Coupled/metabolism , Adaptor Proteins, Signal Transducing , Animals , Cell Proliferation/drug effects , Cysts/drug therapy , Drug Evaluation, Preclinical , Drug Therapy, Combination , Humans , Liver Diseases/drug therapy , Mice , Oleanolic Acid , Polycystic Kidney Diseases/metabolism , Primary Cell Culture , Pyrimidines/pharmacology , Rats , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Somatostatin/analogs & derivatives , Somatostatin/pharmacology , Somatostatin/therapeutic use
6.
Bioorg Med Chem Lett ; 28(1): 31-34, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29174347

ABSTRACT

Tissue-nonspecific alkaline phosphatase (TNAP) is an ectoenzyme crucial for bone matrix mineralization via its ability to hydrolyze extracellular inorganic pyrophosphate (ePPi), a potent mineralization inhibitor, to phosphate (Pi). By the controlled hydrolysis of ePPi, TNAP maintains the correct ratio of Pi to ePPi and therefore enables normal skeletal and dental calcification. In other areas of the body low ePPi levels lead to the development of pathological soft-tissue calcification, which can progress to a number of disorders. TNAP inhibitors have been shown to prevent these processes via an increase of ePPi. Herein we describe the use of a whole blood assay to optimize a previously described series of TNAP inhibitors resulting in 5-((5-chloro-2-methoxyphenyl)sulfonamido)nicotinamide (SBI-425), a potent, selective and oral bioavailable compound that robustly inhibits TNAP in vivo.


Subject(s)
Alkaline Phosphatase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Niacinamide/analogs & derivatives , Niacinamide/chemistry , Sulfonamides/chemistry , Administration, Oral , Alkaline Phosphatase/metabolism , Animals , Drug Evaluation, Preclinical , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Half-Life , Inhibitory Concentration 50 , Mice , Niacinamide/metabolism , Niacinamide/pharmacokinetics , Structure-Activity Relationship , Sulfonamides/metabolism , Sulfonamides/pharmacokinetics
7.
J Biol Chem ; 290(12): 7693-706, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25631047

ABSTRACT

Nicotinate mononucleotide adenylyltransferase NadD is an essential enzyme in the biosynthesis of the NAD cofactor, which has been implicated as a target for developing new antimycobacterial therapies. Here we report the crystal structure of Mycobacterium tuberculosis NadD (MtNadD) at a resolution of 2.4 Å. A remarkable new feature of the MtNadD structure, compared with other members of this enzyme family, is a 310 helix that locks the active site in an over-closed conformation. As a result, MtNadD is rendered inactive as it is topologically incompatible with substrate binding and catalysis. Directed mutagenesis was also used to further dissect the structural elements that contribute to the interactions of the two MtNadD substrates, i.e. ATP and nicotinic acid mononucleotide (NaMN). For inhibitory profiling of partially active mutants and wild type MtNadD, we used a small molecule inhibitor of MtNadD with moderate affinity (Ki ∼ 25 µM) and antimycobacterial activity (MIC80) ∼ 40-80 µM). This analysis revealed interferences with some of the residues in the NaMN binding subsite consistent with the competitive inhibition observed for the NaMN substrate (but not ATP). A detailed steady-state kinetic analysis of MtNadD suggests that ATP must first bind to allow efficient NaMN binding and catalysis. This sequential mechanism is consistent with the requirement of transition to catalytically competent (open) conformation hypothesized from structural modeling. A possible physiological significance of this mechanism is to enable the down-regulation of NAD synthesis under ATP-limiting dormancy conditions. These findings point to a possible new strategy for designing inhibitors that lock the enzyme in the inactive over-closed conformation.


Subject(s)
Antitubercular Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/enzymology , Nicotinamide-Nucleotide Adenylyltransferase/metabolism , Amino Acid Sequence , Antitubercular Agents/chemistry , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mycobacterium tuberculosis/drug effects , Nicotinamide-Nucleotide Adenylyltransferase/antagonists & inhibitors , Nicotinamide-Nucleotide Adenylyltransferase/chemistry , Protein Conformation , Sequence Homology, Amino Acid , Structure-Activity Relationship
8.
Circulation ; 131(7): 656-68, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25520375

ABSTRACT

BACKGROUND: A limitation of current antiplatelet therapies is their inability to separate thrombotic events from bleeding occurrences. A better understanding of the molecular mechanisms leading to platelet activation is important for the development of improved therapies. Recently, protein tyrosine phosphatases have emerged as critical regulators of platelet function. METHODS AND RESULTS: This is the first report implicating the dual-specificity phosphatase 3 (DUSP3) in platelet signaling and thrombosis. This phosphatase is highly expressed in human and mouse platelets. Platelets from DUSP3-deficient mice displayed a selective impairment of aggregation and granule secretion mediated by the collagen receptor glycoprotein VI and the C-type lectin-like receptor 2. DUSP3-deficient mice were more resistant to collagen- and epinephrine-induced thromboembolism compared with wild-type mice and showed severely impaired thrombus formation on ferric chloride-induced carotid artery injury. Intriguingly, bleeding times were not altered in DUSP3-deficient mice. At the molecular level, DUSP3 deficiency impaired Syk tyrosine phosphorylation, subsequently reducing phosphorylation of phospholipase Cγ2 and calcium fluxes. To investigate DUSP3 function in human platelets, a novel small-molecule inhibitor of DUSP3 was developed. This compound specifically inhibited collagen- and C-type lectin-like receptor 2-induced human platelet aggregation, thereby phenocopying the effect of DUSP3 deficiency in murine cells. CONCLUSIONS: DUSP3 plays a selective and essential role in collagen- and C-type lectin-like receptor 2-mediated platelet activation and thrombus formation in vivo. Inhibition of DUSP3 may prove therapeutic for arterial thrombosis. This is the first time a protein tyrosine phosphatase, implicated in platelet signaling, has been targeted with a small-molecule drug.


Subject(s)
Dual Specificity Phosphatase 3/antagonists & inhibitors , Dual Specificity Phosphatase 3/deficiency , Platelet Activation/physiology , Pulmonary Embolism/enzymology , Animals , Cells, Cultured , Enzyme Inhibitors/pharmacology , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Platelet Activation/drug effects , Pulmonary Embolism/blood , Thrombosis/blood , Thrombosis/enzymology
9.
Methods ; 65(2): 165-74, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-23886911

ABSTRACT

Robust, facile high throughput assays based on non-peptidic probes are available to detect the enzyme activity of protein tyrosine phosphatases. However, these assays cannot replace the use of peptide-based probes in many applications; for example when a closer mimic of the physiological target is desired or in substrate profiling expeditions. Phosphotyrosine peptides are often used in these assays, but their use is complicated by either poor sensitivity or the need for indirect detection methods, among other pitfalls. Novel peptide-based probes for protein tyrosine phosphatases are needed to replace phosphotyrosine peptides and accelerate the field of tyrosine phosphatase substrate profiling. Here we review a type of peptidic probe for tyrosine phosphatases, which is based on the incorporation of the phosphotyrosine-mimic phosphocoumaryl amino propionic acid (pCAP) into peptides. The resulting fluorogenic pCAP peptides are dephosphorylated by tyrosine phosphatases with similar efficiency as the homologous phosphotyrosine peptides. pCAP peptides outperform phosphotyrosine peptides, providing an assay that is as robust, sensitive and facile as the non-peptidic fluorogenic probes on the market. Finally the use of pCAP can expand the range of phosphatase assays, facilitating the investigation of multiphosphorylated peptides and providing an in-gel assay for phosphatase activity.


Subject(s)
Alanine/analogs & derivatives , Biological Assay/methods , Coumarins/chemistry , Fluorescent Dyes/chemistry , Organophosphates/chemistry , Peptides/chemistry , Protein Tyrosine Phosphatases/chemistry , Alanine/chemistry , Electrophoresis, Polyacrylamide Gel , Humans , Peptides/genetics , Protein Tyrosine Phosphatases/genetics , Substrate Specificity
10.
Bioorg Med Chem Lett ; 24(17): 4308-11, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25124115

ABSTRACT

We report the discovery and characterization of a series of benzoisothiazolone inhibitors of PHOSPHO1, a newly identified soluble phosphatase implicated in skeletal mineralization and soft tissue ossification abnormalities. High-throughput screening (HTS) of a small molecule library led to the identification of benzoisothiazolones as potent and selective inhibitors of PHOSPHO1. Critical structural requirements for activity were determined, and the compounds were subsequently derivatized and measured for in vitro activity and ADME parameters including metabolic stability and permeability. On the basis of its overall profile the benzoisothiazolone analogue 2q was selected as MLPCN probe ML086.


Subject(s)
Benzamides/pharmacology , Benzothiazoles/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Phosphoric Monoester Hydrolases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Animals , Benzamides/chemical synthesis , Benzamides/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Hepatocytes/drug effects , High-Throughput Screening Assays , Humans , Hydrogen-Ion Concentration , Mice , Molecular Structure , Phosphoric Monoester Hydrolases/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 24(3): 1000-1004, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24412070

ABSTRACT

Alkaline phosphatase (AP) isozymes are present in a wide range of species from bacteria to man and are capable of dephosphorylation and transphosphorylation of a wide spectrum of substrates in vitro. In humans, four AP isozymes have been identified-one tissue-nonspecific (TNAP) and three tissue-specific-named according to the tissue of their predominant expression: intestinal (IAP), placental (PLAP) and germ cell (GCAP) APs. Modulation of activity of the different AP isozymes may have therapeutic implications in distinct diseases and cellular processes. For instance, changes in the level of IAP activity can affect gut mucosa tolerance to microbial invasion due to the ability of IAP to detoxify bacterial endotoxins, alter the absorption of fatty acids and affect ectopurinergic regulation of duodenal bicarbonate secretion. To identify isozyme selective modulators of the human and mouse IAPs, we developed a series of murine duodenal IAP (Akp3-encoded dIAP isozyme), human IAP (hIAP), PLAP, and TNAP assays. High throughput screening and subsequent SAR efforts generated a potent inhibitor of dIAP, ML260, with specificity for the Akp3-, compared to the Akp5- and Akp6-encoded mouse isozymes.


Subject(s)
Acetanilides/chemistry , Acetanilides/pharmacology , Alkaline Phosphatase/antagonists & inhibitors , Sulfonamides/chemistry , Sulfonamides/pharmacology , Acetanilides/isolation & purification , Animals , Enzyme Activation/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/isolation & purification , Enzyme Inhibitors/pharmacology , Humans , Mice , Protein Isoforms/chemistry , Sulfonamides/isolation & purification
12.
bioRxiv ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38948784

ABSTRACT

Mitochondrial creatine kinases are key players in maintaining energy homeostasis in cells by working in conjunction with cytosolic creatine kinases for energy transport from mitochondria to cytoplasm. High levels of MtCK observed in Her2+ breast cancer and inhibition of breast cancer cell growth by substrate analog, cyclocreatine, indicate dependence of cancer cells on the 'energy shuttle' for cell growth and survival. Hence, understanding the key mechanistic features of creatine kinases and their inhibition plays an important role in the development of cancer therapeutics. Herein, we present the mutational and structural investigation on understudied ubiquitous mitochondrial creatine kinase (uMtCK). Our cryo-EM structures and biochemical data on uMtCK showed closure of the loop comprising residue His61 is specific to and relies on creatine binding and the reaction mechanism of phosphoryl transfer depends on electrostatics in the active site. In addition, the previously identified covalent inhibitor CKi showed inhibition in breast cancer BT474 cells, however our biochemical and structural data indicated that CKi is not a potent inhibitor for breast cancer due to strong dependency on the covalent link formation and inability to induce conformational changes upon binding.

13.
Membranes (Basel) ; 13(2)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36837653

ABSTRACT

As part of an ongoing effort to develop a drug targeting the type 1 cholecystokinin receptor (CCK1R) to help prevent and/or treat obesity, we recently performed a high throughput screening effort of small molecules seeking candidates that enhanced the action of the natural agonist, CCK, thus acting as positive allosteric modulators without exhibiting intrinsic agonist action. Such probes would be expected to act in a temporally finite way to enhance CCK action to induce satiety during and after a meal and potentially even modulate activity at the CCK1R in a high cholesterol environment present in some obese patients. The current work focuses on the best scaffold, representing tetracyclic molecules identified through high throughput screening we previously reported. Extensive characterization of the two top "hits" from the previous effort demonstrated them to fulfill the desired pharmacologic profile. We undertook analog-by-catalog expansion of this scaffold using 65 commercially available analogs. In this effort, we were able to eliminate an off-target effect observed for this scaffold while retaining its activity as a positive allosteric modulator of CCK1R in both normal and high cholesterol membrane environments. These insights should be useful in the rational medicinal chemical enhancement of this scaffold and in the future development of candidates to advance to pre-clinical proof-of-concept and to clinical trials.

14.
Sci Adv ; 9(27): eadf6621, 2023 07 07.
Article in English | MEDLINE | ID: mdl-37406115

ABSTRACT

Nuclear receptors (NRs) are implicated in the regulation of tumors and immune cells. We identify a tumor-intrinsic function of the orphan NR, NR2F6, regulating antitumor immunity. NR2F6 was selected from 48 candidate NRs based on an expression pattern in melanoma patient specimens (i.e., IFN-γ signature) associated with positive responses to immunotherapy and favorable patient outcomes. Correspondingly, genetic ablation of NR2F6 in a mouse melanoma model conferred a more effective response to PD-1 therapy. NR2F6 loss in B16F10 and YUMM1.7 melanoma cells attenuated tumor development in immune-competent but not -incompetent mice via the increased abundance of effector and progenitor-exhausted CD8+ T cells. Inhibition of NACC1 and FKBP10, identified as NR2F6 effectors, phenocopied NR2F6 loss. Inoculation of NR2F6 KO mice with NR2F6 KD melanoma cells further decreased tumor growth compared with NR2F6 WT mice. Tumor-intrinsic NR2F6 function complements its tumor-extrinsic role and justifies the development of effective anticancer therapies.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Animals , Mice , Immunotherapy , Melanoma/genetics , Repressor Proteins/metabolism
15.
Bioorg Med Chem Lett ; 22(21): 6656-60, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23010269

ABSTRACT

The recently discovered apelin/APJ system has emerged as a critical mediator of cardiovascular homeostasis and is associated with the pathogenesis of cardiovascular disease. A role for apelin/APJ in energy metabolism and gastrointestinal function has also recently emerged. We disclose the discovery and characterization of 4-oxo-6-((pyrimidin-2-ylthio)methyl)-4H-pyran-3-yl 4-nitrobenzoate (ML221), a potent APJ functional antagonist in cell-based assays that is >37-fold selective over the closely related angiotensin II type 1 (AT1) receptor. ML221 was derived from an HTS of the ~330,600 compound MLSMR collection. This antagonist showed no significant binding activity against 29 other GPCRs, except to the κ-opioid and benzodiazepinone receptors (<50/<70%I at 10 µM). The synthetic methodology, development of structure-activity relationship (SAR), and initial in vitro pharmacologic characterization are also presented.


Subject(s)
Drug Discovery , Nitrobenzoates/chemical synthesis , Pyrans/chemical synthesis , Receptors, G-Protein-Coupled/antagonists & inhibitors , Animals , Apelin Receptors , Cardiovascular Agents/chemistry , Cardiovascular Agents/pharmacology , Dose-Response Relationship, Drug , Hepatocytes/drug effects , Inhibitory Concentration 50 , Mice , Molecular Structure , Nitrobenzoates/chemistry , Nitrobenzoates/pharmacology , Protein Binding/drug effects , Pyrans/chemistry , Pyrans/pharmacology , Structure-Activity Relationship
16.
SLAS Discov ; 27(7): 384-394, 2022 10.
Article in English | MEDLINE | ID: mdl-35850480

ABSTRACT

Obesity has become a prevailing health burden globally and particularly in the US. It is associated with many health problems, including cardiovascular disease, diabetes and poorer mental health. Hence, there is a high demand to find safe and effective therapeutics for sustainable weight loss. Cholecystokinin (CCK) has been implicated as one of the first gastrointestinal hormones to reduce overeating and suppress appetite by activating the type 1 cholecystokinin receptor (CCK1R). Several drug development campaigns have focused on finding CCK1R-specific agonists, which showed promising efficacy for reducing meal size and weight, but fell short on FDA approval, likely due to side effects associated with potent, long-lasting activation of CCK1Rs. Positive allosteric modulators (PAMs) without inherent agonist activity have been proposed to overcome the shortcomings of traditional, orthosteric agonists and restore CCK1R signaling in failing physiologic systems. However, drug discovery campaigns searching for such novel acting CCK1R agents remain limited. Here we report a high-throughput screening effort and the establishment of a testing funnel, which led to the identification of novel CCK1R modulators. We utilized IP-One accumulation to develop robust functional equilibrium assays tailored to either detect PAMs, agonists or non-specific activators. In addition, we established the CCK1R multiplex PAM assay as a novel method to evaluate functional selectivity capable of recording CCK1R-induced cAMP accumulation and ß-arrestin recruitment in the same well. This selection and arrangement of methods enabled the discovery of three scaffolds, which we characterized and validated in an array of functional and binding assays. We found two hits incorporating a tetracyclic scaffold that significantly enhanced CCK signaling at CCK1Rs without intrinsically activating CCK1Rs in an overexpressing system. Our results demonstrate that a well-thought-out testing funnel can identify small molecules with a distinct pharmacological profile and provides an important milestone for the development of novel potential treatments of obesity.


Subject(s)
Cholecystokinin , Receptors, Cholecystokinin , Cholecystokinin/metabolism , Cholecystokinin/therapeutic use , Humans , Obesity/drug therapy , Obesity/metabolism , Receptors, Cholecystokinin/agonists , Receptors, Cholecystokinin/metabolism , Receptors, Cholecystokinin/therapeutic use , beta-Arrestins/metabolism
17.
Nat Cell Biol ; 24(9): 1422-1432, 2022 09.
Article in English | MEDLINE | ID: mdl-36050469

ABSTRACT

Tumour dependency on specific metabolic signals has been demonstrated and often guided numerous therapeutic approaches. We identify melanoma addiction to the mitochondrial protein glutaryl-CoA dehydrogenase (GCDH), which functions in lysine metabolism and controls protein glutarylation. GCDH knockdown induced cell death programmes in melanoma cells, an activity blocked by inhibition of the upstream lysine catabolism enzyme DHTKD1. The transcription factor NRF2 mediates GCDH-dependent melanoma cell death programmes. Mechanistically, GCDH knockdown induces NRF2 glutarylation, increasing its stability and DNA binding activity, with a concomitant transcriptional upregulation of ATF4, ATF3, DDIT3 and CHAC1, resulting in cell death. In vivo, inducible inactivation of GCDH effectively inhibited melanoma tumour growth. Correspondingly, reduced GCDH expression correlated with improved survival of patients with melanoma. These findings identify melanoma cell addiction to GCDH, limiting apoptotic signalling by controlling NRF2 glutarylation. Inhibiting the GCDH pathway could thus represent a therapeutic approach to treat melanoma.


Subject(s)
Amino Acid Metabolism, Inborn Errors , Brain Diseases, Metabolic , Melanoma , NF-E2-Related Factor 2/metabolism , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Brain Diseases, Metabolic/genetics , Brain Diseases, Metabolic/metabolism , Brain Diseases, Metabolic/pathology , DNA , Glutaryl-CoA Dehydrogenase/genetics , Glutaryl-CoA Dehydrogenase/metabolism , Humans , Ketoglutarate Dehydrogenase Complex , Lysine , Melanoma/genetics , Mitochondrial Proteins , NF-E2-Related Factor 2/genetics
18.
Biochem Pharmacol ; 185: 114451, 2021 03.
Article in English | MEDLINE | ID: mdl-33545115

ABSTRACT

The secretin receptor (SCTR) is a prototypic Class B1 G protein-coupled receptor (GPCR) that represents a key target for the development of therapeutics for the treatment of cardiovascular, gastrointestinal, and metabolic disorders. However, no non-peptidic molecules targeting this receptor have yet been disclosed. Using a high-throughput screening campaign directed at SCTR to identify small molecule modulators, we have identified three structurally related scaffolds positively modulating SCTRs. Here we outline a comprehensive study comprising a structure-activity series based on commercially available analogs of the three hit scaffold sets A (2-sulfonyl pyrimidines), B (2-mercapto pyrimidines) and C (2-amino pyrimidines), which revealed determinants of activity, cooperativity and specificity. Structural optimization of original hits resulted in analog B2, which substantially enhances signaling of truncated secretin peptides and prolongs residence time of labeled secretin up to 13-fold in a dose-dependent manner. Furthermore, we found that investigated compounds display structural similarity to positive allosteric modulators (PAMs) active at the glucagon-like peptide-1 receptor (GLP-1R), and we were able to confirm cross-recognition of that receptor by a subset of analogs. Studies using SCTR and GLP-1R mutants revealed that scaffold A, but not B and C, likely acts via two distinct mechanisms, one of which constitutes covalent modification of Cys-347GLP-1R known from GLP-1R-selective modulators. The scaffolds identified in this study might not only serve as novel pharmacologic tools to decipher SCTR- or GLP-1R-specific signaling pathways, but also as structural leads to elucidate allosteric binding sites facilitating the future development of orally available therapeutic approaches targeting these receptors.


Subject(s)
Drug Discovery/methods , Pyrimidines/chemistry , Pyrimidines/metabolism , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/metabolism , Receptors, Gastrointestinal Hormone/chemistry , Receptors, Gastrointestinal Hormone/metabolism , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Amino Acid Sequence , Animals , CHO Cells , Cell Line, Tumor , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , HEK293 Cells , Humans , Protein Binding/physiology , Pyrimidines/pharmacology , Rats , Structure-Activity Relationship
19.
Front Endocrinol (Lausanne) ; 12: 789957, 2021.
Article in English | MEDLINE | ID: mdl-34950108

ABSTRACT

Drugs useful in prevention/treatment of obesity could improve health. Cholecystokinin (CCK) is a key regulator of appetite, working through the type 1 CCK receptor (CCK1R); however, full agonists have not stimulated more weight loss than dieting. We proposed an alternate strategy to target this receptor, while reducing likelihood of side effects and/or toxicity. Positive allosteric modulators (PAMs) with minimal intrinsic agonist activity would enhance CCK action, while maintaining spatial and temporal characteristics of physiologic signaling. This could correct abnormal stimulus-activity coupling observed in a high-cholesterol environment observed in obesity. We utilized high-throughput screening to identify a molecule with this pharmacological profile and studied its basis of action. Compound 1 was a weak partial agonist, with PAM activity to enhance CCK action at CCK1R, but not CCK2R, maintained in both normal and high cholesterol. Compound 1 (10 µM) did not exhibit agonist activity or stimulate internalization of CCK1R. It enhanced CCK activity by slowing the off-rate of bound hormone, increasing its binding affinity. Computational docking of Compound 1 to CCK1R yielded plausible poses. A radioiodinatable photolabile analogue retained Compound 1 pharmacology and covalently labeled CCK1R Thr211, consistent with one proposed pose. Our study identifies a novel, selective, CCK1R PAM that binds to the receptor to enhance action of CCK-8 and CCK-58 in both normal and disease-mimicking high-cholesterol environments. This facilitates the development of compounds that target the physiologic spatial and temporal engagement of CCK1R by CCK that underpins its critical role in metabolic regulation.


Subject(s)
Chemokines, CC/agonists , Chemokines, CC/metabolism , Cholecystokinin/metabolism , Cholecystokinin/pharmacology , Cholesterol/metabolism , Drug Discovery/methods , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , CHO Cells , Cholecystokinin/chemistry , Cricetinae , Cricetulus , Dose-Response Relationship, Drug , Humans , Hypercholesterolemia/drug therapy , Hypercholesterolemia/metabolism , Macaca fascicularis , Mice , Rats
20.
SLAS Discov ; 26(1): 1-16, 2021 01.
Article in English | MEDLINE | ID: mdl-32749201

ABSTRACT

The secretin receptor (SCTR), a prototypical class B G protein-coupled receptor (GPCR), exerts its effects mainly by activating Gαs proteins upon binding of its endogenous peptide ligand secretin. SCTRs can be found in a variety of tissues and organs across species, including the pancreas, stomach, liver, heart, lung, colon, kidney, and brain. Beyond that, modulation of SCTR-mediated signaling has therapeutic potential for the treatment of multiple diseases, such as heart failure, obesity, and diabetes. However, no ligands other than secretin and its peptide analogs have been described to regulate SCTRs, probably due to inherent challenges in family B GPCR drug discovery. Here we report creation of a testing funnel that allowed targeted detection of SCTR small-molecule activators. Pursuing the strategy to identify positive allosteric modulators (PAMs), we established a unique primary screening assay employing a mixture of three orthosteric stimulators that was compared in a screening campaign testing 12,000 small-molecule compounds. Beyond that, we developed a comprehensive set of secondary assays, such as a radiolabel-free target engagement assay and a NanoBiT (NanoLuc Binary Technology)-based approach to detect ß-arrestin-2 recruitment, all feasible in a high-throughput environment as well as capable of profiling ligands and hits regarding their effect on binding and receptor function. This combination of methods enabled the discovery of five promising scaffolds, four of which have been validated and further characterized with respect to their allosteric activities. We propose that our results may serve as starting points for developing the first in vivo active small molecules targeting SCTRs.


Subject(s)
Drug Development/methods , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Receptors, Gastrointestinal Hormone/chemistry , Animals , Biobehavioral Sciences , CHO Cells , Calcium/metabolism , Carrier Proteins , Cricetulus , Cyclic AMP/metabolism , Gene Expression , Genes, Reporter , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Ligands , Peptides/chemistry , Peptides/pharmacology , Protein Binding , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL