Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Appl Microbiol Biotechnol ; 98(4): 1763-70, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24419798

ABSTRACT

REOLYSIN (pelareorep) is a proprietary isolate of the reovirus T3D (Type 3 Dearing) strain which is currently being tested in clinical trials as an anticancer therapeutic agent. Reovirus genomes are composed of ten segments of double-stranded ribonucleic acid (RNA) characterized by genome size: large (L1, L2, and L3), medium (M1, M2, and M3), and small (S1, S2, S3, and S4). The objective of this work was to evaluate the homogeneity and genetic stability of REOLYSIN. Sanger sequencing (SS) performed on test articles derived from the Master Virus Bank (MVB) and Working Virus Bank (WVB) identified many modifications when compared to GenBank reference sequences. Massively parallel sequencing (MPS) using Roche-454 sequencing was performed on REOLYSIN (100 L scale) and resulted in 69,821,115 bases and an average of 335 bases per read. Twenty-nine high confidence differences relative to the GenBank reference sequence were identified in REOLYSIN by MPS. Of those, 27 were previously identified by SS in the virus bank-derived test articles. Of the remaining two nucleotide differences, one was predicted to be silent at the amino acid level (L3 genome-T3163C, codon 1054, 86% of the population was "T" and 13% of the population were reported as "C"). The other modification was in the noncoding region (M1 genome-A2284A to A2284G), and A2284G was present in 97% of the population. The results obtained from MPS were comparable to those from SS; both demonstrate a high level of homogeneity at the amino acid level and genetic stability of REOLYSIN. Finally, phylogenetic analysis of the REOLYSIN L1 genome segment showed close evolutionary relationship with its human homologs, serotypes Lang and Dearing.


Subject(s)
Reoviridae/genetics , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , Reoviridae/classification
2.
Invest New Drugs ; 31(6): 1476-86, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24121993

ABSTRACT

Numerous pre-clinical and clinical studies on reovirus have generated valuable information which supports the use of this orphan virus as an investigational drug for cancer treatment. Reolysin® (pelareorep) is a clinical formulation of the human Reovirus Type 3 Dearing strain. The clinical safety and efficacy of Reolysin® in humans is being tested on an assortment of cancer indications as a mono and/or combination therapy. Reovirus has many inherent characteristics that make it a potential candidate for virotherapy, including: the rapid and natural spread through the haematogenous route, the ability to overcome immunological barriers thereby reaching tumor sites, and being replication-competent. The purpose of this study was to elucidate the bio-distribution pattern of Reolysin® in healthy Sprague-Dawley rats. Following a single 15-min intravenous infusion via the tail vein in Sprague-Dawley rats, the levels of virus genome were determined in 16 organs/tissues by RT-qPCR (Reverse Transcriptase- Quantitative Polymerase Chain Reaction) over a 336 h (Day 15) incubation regime. Consistent with previous studies, maximal reovirus RNA levels were observed in the spleen; indicating its involvement in viral uptake and clearance, followed by heart, ovaries, tail (infusion site), liver and lungs. All the organs/tissues demonstrated unquantifiable levels of reovirus genome at the end of incubation, suggesting substantial to complete viral clearance. Several studies in the last decade have described the use of reovirus for treating ovarian cancers. An increase of reovirus genome in ovaries at 24 h post infection was noted. The results will aid in the design of additional exploratory clinical trials for Reolysin®.


Subject(s)
Oncolytic Viruses , RNA, Viral/analysis , Reoviridae , Animals , Female , Infusions, Intravenous , Male , Rats , Rats, Sprague-Dawley , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL