Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 170
Filter
Add more filters

Publication year range
1.
Cell ; 186(16): 3333-3349.e27, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37490916

ABSTRACT

The T cells of the immune system can target tumors and clear solid cancers following tumor-infiltrating lymphocyte (TIL) therapy. We used combinatorial peptide libraries and a proteomic database to reveal the antigen specificities of persistent cancer-specific T cell receptors (TCRs) following successful TIL therapy for stage IV malignant melanoma. Remarkably, individual TCRs could target multiple different tumor types via the HLA A∗02:01-restricted epitopes EAAGIGILTV, LLLGIGILVL, and NLSALGIFST from Melan A, BST2, and IMP2, respectively. Atomic structures of a TCR bound to all three antigens revealed the importance of the shared x-x-x-A/G-I/L-G-I-x-x-x recognition motif. Multi-epitope targeting allows individual T cells to attack cancer in several ways simultaneously. Such "multipronged" T cells exhibited superior recognition of cancer cells compared with conventional T cell recognition of individual epitopes, making them attractive candidates for the development of future immunotherapies.


Subject(s)
Antigens, Neoplasm , Neoplasms , Proteomics , Receptors, Antigen, T-Cell , Antigens, Neoplasm/metabolism , Epitopes , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Neoplasms/immunology , Neoplasms/therapy , Receptors, Antigen, T-Cell/metabolism
2.
Cell ; 185(16): 2936-2951.e19, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35931021

ABSTRACT

We studied the prevalent cytotoxic CD8 T cell response mounted against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike glycoprotein269-277 epitope (sequence YLQPRTFLL) via the most frequent human leukocyte antigen (HLA) class I worldwide, HLA A∗02. The Spike P272L mutation that has arisen in at least 112 different SARS-CoV-2 lineages to date, including in lineages classified as "variants of concern," was not recognized by the large CD8 T cell response seen across cohorts of HLA A∗02+ convalescent patients and individuals vaccinated against SARS-CoV-2, despite these responses comprising of over 175 different individual T cell receptors. Viral escape at prevalent T cell epitopes restricted by high frequency HLAs may be particularly problematic when vaccine immunity is focused on a single protein such as SARS-CoV-2 Spike, providing a strong argument for inclusion of multiple viral proteins in next generation vaccines and highlighting the need for monitoring T cell escape in new SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , HLA-A Antigens , Histocompatibility Antigens Class I , Humans
4.
Nat Immunol ; 21(2): 178-185, 2020 02.
Article in English | MEDLINE | ID: mdl-31959982

ABSTRACT

Human leukocyte antigen (HLA)-independent, T cell-mediated targeting of cancer cells would allow immune destruction of malignancies in all individuals. Here, we use genome-wide CRISPR-Cas9 screening to establish that a T cell receptor (TCR) recognized and killed most human cancer types via the monomorphic MHC class I-related protein, MR1, while remaining inert to noncancerous cells. Unlike mucosal-associated invariant T cells, recognition of target cells by the TCR was independent of bacterial loading. Furthermore, concentration-dependent addition of vitamin B-related metabolite ligands of MR1 reduced TCR recognition of cancer cells, suggesting that recognition occurred via sensing of the cancer metabolome. An MR1-restricted T cell clone mediated in vivo regression of leukemia and conferred enhanced survival of NSG mice. TCR transfer to T cells of patients enabled killing of autologous and nonautologous melanoma. These findings offer opportunities for HLA-independent, pan-cancer, pan-population immunotherapies.


Subject(s)
Cytotoxicity, Immunologic/immunology , Histocompatibility Antigens Class I/immunology , Minor Histocompatibility Antigens/immunology , Neoplasms/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocyte Subsets/immunology , Animals , CRISPR-Cas Systems , Genome-Wide Association Study , Humans , Immunotherapy/methods , Lymphocyte Activation/immunology , Mice
5.
Cell ; 159(2): 333-45, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25284152

ABSTRACT

In the thymus, high-affinity, self-reactive thymocytes are eliminated from the pool of developing T cells, generating central tolerance. Here, we investigate how developing T cells measure self-antigen affinity. We show that very few CD4 or CD8 coreceptor molecules are coupled with the signal-initiating kinase, Lck. To initiate signaling, an antigen-engaged T cell receptor (TCR) scans multiple coreceptor molecules to find one that is coupled to Lck; this is the first and rate-limiting step in a kinetic proofreading chain of events that eventually leads to TCR triggering and negative selection. MHCII-restricted TCRs require a shorter antigen dwell time (0.2 s) to initiate negative selection compared to MHCI-restricted TCRs (0.9 s) because more CD4 coreceptors are Lck-loaded compared to CD8. We generated a model (Lck come&stay/signal duration) that accurately predicts the observed differences in antigen dwell-time thresholds used by MHCI- and MHCII-restricted thymocytes to initiate negative selection and generate self-tolerance.


Subject(s)
Autoantigens/immunology , Immune Tolerance , Receptors, Antigen, T-Cell/immunology , Animals , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class II/immunology , Kinetics , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Markov Chains , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , Thymocytes/cytology , Thymocytes/immunology
6.
Nat Immunol ; 17(8): 946-55, 2016 08.
Article in English | MEDLINE | ID: mdl-27348411

ABSTRACT

Studies of individual T cell antigen receptors (TCRs) have shed some light on structural features that underlie self-reactivity. However, the general rules that can be used to predict whether TCRs are self-reactive have not been fully elucidated. Here we found that the interfacial hydrophobicity of amino acids at positions 6 and 7 of the complementarity-determining region CDR3ß robustly promoted the development of self-reactive TCRs. This property was found irrespective of the member of the ß-chain variable region (Vß) family present in the TCR or the length of the CDR3ß. An index based on these findings distinguished Vß2(+), Vß6(+) and Vß8.2(+) regulatory T cells from conventional T cells and also distinguished CD4(+) T cells selected by the major histocompatibility complex (MHC) class II molecule I-A(g7) (associated with the development of type 1 diabetes in NOD mice) from those selected by a non-autoimmunity-promoting MHC class II molecule I-A(b). Our results provide a means for distinguishing normal T cell repertoires versus autoimmunity-prone T cell repertoires.


Subject(s)
Autoimmunity , Complementarity Determining Regions/genetics , Diabetes Mellitus, Type 1/immunology , T-Lymphocyte Subsets/physiology , T-Lymphocytes, Regulatory/physiology , Animals , Autoantigens/immunology , Autoantigens/metabolism , Cell Differentiation , Central Tolerance , Female , High-Throughput Nucleotide Sequencing , Histocompatibility Antigens Class II/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout
7.
Proc Natl Acad Sci U S A ; 120(32): e2216532120, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37523561

ABSTRACT

We analyzed transcriptional data from 104 HPV+ (Human papillomavirus) HNSCC (head and neck squamous cell carcinoma) tumors together with two publicly available sources to identify highly robust transcriptional programs (modules) which could be detected consistently despite heterogeneous sequencing and quantification methodologies. Among 22 modules identified, we found a single module that naturally subclassifies HPV+ HNSCC tumors based on a bimodal pattern of gene expression, clusters all atypical features of HPV+ HNSCC biology into a single subclass, and predicts patient outcome in four independent cohorts. The subclass-defining gene set was strongly correlated with Nuclear factor kappa B (NF-κB) target expression. Tumors with high expression of this NF-κB module were rarely associated with activating PIK3CA alterations or viral integration, and also expressed higher levels of HPHPV E2 and had decreased APOBEC mutagenesis. Alternatively, they harbored inactivating alterations of key regulators of NF-κB, TNF receptor associated factor 3 (TRAF3), and cylindromatosis (CYLD), as well as retinoblastoma protein (RB1). HPV+ HNSCC cells in culture with experimental depletion of TRAF3 or CYLD displayed increased expression of the subclass-defining genes, as well as robust radio-sensitization, thus recapitulating both the tumor transcriptional state and improved treatment response observed in patient data. Across all gene sets investigated, methylation to expression correlations were the strongest for the subclass-defining, NF-κB-related genes. Increased tumor-infiltrating CD4+ T cells and increased Estrogen receptors alpha (ERα) expression were identified in NF-κB active tumors. Based on the relatively high rates of cure in HPV+ HNSCC, deintensification of therapy to reduce treatment-related morbidity is being studied at many institutions. Tumor subclassification based on oncogenic subtypes may help guide the selection of therapeutic intensity or modality for patients with HPV+ HNSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Papillomavirus Infections , Humans , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/radiotherapy , NF-kappa B/genetics , NF-kappa B/metabolism , TNF Receptor-Associated Factor 3/genetics , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/radiotherapy , Carcinoma, Squamous Cell/metabolism , Papillomavirus Infections/genetics , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/radiotherapy , Human Papillomavirus Viruses , Carcinogenesis , Papillomaviridae/genetics , Papillomaviridae/metabolism
8.
Nat Immunol ; 13(3): 283-9, 2012 Jan 15.
Article in English | MEDLINE | ID: mdl-22245737

ABSTRACT

The structural characteristics of the engagement of major histocompatibility complex (MHC) class II-restricted self antigens by autoreactive T cell antigen receptors (TCRs) is established, but how autoimmune TCRs interact with complexes of self peptide and MHC class I has been unclear. Here we examined how CD8(+) T cells kill human islet beta cells in type 1 diabetes via recognition of a human leukocyte antigen HLA-A*0201-restricted glucose-sensitive preproinsulin peptide by the autoreactive TCR 1E6. Rigid 'lock-and-key' binding underpinned the 1E6-HLA-A*0201-peptide interaction, whereby 1E6 docked similarly to most MHC class I-restricted TCRs. However, this interaction was extraordinarily weak because of limited contacts with MHC class I. TCR binding was highly peptide centric, dominated by two residues of the complementarity-determining region 3 (CDR3) loops that acted as an 'aromatic-cap' over the complex of peptide and MHC class I (pMHCI). Thus, highly focused peptide-centric interactions associated with suboptimal TCR-pMHCI binding affinities might lead to thymic escape and potential CD8(+) T cell-mediated autoreactivity.


Subject(s)
Apoptosis , CD8-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/immunology , Insulin-Secreting Cells/immunology , CD8-Positive T-Lymphocytes/chemistry , Histocompatibility Antigens/immunology , Humans , Insulin-Secreting Cells/pathology , Models, Molecular , Protein Structure, Tertiary , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology
9.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Article in English | MEDLINE | ID: mdl-34272276

ABSTRACT

CD8+ T cells are inherently cross-reactive and recognize numerous peptide antigens in the context of a given major histocompatibility complex class I (MHCI) molecule via the clonotypically expressed T cell receptor (TCR). The lineally expressed coreceptor CD8 interacts coordinately with MHCI at a distinct and largely invariant site to slow the TCR/peptide-MHCI (pMHCI) dissociation rate and enhance antigen sensitivity. However, this biological effect is not necessarily uniform, and theoretical models suggest that antigen sensitivity can be modulated in a differential manner by CD8. We used two intrinsically controlled systems to determine how the relationship between the TCR/pMHCI interaction and the pMHCI/CD8 interaction affects the functional sensitivity of antigen recognition. Our data show that modulation of the pMHCI/CD8 interaction can reorder the agonist hierarchy of peptide ligands across a spectrum of affinities for the TCR.


Subject(s)
CD8 Antigens/immunology , Peptides/agonists , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , Antigens/chemistry , Antigens/immunology , CD8-Positive T-Lymphocytes/immunology , Cross Reactions , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Kinetics , Ligands , Lymphocyte Activation , Models, Immunological , Mutation
10.
J Immunol ; 206(3): 652-663, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33328212

ABSTRACT

A vaccine providing both powerful Ab and cross-reactive T cell immune responses against influenza viruses would be beneficial for both humans and pigs. In this study, we evaluated i.m., aerosol (Aer), and simultaneous systemic and respiratory immunization (SIM) by both routes in Babraham pigs, using the single cycle candidate influenza vaccine S-FLU. After prime and boost immunization, pigs were challenged with H1N1pdm09 virus. i.m.-immunized pigs generated a high titer of neutralizing Abs but poor T cell responses, whereas Aer induced powerful respiratory tract T cell responses but a low titer of Abs. SIM pigs combined high Ab titers and strong local T cell responses. SIM showed the most complete suppression of virus shedding and the greatest improvement in pathology. We conclude that SIM regimes for immunization against respiratory pathogens warrant further study.


Subject(s)
Influenza A Virus, H1N1 Subtype/physiology , Influenza Vaccines/immunology , Influenza, Human/immunology , Orthomyxoviridae Infections/immunology , T-Lymphocytes/immunology , Aerosols , Animals , Antibody Formation , Disease Models, Animal , Disease Resistance , Humans , Immunity, Cellular , Immunization , Injections, Intramuscular , Swine
12.
Nucleic Acids Res ; 48(D1): D1057-D1062, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31588507

ABSTRACT

Here, we report an update of the VDJdb database with a substantial increase in the number of T-cell receptor (TCR) sequences and their cognate antigens. The update further provides a new database infrastructure featuring two additional analysis modes that facilitate database querying and real-world data analysis. The increased yield of TCR specificity identification methods and the overall increase in the number of studies in the field has allowed us to expand the database more than 5-fold. Furthermore, several new analysis methods are included. For example, batch annotation of TCR repertoire sequencing samples allows for annotating large datasets on-line. Using recently developed bioinformatic methods for TCR motif mining, we have built a reduced set of high-quality TCR motifs that can be used for both training TCR specificity predictors and matching against TCRs of interest. These additions enhance the versatility of the VDJdb in the task of exploring T-cell antigen specificities. The database is available at https://vdjdb.cdr3.net.


Subject(s)
Computational Biology/methods , Databases, Genetic , Nucleotide Motifs , Receptors, Antigen, T-Cell/genetics , V(D)J Recombination , Amino Acid Sequence , High-Throughput Nucleotide Sequencing , Humans , Position-Specific Scoring Matrices , Receptors, Antigen, T-Cell/chemistry , Sequence Analysis, DNA , Software , Web Browser
13.
J Immunol ; 203(4): 1076-1087, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31253728

ABSTRACT

Elicitation of tumor cell killing by CD8+ T cells is an effective therapeutic approach for cancer. In addition to using immune checkpoint blockade to reinvigorate existing but unresponsive tumor-specific T cells, alternative therapeutic approaches have been developed, including stimulation of polyclonal T cell cytolytic activity against tumors using bispecific T cell engager (BiTE) molecules that simultaneously engage the TCR complex and a tumor-associated Ag. BiTE molecules are efficacious against hematologic tumors and are currently being explored as an immunotherapy for solid tumors. To understand mechanisms regulating BiTE molecule--mediated CD8+ T cell activity against solid tumors, we sought to define human CD8+ T cell populations that efficiently respond to BiTE molecule stimulation and identify factors regulating their cytolytic activity. We find that human CD45RA+CCR7- CD8+ T cells are highly responsive to BiTE molecule stimulation, are enriched in genes associated with cytolytic effector function, and express multiple unique inhibitory receptors, including leukocyte Ig-like receptor B1 (LILRB1). LILRB1 and programmed cell death protein 1 (PD1) were found to be expressed by distinct CD8+ T cell populations, suggesting different roles in regulating the antitumor response. Engaging LILRB1 with its ligand HLA-G on tumor cells significantly inhibited BiTE molecule-induced CD8+ T cell activation. Blockades of LILRB1 and PD1 induced greater CD8+ T cell activation than either treatment alone. Together, our data suggest that LILRB1 functions as a negative regulator of human CD8+ effector T cells and that blocking LILRB1 represents a unique strategy to enhance BiTE molecule therapeutic activity against solid tumors.


Subject(s)
Antibodies, Bispecific/pharmacology , Antigens, CD/immunology , Immunotherapy/methods , Leukocyte Immunoglobulin-like Receptor B1/immunology , Neoplasms/immunology , T-Lymphocytes, Cytotoxic/immunology , Antibodies, Bispecific/immunology , Humans , Leukocyte Immunoglobulin-like Receptor B1/antagonists & inhibitors , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , T-Lymphocyte Subsets/immunology , Tumor Cells, Cultured
14.
J Biol Chem ; 294(52): 20246-20258, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31619516

ABSTRACT

CD4+ T-cells recognize peptide antigens, in the context of human leukocyte antigen (HLA) class II molecules (HLA-II), which through peptide-flanking residues (PFRs) can extend beyond the limits of the HLA binding. The role of the PFRs during antigen recognition is not fully understood; however, recent studies have indicated that these regions can influence T-cell receptor (TCR) affinity and pHLA-II stability. Here, using various biochemical approaches including peptide sensitivity ELISA and ELISpot assays, peptide-binding assays and HLA-II tetramer staining, we focused on CD4+ T-cell responses against a tumor antigen, 5T4 oncofetal trophoblast glycoprotein (5T4), which have been associated with improved control of colorectal cancer. Despite their weak TCR-binding affinity, we found that anti-5T4 CD4+ T-cells are polyfunctional and that their PFRs are essential for TCR recognition of the core bound nonamer. The high-resolution (1.95 Å) crystal structure of HLA-DR1 presenting the immunodominant 20-mer peptide 5T4111-130, combined with molecular dynamic simulations, revealed how PFRs explore the HLA-proximal space to contribute to antigen reactivity. These findings advance our understanding of what constitutes an HLA-II epitope and indicate that PFRs can tune weak affinity TCR-pHLA-II interactions.


Subject(s)
Epitopes/immunology , HLA-DR1 Antigen/metabolism , Amino Acid Sequence , Binding Sites , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Crystallography, X-Ray , Epitopes/chemistry , Epitopes/metabolism , HLA-DR1 Antigen/chemistry , HLA-DR1 Antigen/immunology , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Molecular Dynamics Simulation , Peptides/chemistry , Peptides/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary
15.
Eur J Immunol ; 49(7): 1052-1066, 2019 07.
Article in English | MEDLINE | ID: mdl-31091334

ABSTRACT

The HLA-A*02:01-restricted decapeptide EAAGIGILTV, derived from melanoma antigen recognized by T-cells-1 (MART-1) protein, represents one of the best-studied tumor associated T-cell epitopes, but clinical results targeting this peptide have been disappointing. This limitation may reflect the dominance of the nonapeptide, AAGIGILTV, at the melanoma cell surface. The decapeptide and nonapeptide are presented in distinct conformations by HLA-A*02:01 and TCRs from clinically relevant T-cell clones recognize the nonapeptide poorly. Here, we studied the MEL5 TCR that potently recognizes the nonapeptide. The structure of the MEL5-HLA-A*02:01-AAGIGILTV complex revealed an induced fit mechanism of antigen recognition involving altered peptide-MHC anchoring. This "flexing" at the TCR-peptide-MHC interface to accommodate the peptide antigen explains previously observed incongruences in this well-studied system and has important implications for future therapeutic approaches. Finally, this study expands upon the mechanisms by which molecular plasticity can influence antigen recognition by T cells.


Subject(s)
Immunodominant Epitopes/metabolism , Immunotherapy, Adoptive/methods , MART-1 Antigen/metabolism , Melanoma/immunology , Peptides/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/immunology , Amino Acids , Antigen Presentation , Binding Sites , Cells, Cultured , Clone Cells , HLA-A2 Antigen/chemistry , HLA-A2 Antigen/metabolism , Humans , Lymphocyte Activation , MART-1 Antigen/chemistry , Melanoma/therapy , Peptides/chemistry , Protein Binding , Protein Conformation , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/transplantation
17.
PLoS Pathog ; 14(5): e1007017, 2018 05.
Article in English | MEDLINE | ID: mdl-29772011

ABSTRACT

There is increasing evidence that induction of local immune responses is a key component of effective vaccines. For respiratory pathogens, for example tuberculosis and influenza, aerosol delivery is being actively explored as a method to administer vaccine antigens. Current animal models used to study respiratory pathogens suffer from anatomical disparity with humans. The pig is a natural and important host of influenza viruses and is physiologically more comparable to humans than other animal models in terms of size, respiratory tract biology and volume. It may also be an important vector in the birds to human infection cycle. A major drawback of the current pig model is the inability to analyze antigen-specific CD8+ T-cell responses, which are critical to respiratory immunity. Here we address this knowledge gap using an established in-bred pig model with a high degree of genetic identity between individuals, including the MHC (Swine Leukocyte Antigen (SLA)) locus. We developed a toolset that included long-term in vitro pig T-cell culture and cloning and identification of novel immunodominant influenza-derived T-cell epitopes. We also generated structures of the two SLA class I molecules found in these animals presenting the immunodominant epitopes. These structures allowed definition of the primary anchor points for epitopes in the SLA binding groove and established SLA binding motifs that were used to successfully predict other influenza-derived peptide sequences capable of stimulating T-cells. Peptide-SLA tetramers were constructed and used to track influenza-specific T-cells ex vivo in blood, the lungs and draining lymph nodes. Aerosol immunization with attenuated single cycle influenza viruses (S-FLU) induced large numbers of CD8+ T-cells specific for conserved NP peptides in the respiratory tract. Collectively, these data substantially increase the utility of pigs as an effective model for studying protective local cellular immunity against respiratory pathogens.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Influenza A virus/immunology , Influenza Vaccines/administration & dosage , Respiratory System/immunology , Aerosols , Amino Acid Sequence , Animals , Antigens, Viral/chemistry , Epitopes/chemistry , Epitopes/genetics , Female , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/genetics , Host-Pathogen Interactions/immunology , Humans , Inbreeding , Influenza A virus/pathogenicity , Influenza, Human/immunology , Influenza, Human/prevention & control , Influenza, Human/transmission , Male , Models, Animal , Models, Molecular , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/veterinary , Sus scrofa/genetics , Sus scrofa/immunology , Swine , Swine Diseases/immunology , Swine Diseases/prevention & control , Vaccination/methods , Vaccination/veterinary
18.
Blood ; 131(3): 311-322, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29122757

ABSTRACT

Adoptive transfer of T cells genetically modified to express a cancer-specific T-cell receptor (TCR) has shown significant therapeutic potential for both hematological and solid tumors. However, a major issue of transducing T cells with a transgenic TCR is the preexisting expression of TCRs in the recipient cells. These endogenous TCRs compete with the transgenic TCR for surface expression and allow mixed dimer formation. Mixed dimers, formed by mispairing between the endogenous and transgenic TCRs, may harbor autoreactive specificities. To circumvent these problems, we designed a system where the endogenous TCR-ß is knocked out from the recipient cells using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) technology, simultaneously with transduction with a cancer-reactive receptor of choice. This TCR replacement strategy resulted in markedly increased surface expression of transgenic αß and γδ TCRs, which in turn translated to a stronger, and more polyfunctional, response of engineered T cells to their target cancer cell lines. Additionally, the TCR-plus-CRISPR-modified T cells were up to a thousandfold more sensitive to antigen than standard TCR-transduced T cells or conventional model proxy systems used for studying TCR activity. Finally, transduction with a pan-cancer-reactive γδ TCR used in conjunction with CRISPR/Cas9 knockout of the endogenous αß TCR resulted in more efficient redirection of CD4+ and CD8+ T cells against a panel of established blood cancers and primary, patient-derived B-cell acute lymphoblastic leukemia blasts compared with standard TCR transfer. Our results suggest that TCR transfer combined with genome editing could lead to new, improved generations of cancer immunotherapies.


Subject(s)
Antineoplastic Agents/metabolism , CRISPR-Cas Systems/genetics , Genes, T-Cell Receptor/genetics , T-Lymphocytes/metabolism , Transgenes , CRISPR-Associated Protein 9/metabolism , Cell Line, Tumor , Gene Knockout Techniques , HEK293 Cells , Hematologic Neoplasms/immunology , Hematologic Neoplasms/pathology , Humans , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Reproducibility of Results
19.
J Immunol ; 200(7): 2263-2279, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29483360

ABSTRACT

Peptide-MHC (pMHC) multimers, usually used as streptavidin-based tetramers, have transformed the study of Ag-specific T cells by allowing direct detection, phenotyping, and enumeration within polyclonal T cell populations. These reagents are now a standard part of the immunology toolkit and have been used in many thousands of published studies. Unfortunately, the TCR-affinity threshold required for staining with standard pMHC multimer protocols is higher than that required for efficient T cell activation. This discrepancy makes it possible for pMHC multimer staining to miss fully functional T cells, especially where low-affinity TCRs predominate, such as in MHC class II-restricted responses or those directed against self-antigens. Several recent, somewhat alarming, reports indicate that pMHC staining might fail to detect the majority of functional T cells and have prompted suggestions that T cell immunology has become biased toward the type of cells amenable to detection with multimeric pMHC. We use several viral- and tumor-specific pMHC reagents to compare populations of human T cells stained by standard pMHC protocols and optimized protocols that we have developed. Our results confirm that optimized protocols recover greater populations of T cells that include fully functional T cell clonotypes that cannot be stained by regular pMHC-staining protocols. These results highlight the importance of using optimized procedures that include the use of protein kinase inhibitor and Ab cross-linking during staining to maximize the recovery of Ag-specific T cells and serve to further highlight that many previous quantifications of T cell responses with pMHC reagents are likely to have considerably underestimated the size of the relevant populations.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , HLA-A2 Antigen/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Receptors, Antigen, T-Cell/immunology , Staining and Labeling/methods , Cytomegalovirus/immunology , Herpesvirus 4, Human/immunology , Humans , Lymphocyte Activation/immunology , Melanoma/immunology , Orthomyxoviridae/immunology , Protein Binding/immunology , Protein Kinase Inhibitors/metabolism , RNA-Binding Proteins/immunology , Tumor Cells, Cultured
20.
Nucleic Acids Res ; 46(D1): D419-D427, 2018 01 04.
Article in English | MEDLINE | ID: mdl-28977646

ABSTRACT

The ability to decode antigen specificities encapsulated in the sequences of rearranged T-cell receptor (TCR) genes is critical for our understanding of the adaptive immune system and promises significant advances in the field of translational medicine. Recent developments in high-throughput sequencing methods (immune repertoire sequencing technology, or RepSeq) and single-cell RNA sequencing technology have allowed us to obtain huge numbers of TCR sequences from donor samples and link them to T-cell phenotypes. However, our ability to annotate these TCR sequences still lags behind, owing to the enormous diversity of the TCR repertoire and the scarcity of available data on T-cell specificities. In this paper, we present VDJdb, a database that stores and aggregates the results of published T-cell specificity assays and provides a universal platform that couples antigen specificities with TCR sequences. We demonstrate that VDJdb is a versatile instrument for the annotation of TCR repertoire data, enabling a concatenated view of antigen-specific TCR sequence motifs. VDJdb can be accessed at https://vdjdb.cdr3.net and https://github.com/antigenomics/vdjdb-db.


Subject(s)
Antigens/chemistry , Databases, Protein , Molecular Sequence Annotation , Receptors, Antigen, T-Cell/chemistry , Software , Amino Acid Sequence , Animals , Antigens/immunology , Antigens/metabolism , Binding Sites , High-Throughput Nucleotide Sequencing , Humans , Internet , Macaca mulatta , Major Histocompatibility Complex/genetics , Major Histocompatibility Complex/immunology , Mice , Models, Molecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Single-Cell Analysis , T-Lymphocytes/cytology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL