ABSTRACT
BACKGROUND/AIMS: Patients with Barrett's esophagus are at increased risk of developing esophageal adenocarcinoma. Endoscopic therapies aim to eradicate dysplastic and metaplastic tissues. Hybrid argon plasma coagulation (hybrid-APC) utilizes submucosal fluid injection to create a protective cushion prior to ablation that shields the submucosa from injury. We performed a pooled meta-analysis to evaluate the safety and efficacy of hybrid-APC. METHODS: We conducted a systematic search of major electronic databases in April 2022. Studies that included patients with dysplastic and non-dysplastic Barrett's esophagus undergoing treatment with hybrid-APC were eligible for inclusion. Outcome measures included complete remission of intestinal metaplasia (CR-IM), stricture formation, serious adverse events, and number of sessions necessary to achieve CR-IM. RESULTS: Overall pooled CR-IM rate for patients undergoing hybrid-APC was 90.8% (95% confidence interval [CI], 0.872-0.939; I2=0%). Pooled stricture rate was 2.0% (95% CI, 0.005-0.042; I2=0%). Overall serious adverse event rate was 2.7% (95% CI, 0.007-0.055; I2=0%). CONCLUSION: Results of the current meta-analysis suggest that hybrid-APC is associated with high rates of CR-IM and a favorable safety profile. Interpretation of these results is limited by the inclusion of retrospective cohort and case series data. Randomized controlled trials that standardize treatment and outcome evaluation protocols are necessary to understand how this treatment option is comparable to the current standards of care.
ABSTRACT
It is thought that frontostriatal circuits play an important role in mediating conditioned behavioral responses to environmental stimuli that were previously encountered during drug administration. However, the neural correlates of conditioned responses to drug-associated cues are not well understood at the level of large populations of simultaneously recorded neurons, or at the level of local field potential (LFP) synchrony in the frontostriatal network. Here we introduce a behavioral assay of conditioned arousal to cocaine cues involving pupillometry in awake head-restrained mice. After just 24 h of drug abstinence, brief exposures to olfactory stimuli previously paired with cocaine injections led to a transient dilation of the pupil, which was greater than the dilation effect to neutral cues. In contrast, there was no cue-selective change in locomotion, as measured by the rotation of a circular treadmill. The behavioral assay was combined with simultaneous recordings from dozens of electrophysiologically identified units in the medial prefrontal cortex (mPFC) and ventral striatum (VS). We found significant relationships between cocaine cue-evoked pupil dilation and the proportion of inhibited principal cells in the mPFC and VS. Additionally, LFP coherence analysis revealed a significant correlation between pupillary response and synchrony in the 25-45 Hz frequency band. Together, these results show that pupil dilation is sensitive to drug-associated cues during acute stages of abstinence, and that individual animal differences in this behavioral arousal response can be explained by two complementary measures of frontostriatal network activity.