Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Nature ; 631(8022): 814-818, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961284

ABSTRACT

Previous dating research indicated that the Indonesian island of Sulawesi is host to some of the oldest known rock art1-3. That work was based on solution uranium-series (U-series) analysis of calcite deposits overlying rock art in the limestone caves of Maros-Pangkep, South Sulawesi1-3. Here we use a novel application of this approach-laser-ablation U-series imaging-to re-date some of the earliest cave art in this karst area and to determine the age of stylistically similar motifs at other Maros-Pangkep sites. This method provides enhanced spatial accuracy, resulting in older minimum ages for previously dated art. We show that a hunting scene from Leang Bulu' Sipong 4, which was originally dated using the previous approach to a minimum of 43,900 thousand years ago (ka)3, has a minimum age of 50.2 ± 2.2 ka, and so is at least 4,040 years older than thought. Using the imaging approach, we also assign a minimum age of 53.5 ± 2.3 ka to a newly described cave art scene at Leang Karampuang. Painted at least 51,200 years ago, this narrative composition, which depicts human-like figures interacting with a pig, is now the earliest known surviving example of representational art, and visual storytelling, in the world3. Our findings show that figurative portrayals of anthropomorphic figures and animals have a deeper origin in the history of modern human (Homo sapiens) image-making than recognized to date, as does their representation in composed scenes.

2.
Nature ; 609(7927): 547-551, 2022 09.
Article in English | MEDLINE | ID: mdl-36071168

ABSTRACT

The prevailing view regarding the evolution of medicine is that the emergence of settled agricultural societies around 10,000 years ago (the Neolithic Revolution) gave rise to a host of health problems that had previously been unknown among non-sedentary foraging populations, stimulating the first major innovations in prehistoric medical practices1,2. Such changes included the development of more advanced surgical procedures, with the oldest known indication of an 'operation' formerly thought to have consisted of the skeletal remains of a European Neolithic farmer (found in Buthiers-Boulancourt, France) whose left forearm had been surgically removed and then partially healed3. Dating to around 7,000 years ago, this accepted case of amputation would have required comprehensive knowledge of human anatomy and considerable technical skill, and has thus been viewed as the earliest evidence of a complex medical act3. Here, however, we report the discovery of skeletal remains of a young individual from Borneo who had the distal third of their left lower leg surgically amputated, probably as a child, at least 31,000 years ago. The individual survived the procedure and lived for another 6-9 years, before their remains were intentionally buried in Liang Tebo cave, which is located in East Kalimantan, Indonesian Borneo, in a limestone karst area that contains some of the world's earliest dated rock art4. This unexpectedly early evidence of a successful limb amputation suggests that at least some modern human foraging groups in tropical Asia had developed sophisticated medical knowledge and skills long before the Neolithic farming transition.


Subject(s)
Amputation, Surgical , Body Remains , Amputation, Surgical/history , Borneo , Calcium Carbonate , Caves , Child , History, Ancient , Humans
4.
Heliyon ; 8(8): e10377, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36061008

ABSTRACT

Since the prehistoric era, hematite has been known as a reddish color pigment on rock art, body paint, and decorating substances for objects discovered almost worldwide. Recently, studies about purple hematite used in prehistoric pigment have been done vigorously to investigate the origin of the purple pigment itself. These previous studies indicate that the differentiation of crystallinity, crystal size, morphology, and electronic structure can cause the color shift, resulting in purple hematite. In this study, we conducted a detailed study of the sintering temperature effects on the formation of hematite minerals. This study aims to reveal the structural, crystallography, and electronic transformation in hematite due to heating treatment at various temperatures. The hematite was synthesized using precipitation to imitate the primary method of hematite formation in nature. The sintering process was carried out with temperature variations from 600 °C to 1100 °C and then characterized by crystallographic and structural properties (XRD, Raman Spectroscopy, FTIR), particle size (TEM), as well as electronic properties (DRS, XANES). The crystallinity and particle size of hematite tend to increase along with higher sintering temperatures. Moreover, we noted that the octahedral distortion underwent an intensification with the increase in sintering temperature, which affected the electronic structure of hematite. Specifically, the 1s → 3d transition exhibited lower energy for hematite produced at a higher temperature. This induced a shift in the absorbed energy of the polychromatic light that led to a color shift within hematite, from red to purple. Our finding emphasizes the importance of electronic structure in explaining hematite pigment's color change rather than relying on simple reasons, such as particle size and crystallinity. In addition, this might strengthen the hypothesis that the prehistoric human created a purple hematite pigment through heating.

SELECTION OF CITATIONS
SEARCH DETAIL