Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 537
Filter
1.
Proc Natl Acad Sci U S A ; 121(9): e2314620121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38381784

ABSTRACT

Photon-controlled pyroptosis activation (PhotoPyro) is a promising technique for cancer immunotherapy due to its noninvasive nature, precise control, and ease of operation. Here, we report that biomolecular photoredox catalysis in cells might be an important mechanism underlying PhotoPyro. Our findings reveal that the photocatalyst lutetium texaphyrin (MLu) facilitates rapid and direct photoredox oxidation of nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide phosphate, and various amino acids, thereby triggering pyroptosis through the caspase 3/GSDME pathway. This mechanism is distinct from the well-established role of MLu as a photodynamic therapy sensitizer in cells. Two analogs of MLu, bearing different coordinated central metal cations, were also explored as controls. The first control, gadolinium texaphyrin (MGd), is a weak photocatalyst but generates reactive oxygen species (ROS) efficiently. The second control, manganese texaphyrin (MMn), is ineffective as both a photocatalyst and a ROS generator. Neither MGd nor MMn was found to trigger pyroptosis under the conditions where MLu was active. Even in the presence of a ROS scavenger, treating MDA-MB-231 cells with MLu at concentrations as low as 50 nM still allows for pyroptosis photo-activation. The present findings highlight how biomolecular photoredox catalysis could contribute to pyroptosis activation by mechanisms largely independent of ROS.


Subject(s)
Metalloporphyrins , Pyroptosis , Reactive Oxygen Species/metabolism
2.
Proc Natl Acad Sci U S A ; 121(24): e2404668121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833473

ABSTRACT

Developing anticancer drugs with low side effects is an ongoing challenge. Immunogenic cell death (ICD) has received extensive attention as a potential synergistic modality for cancer immunotherapy. However, only a limited set of drugs or treatment modalities can trigger an ICD response and none of them have cytotoxic selectivity. This provides an incentive to explore strategies that might provide more effective ICD inducers free of adverse side effects. Here, we report a metal-based complex (Cu-1) that disrupts cellular redox homeostasis and effectively stimulates an antitumor immune response with high cytotoxic specificity. Upon entering tumor cells, this Cu(II) complex enhances the production of intracellular radical oxidative species while concurrently depleting glutathione (GSH). As the result of heightening cellular oxidative stress, Cu-1 gives rise to a relatively high cytotoxicity to cancer cells, whereas normal cells with low levels of GSH are relatively unaffected. The present Cu(II) complex initiates a potent ferroptosis-dependent ICD response and effectively inhibits in vivo tumor growth in an animal model (c57BL/6 mice challenged with colorectal cancer). This study presents a strategy to develop metal-based drugs that could synergistically potentiate cytotoxic selectivity and promote apoptosis-independent ICD responses through perturbations in redox homeostasis.


Subject(s)
Copper , Glutathione , Homeostasis , Oxidation-Reduction , Animals , Mice , Humans , Glutathione/metabolism , Mice, Inbred C57BL , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Oxidative Stress/drug effects , Drug Synergism , Immunogenic Cell Death/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Ferroptosis/drug effects , Reactive Oxygen Species/metabolism , Colorectal Neoplasms/immunology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism
3.
Chem Rev ; 124(5): 2699-2804, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38422393

ABSTRACT

The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.


Subject(s)
Fluorescent Dyes , Precision Medicine , Cell Line, Tumor , Drug Delivery Systems , Fluorescence , Theranostic Nanomedicine
4.
Proc Natl Acad Sci U S A ; 120(21): e2304081120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186828

ABSTRACT

Chemotherapy typically destroys the tumor mass but rarely eradicates the cancer stem cells (CSCs) that can drive metastatic recurrence. A key current challenge is finding ways to eradicate CSCs and suppress their characteristics. Here, we report a prodrug, Nic-A, created by combining a carbonic anhydrase IX (CAIX) inhibitor, acetazolamide, with a signal transducer and transcriptional activator 3 (STAT3) inhibitor, niclosamide. Nic-A was designed to target triple-negative breast cancer (TNBC) CSCs and was found to inhibit both proliferating TNBC cells and CSCs via STAT3 dysregulation and suppression of CSC-like properties. Its use leads to a decrease in aldehyde dehydrogenase 1 activity, CD44high/CD24low stem-like subpopulations, and tumor spheroid-forming ability. TNBC xenograft tumors treated with Nic-A exhibited decreased angiogenesis and tumor growth, as well as decreased Ki-67 expression and increased apoptosis. In addition, distant metastases were suppressed in TNBC allografts derived from a CSC-enriched population. This study thus highlights a potential strategy for addressing CSC-based cancer recurrence.


Subject(s)
Prodrugs , Triple Negative Breast Neoplasms , Humans , Cell Line, Tumor , Triple Negative Breast Neoplasms/metabolism , Niclosamide/pharmacology , Niclosamide/metabolism , Niclosamide/therapeutic use , Prodrugs/therapeutic use , Neoplasm Recurrence, Local/pathology , Transcription Factors/metabolism , Neoplastic Stem Cells/metabolism , Xenograft Model Antitumor Assays
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35197296

ABSTRACT

Issues of molecular weight determination have been central to the development of supramolecular polymer chemistry. Whereas relationships between concentration and optical features are established for well-behaved absorptive and emissive species, for most supramolecular polymeric systems no simple correlation exists between optical performance and number-average molecular weight (Mn). As such, the Mn of supramolecular polymers have to be inferred from various measurements. Herein, we report an anion-responsive supramolecular polymer [M1·Zn(OTf)2]n that exhibits monotonic changes in the fluorescence color as a function of Mn Based on theoretical estimates, the calculated average degree of polymerization (DPcal) increases from 16.9 to 84.5 as the monomer concentration increases from 0.08 mM to 2.00 mM. Meanwhile, the fluorescent colors of M1 + Zn(OTf)2 solutions were found to pass from green to yellow and to orange, corresponding to a red shift in the maximum emission band (λmax ). Therefore, a relationship between DPcal and λmax could be established. Additionally, the anion-responsive nature of the present system meant that the extent of supramolecular polymerization could be regulated by introducing anions, with the resulting change in Mn being readily monitored via changes in the fluorescent emission features.

6.
Proc Natl Acad Sci U S A ; 119(34): e2210504119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969782

ABSTRACT

Elucidating the underlying photochemical mechanisms of action (MoA) of photodynamic therapy (PDT) may allow its efficacy to be improved and could set the stage for the development of new classes of PDT photosensitizers. Here, we provide evidence that "photoredox catalysis in cells," wherein key electron transport pathways are disrupted, could constitute a general MoA associated with PDT. Taking the cellular electron donor nicotinamide adenine dinucleotide as an example, we have found that well-known photosensitizers, such as Rose Bengal, BODIPY, phenoselenazinium, phthalocyanine, and porphyrin derivatives, are able to catalyze its conversion to NAD+. This MoA stands in contrast to conventional type I and type II photoactivation mechanisms involving electron and energy transfer, respectively. A newly designed molecular targeting photocatalyst (termed CatER) was designed to test the utility of this mechanism-based approach to photosensitizer development. Photoexcitation of CatER induces cell pyroptosis via the caspase 3/GSDME pathway. Specific epidermal growth factor receptor positive cancer cell recognition, high signal-to-background ratio tumor imaging (SBRTI = 12.2), and good tumor growth inhibition (TGI = 77.1%) are all hallmarks of CatER. CatER thus constitutes an effective near-infrared pyroptotic cell death photo-inducer. We believe the present results will provide the foundation for the synthesis of yet-improved phototherapeutic agents that incorporate photocatalytic chemistry into their molecular design.


Subject(s)
Antineoplastic Agents , Neoplasms , Photochemotherapy , Photosensitizing Agents , Antineoplastic Agents/pharmacology , Catalysis , Cell Line, Tumor , Humans , Neoplasms/diagnostic imaging , Neoplasms/therapy , Photochemotherapy/methods , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Porphyrins/pharmacology
7.
Proc Natl Acad Sci U S A ; 119(43): e2213373119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36256822

ABSTRACT

The high level of reactive oxygen species (ROS) in the rheumatoid arthritis (RA) microenvironment (RAM) and its persistent inflammatory nature can promote damage to joints, bones, and the synovium. Targeting strategies that integrate effective RAM regulation with imaging-based monitoring could lead to improvements in the diagnosis and treatment of RA. Here, we report the combined use of small interfering RNAs (siRNAsT/I) and Prussian blue nanoparticles (PBNPs) to silence the expression of proinflammatory cytokines TNF-α/IL-6 and scavenge the ROS associated with RAM. To enhance the in vitro and in vivo biological stability, biocompatibility, and targeting capability of the siRNAsT/I and PBNPs, macrophage membrane vesicles were used to prepare biomimetic nanoparticles, M@P-siRNAsT/I. The resulting constructs were found to suppress tumor necrosis factor-α/interleukin-6 expression and overcome the hypoxic nature of RAM, thus alleviating RA-induced joint damage in a mouse model. The M@P-siRNAsT/I of this study could be monitored via near-infrared photoacoustic (PA) imaging. Moreover, multispectral PA imaging without the need for labeling permitted the real-time evaluation of M@P-siRNAsT/I as a putative RA treatment. Clinical microcomputed tomography and histological analysis confirmed the effectiveness of the treatment. We thus suggest that macrophage-biomimetic M@P-siRNAsT/I and their analogs assisted by PA imaging could provide a new strategy for RA diagnosis, treatment, and monitoring.


Subject(s)
Arthritis, Rheumatoid , Nanoparticles , Mice , Animals , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6 , Reactive Oxygen Species/metabolism , Biomimetics , X-Ray Microtomography , Arthritis, Rheumatoid/metabolism , Cytokines/metabolism , RNA, Small Interfering/therapeutic use
8.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35193966

ABSTRACT

Photoacoustic (PA) imaging offers promise for biomedical applications due to its ability to image deep within biological tissues while providing detailed molecular information; however, its detection sensitivity is limited by high background signals that arise from endogenous chromophores. Genetic reporter proteins with photoswitchable properties enable the removal of background signals through the subtraction of PA images for each light-absorbing form. Unfortunately, the application of photoswitchable chromoproteins for tumor-targeted imaging has been hampered by the lack of an effective targeted delivery scheme; that is, photoswitchable probes must be delivered in vivo with high targeting efficiency and specificity. To overcome this limitation, we have developed a tumor-targeting delivery system in which tumor-homing bacteria (Escherichia coli) are exploited as carriers to affect the point-specific delivery of genetically encoded photochromic probes to the tumor area. To improve the efficiency of the desired background suppression, we engineered a phytochrome-based reporter protein (mDrBphP-PCMm/F469W) that displays higher photoswitching contrast than those in the current state of the art. Photoacoustic computed tomography was applied to achieve good depth and resolution in the context of in vivo (mice) imaging. The present system effectively integrates a genetically encoded phytochrome-based reporter protein, PA imaging, and synthetic biology (GPS), to achieve essentially background-suppressed tumor-targeted PA monitoring in deep-seated tissues. The ability to image tumors at substantial depths may enable target-specific cancer diagnoses to be made with greater sensitivity, fidelity, and specificity.


Subject(s)
Neoplasms/diagnostic imaging , Photoacoustic Techniques/methods , Phytochrome/metabolism , Animals , Cell Line, Tumor , Escherichia coli , Female , Genes, Reporter/genetics , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Imaging/methods , Phytochrome/pharmacology , Spectrum Analysis/methods , Tomography, X-Ray Computed/methods
9.
J Am Chem Soc ; 146(9): 6225-6230, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38386658

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) accumulate in water resources and pose serious environmental and health threats due to their nonbiodegradable nature and long environmental persistence times. Strategies for the efficient removal of PFAS from contaminated water are needed to address this concern. Here, we report a fluorinated nonporous adaptive crystalline cage (F-Cage 2) that exploits electrostatic interaction, hydrogen bonding, and F-F interactions to achieve the efficient removal of perfluorooctanoic acid (PFOA) from aqueous source phases. F-Cage 2 exhibits a high second-order kobs value of approximately 441,000 g mg-1 h-1 for PFOA and a maximum PFOA adsorption capacity of 45 mg g-1. F-Cage 2 can decrease PFOA concentrations from 1500 to 6 ng L-1 through three rounds of flow-through purification, conducted at a flow rate of 40 mL h-1. Elimination of PFOA from PFOA-loaded F-Cage 2 is readily achieved by rinsing with a mixture of MeOH and saturated NaCl. Heating at 80 °C under vacuum then makes F-Cage 2 ready for reuse, as demonstrated across five successive uptake and release cycles. This work thus highlights the potential utility of suitably designed nonporous adaptive crystals as platforms for PFAS remediation.

10.
J Am Chem Soc ; 146(32): 22145-22150, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39101883

ABSTRACT

A heat-driven catch-and-release strategy for CoCl2 capture is described. It is based on the use of an immobilized neutral dicyclohexylacetamide-based receptor L supported on polystyrene (PS-L). An X-ray diffraction analysis of a single crystal of L·CoCl2 revealed an ion-pair complex comprising a hexacoordinated cobalt cation [L·Co]2+ and a tetrachlorocobaltate anion [CoCl4]2-. Temperature dependent binding was seen, as inferred from UV-vis spectroscopic studies. Fits to the van't Hoff equation yielded values of ΔH° = 12.4 kJ/mol and ΔS° = 56.0 J/K·mol for L + CoCl2, and ΔH° = 16.5 kJ/mol and ΔS° = 85.0 J/K·mol for PS-L + CoCl2 in 95% ethanol. Consequently, cobalt capture and release are mediated by heating and cooling, respectively. The material PS-L exhibits a preference for binding cobalt over manganese and nickel as inferred from Langmuir-Freundlich isotherm analyses that revealed binding constants of KLF = 88.5 M-1 for CoCl2, 52.7 M-1 for MnCl2, and 49.7 M-1 for NiCl2. In a simulated ion mixture containing equimolar CoCl2, MnCl2, and NiCl2, ICP-MS analyses served to confirm that cobalt was selectively enriched to 52 mol % (from an initial level of ca. 32 mol %) after one catch-and-release cycle and 76.6% after three cycles. Our experimental results were validated by density functional theory calculations, which also show stronger binding of Co over Mn and Ni to L.

11.
J Am Chem Soc ; 146(6): 4078-4086, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38300153

ABSTRACT

Electronic waste recycling is a recognized global challenge that requires new strategies to bind and release critical materials selectively, such as cobalt present in lithium-ion batteries. To address this challenge, hierarchical 3D-printed porous polymer scaffolds bearing supramolecular receptors were prepared using vat photopolymerization and their cobalt binding profiles were examined as a function of matrix polarity. By combining high-resolution digital light processing (DLP) with polymerization-induced phase separation (PIPS), functional acrylic copolymer networks with micrometer-level precision of geometry and nanometer-level pores were generated. Covalent integration of a methacrylate-functionalized bisdicyclohexyl acetamide (BDCA-MA) receptor enabled binding and release of cobalt(II) chloride (CoCl2) via a solvent polarity switch mechanism involving a change in solvent from ethanol to water. The present structures proved reusable as shown by sustained high binding efficiency over five bind and release cycles. This platform represents a "green" and energy conscious method for future electronic waste recycling.

12.
J Am Chem Soc ; 146(1): 543-551, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38147538

ABSTRACT

A nanographene-fused expanded carbaporphyrin (5) and its BF2 complex (6) were synthesized. Single-crystal X-ray structures revealed that 5 and 6 are connected by two hexa-peri-hexabenzocoronene (HBC) units and two dipyrromethene or BODIPY units, respectively. As prepared, 5 and 6 both show nonaromatic character with figure-of-eight carbaoctaphyrin (1.1.1.0.1.1.1.0) cores and adopt tweezers-like conformations characterized by a partially confined space between the two constituent HBC units. The distance between the HBC centers is >10 Å, while the dihedral angles between the two HBC planes are 30.5 and 35.2° for 5 and 6, respectively. The interactions between 5 and 6 and fullerene C60 were studied both in organic media and in the solid state. Proton NMR spectral titrations of 5 and 6 with C60 revealed a 1:1 binding mode for both macrocycles. In toluene-d8, the corresponding binding constants were determined to be 1141 ± 17 and 994 ± 10 M-1 for 5 and 6, respectively. Single-crystal X-ray diffraction structural analyses confirmed the formation of 1:1 fullerene inclusion complexes in the solid state. The C60 guests in both complexes are found within triangular pockets composed of two HBC units from the tweezers-like receptor most closely associated with the bound fullerene, as well as an HBC unit from an adjacent host. Femtosecond transient absorption measurements revealed subpicosecond ultrafast charge separation between 5 (and 6) and C60 in the complexes. To the best of our knowledge, the present report provides the first example wherein a nanographene building block is incorporated into the core of a porphyrinic framework.

13.
J Am Chem Soc ; 146(1): 1109-1121, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38141046

ABSTRACT

The energy dissipative features of hydrogen bonds under conditions of mechanical strain have provided an ongoing incentive to explore hydrogen bonding units for the purpose of controlling and customizing the mechanical properties of polymeric materials. However, there remains a need for hydrogen bond units that (1) possess directionality, (2) provide selectivity, (3) dissipate energy effectively, and (4) can be incorporated readily into polymeric materials to regulate their mechanical properties. Here, we report mechanically interlocked hydrogen bond units that incorporate multiple hydrogen bonds within a [2]catenane structure. The conformational flexibility and associated spatial folding characteristics of the [2]catenane units allow for molecular scale motion under external stress, while the interlocked structure serves as a pivot that maintains the directionality and selectivity of the resultant hydrogen bonding units. When incorporated into polymers, these interlocked hydrogen bond motifs serve to strengthen and toughen the resulting materials. This study not only presents a novel hydrogen bond unit for creating polymeric materials with improved mechanical properties but also underscores the unique opportunities that mechanically interlocked hydrogen bond structures may provide across a diverse range of applications.

14.
J Am Chem Soc ; 146(18): 12547-12555, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38656766

ABSTRACT

Three-dimensional (3D) crystalline organic frameworks with complex topologies, high surface area, and low densities afford a variety of application prospects. However, the design and construction of these frameworks have been largely limited to systems containing polyhedron-shaped building blocks or those relying on component interpenetration. Here, we report the synthesis of a 3D crystalline organic framework based on molecular mortise-and-tenon jointing. This new material takes advantage of tetra(4-pyridylphenyl)ethylene and chlorinated bis(benzodioxaborole)benzene as building blocks and is driven by dative B-N bonds. A single-crystal X-ray diffraction analysis of the framework reveals the presence of two-dimensional (2D) layers with helical channels that are formed presumably during the boron-nitrogen coordination process. The protrusion of dichlorobenzene units from the upper and lower surfaces of the 2D layers facilitates the key mortise-and-tenon connections. These connections enable the interlocking of adjacent layers and the stabilization of an overall 3D framework. The resulting framework is endowed with high porosity and attractive mechanical properties, rendering it potentially suitable for the removal of impurities from acetylene.

15.
J Am Chem Soc ; 146(7): 4620-4631, 2024 02 21.
Article in English | MEDLINE | ID: mdl-38330912

ABSTRACT

Pancreatic cancer is highly lethal. New diagnostic and treatment modalities are desperately needed. We report here that an expanded porphyrin, cyclo[8]pyrrole (CP), with a high extinction coefficient (89.16 L/g·cm) within the second near-infrared window (NIR-II), may be formulated with an αvß3-specific targeting peptide, cyclic-Arg-Gly-Asp (cRGD), to form cRGD-CP nanoparticles (cRGD-CPNPs) with promising NIR-II photothermal (PT) therapeutic and photoacoustic (PA) imaging properties. Studies with a ring-array PA tomography system, coupled with analysis of control nanoparticles lacking a targeting element (CPNPs), revealed that cRGD conjugation promoted the delivery of the NPs through abnormal vessels around the tumor to the solid tumor core. This proved true in both subcutaneous and orthotopic pancreatic tumor mice models, as confirmed by immunofluorescent studies. In combination with NIR-II laser photoirradiation, the cRGD-CPNPs provided near-baseline tumor growth inhibition through PTT both in vitro and in vivo. Notably, the combination of the present cRGD-CPNPs and photoirradiation was found to inhibit intra-abdominal metastases in an orthotopic pancreatic tumor mouse model. The cRGD-CPNPs also displayed good biosafety profiles, as inferred from PA tomography, blood analyses, and H&E staining. They thus appear promising for use in combined PA imaging and PT therapeutic treatment of pancreatic cancer.


Subject(s)
Nanoparticles , Pancreatic Neoplasms , Photoacoustic Techniques , Animals , Mice , Pyrroles/therapeutic use , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/therapy , Nanoparticles/chemistry , Tomography, X-Ray Computed , Photoacoustic Techniques/methods , Cell Line, Tumor , Phototherapy
16.
J Am Chem Soc ; 146(28): 19434-19448, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959476

ABSTRACT

Immuno-photodynamic therapy (IPDT) has emerged as a new modality for cancer treatment. Novel photosensitizers can help achieve the promise inherent in IPDT, namely, the complete eradication of a tumor without recurrence. We report here a small molecule photosensitizer conjugate, LuCXB. This IPDT agent integrates a celecoxib (cyclooxygenase-2 inhibitor) moiety with a near-infrared absorbing lutetium texaphyrin photocatalytic core. In aqueous environments, the two components of LuCXB are self-associated through inferred donor-acceptor interactions. A consequence of this intramolecular association is that upon photoirradiation with 730 nm light, LuCXB produces superoxide radicals (O2-•) via a type I photodynamic pathway; this provides a first line of defense against the tumor while promoting IPDT. For in vivo therapeutic applications, we prepared a CD133-targeting, aptamer-functionalized exosome-based nanophotosensitizer (Ex-apt@LuCXB) designed to target cancer stem cells. Ex-apt@LuCXB was found to display good photosensitivity, acceptable biocompatibility, and robust tumor targetability. Under conditions of photoirradiation, Ex-apt@LuCXB acts to amplify IPDT while exerting a significant antitumor effect in both liver and breast cancer mouse models. The observed therapeutic effects are attributed to a synergistic mechanism that combines antiangiogenesis and photoinduced cancer immunotherapy.


Subject(s)
Celecoxib , Lutetium , Photochemotherapy , Photosensitizing Agents , Porphyrins , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Animals , Humans , Porphyrins/chemistry , Porphyrins/pharmacology , Mice , Lutetium/chemistry , Celecoxib/chemistry , Celecoxib/pharmacology , Immunotherapy , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Female
17.
J Am Chem Soc ; 146(6): 3585-3590, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38316138

ABSTRACT

We report here an expanded porphyrinoid, cyclo[2]pyridine[8]pyrrole, 1, that can exist at three closed-shell oxidation levels. Macrocycle 1 was synthesized via the oxidative coupling of two open chain precursors and fully characterized by means of NMR and UV-vis spectroscopies, MS, and X-ray crystallography. Reduction of the fully oxidized form (1, blue) with NaBH4 produced either the half-oxidized (2, teal) or fully reduced forms (3, pale yellow), depending on the amount of reducing agent used and the presence or absence of air. Reduced products 2 or 3 can be oxidized to 1 by various oxidants (quinones, FeCl3, and AgPF6). Macrocycle 1 also undergoes proton-coupled reductions with I-, Br-, Cl-, SO32-, or S2O32- in the presence of an acid. Certain thiol-containing compounds likewise reduce 1 to 2 or 3. This conversion is accompanied by a readily discernible color change, making cyclo[2]pyridine[8]pyrrole 1 able to differentiate biothiols, such as cysteine (Cys), homocysteine (Hcy), and glutathione (GSH).

18.
Proc Natl Acad Sci U S A ; 118(47)2021 11 23.
Article in English | MEDLINE | ID: mdl-34789566

ABSTRACT

We report a molecular switching ensemble whose states may be regulated in synergistic fashion by both protonation and photoirradiation. This allows hierarchical control in both a kinetic and thermodynamic sense. These pseudorotaxane-based molecular devices exploit the so-called Texas-sized molecular box (cyclo[2]-(2,6-di(1H-imidazol-1-yl)pyridine)[2](1,4-dimethylenebenzene); 14+, studied as its tetrakis-PF6- salt) as the wheel component. Anions of azobenzene-4,4'-dicarboxylic acid (2H+•2) or 4,4'-stilbenedicarboxylic acid (2H+•3) serve as the threading rod elements. The various forms of 2 and 3 (neutral, monoprotonated, and diprotonated) interact differently with 14+, as do the photoinduced cis or trans forms of these classic photoactive guests. The net result is a multimodal molecular switch that can be regulated in synergistic fashion through protonation/deprotonation and photoirradiation. The degree of guest protonation is the dominating control factor, with light acting as a secondary regulatory stimulus. The present dual input strategy provides a complement to more traditional orthogonal stimulus-based approaches to molecular switching and allows for the creation of nonbinary stimulus-responsive functional materials.

19.
Angew Chem Int Ed Engl ; : e202413962, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39183712

ABSTRACT

An expanded carbaporphyrinoid analogue, octaphyrin(2,1,1,1,2,1,1,1), containing two rigid diphenylacetylene moieties is reported. In contrast to traditional pyrrolic macrocycles where flexible conformers coexist in dynamic equilibrium, this macrocycle exists as two separable, conformationally stable stereoisomers, denoted as 1A and 1B. The conformational effect of both conformers, as well as their protonated forms, were thoroughly studied using NMR spectroscopy, UV-Vis, and single crystal X-ray diffraction analyses. Importantly, heating conformer 1B leads to its irreversible conversion to 1A, whereas in its protonated form, 1A·2MSA undergoes irreversible transformation to 1B·2MSA at lower temperatures. These temperature-dependent features establish a foundation for developing new accumulated heat sensors, as demonstrated by the use of the present octaphyrins as a customized thermochromic indicator in steam sterilization. The present study thus underscores how the conformational rigidity of these new polypyrrolic macrocycles imparts properties that are distinct from historically flexible expanded porphyrinoids.

20.
Angew Chem Int Ed Engl ; 63(36): e202407805, 2024 Sep 02.
Article in English | MEDLINE | ID: mdl-38870085

ABSTRACT

New stimulus-responsive scaffolds are of interest as constituents of hierarchical supramolecular ensembles. 1,3,5-2,4,6-Functionalized, facially segregated benzene moieties have a time-honored role as building blocks for host molecules. However, their user as switchable motifs in the construction of multi-component supramolecular structures remains poorly explored. Here, we report a molecular cage 1, which consists of a bent anthracene dimer 3 paired with 1,3,5-tris(aminomethyl)-2,4,6-triethylbenzene 2. As the result of the pH-induced ababab↔bababa isomerization of the constituent-functionalized benzene units derived from 2, this cage can reversibly convert between an open state and a closed form, both in solution and in the solid state. Cage 1 was used to create stimuli-responsive hierarchical superstructures, namely Russian doll-like complexes with [K⊂18-crown-6⊂1]+ and [K⊂cryptand-222⊂1]+. The reversible assembly and disassembly of these superstructures could be induced by switching cage 1 from its open to closed form. The present study thus provides an unusual example where pH-triggered conformation motion within a cage-like scaffold is used to control the formation and disassociation of hierarchical ensembles.

SELECTION OF CITATIONS
SEARCH DETAIL