Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 233
Filter
Add more filters

Publication year range
1.
Funct Integr Genomics ; 24(2): 34, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365972

ABSTRACT

Malnutrition, often termed "hidden hunger," represents a pervasive global issue carrying significant implications for health, development, and socioeconomic conditions. Addressing the challenge of inadequate essential nutrients, despite sufficient caloric intake, is crucial. Biofortification emerges as a promising solution by enhance the presence of vital nutrients like iron, zinc, iodine, and vitamin A in edible parts of different crop plants. Crop biofortification can be attained through either agronomic methods or genetic breeding techniques. Agronomic strategies for biofortification encompass the application of mineral fertilizers through foliar or soil methods, as well as leveraging microbe-mediated mechanisms to enhance nutrient uptake. On the other hand, genetic biofortification involves the strategic crossing of plants to achieve a desired combination of genes, promoting balanced nutrient uptake and bioavailability. Additionally, genetic biofortification encompasses innovative methods such as speed breeding, transgenic approaches, genome editing techniques, and integrated omics approaches. These diverse strategies collectively contribute to enhancing the nutritional profile of crops. This review highlights the above-said genetic biofortification strategies and it also covers the aspect of reduction in antinutritional components in food through genetic biofortification.


Subject(s)
Biofortification , Hunger , Biofortification/methods , Plant Breeding , Crops, Agricultural/genetics , Soil
2.
BMC Plant Biol ; 24(1): 247, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38575856

ABSTRACT

Pea (Pisum sativum L.), a globally cultivated leguminous crop valued for its nutritional and economic significance, faces a critical challenge of soil salinity, which significantly hampers crop growth and production worldwide. A pot experiment was carried out in the Botanical Garden, The Islamia University of Bahawalpur to alleviate the negative impacts of sodium chloride (NaCl) on pea through foliar application of ascorbic acid (AsA). Two pea varieties Meteor (V1) and Sarsabz (V2) were tested against salinity, i.e. 0 mM NaCl (Control) and 100 mM NaCl. Three levels of ascorbic acid 0 (Control), 5 and 10 mM were applied through foliar spray. The experimental design was completely randomized (CRD) with three replicates. Salt stress resulted in the suppression of growth, photosynthetic activity, and yield attributes in pea plants. However, the application of AsA treatments effectively alleviated these inhibitory effects. Under stress conditions, the application of AsA treatment led to a substantial increase in chlorophyll a (41.1%), chl. b (56.1%), total chl. contents (44.6%) and carotenoids (58.4%). Under salt stress, there was an increase in Na+ accumulation, lipid peroxidation, and the generation of reactive oxygen species (ROS). However, the application of AsA increased the contents of proline (26.9%), endogenous AsA (23.1%), total soluble sugars (17.1%), total phenolics (29.7%), and enzymatic antioxidants i.e. SOD (22.3%), POD (34.1%) and CAT (39%) in both varieties under stress. Salinity reduced the yield attributes while foliarly applied AsA increased the pod length (38.7%), number of pods per plant (40%) and 100 seed weight (45.2%). To sum up, the application of AsA alleviated salt-induced damage in pea plants by enhancing photosynthetic pigments, both enzymatic and non-enzymatic activities, maintaining ion homeostasis, and reducing excessive ROS accumulation through the limitation of lipid peroxidation. Overall, V2 (Sarsabz) performed better as compared to the V1 (Meteor).


Subject(s)
Antioxidants , Ascorbic Acid , Antioxidants/metabolism , Chlorophyll A , Lipid Peroxidation , Pisum sativum , Reactive Oxygen Species , Salt Stress , Sodium Chloride/pharmacology
3.
BMC Plant Biol ; 24(1): 611, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926637

ABSTRACT

Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the negative effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1) and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control) and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), anthocyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e. glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na+ ions and concomitantly decreased the K+ and Ca2+ absorption in canola plants. Overall, the foliar treatments of SA were quite effective in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2 (Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ameliorating the negative effects of high salinity in canola plants.


Subject(s)
Brassica napus , Salicylic Acid , Salt Stress , Brassica napus/drug effects , Brassica napus/growth & development , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Salt Stress/drug effects , Chlorophyll/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Plant Leaves/drug effects , Sodium Chloride/pharmacology , Antioxidants/metabolism
4.
J Fluoresc ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805132

ABSTRACT

Copper metal is third most abundant trace element in human body. Determination of Cu (II) ions is a burning topic in field of environment protection and food safety because of its significant impact on ecosystem. In this study, 2,6-pyridine dicarboxylic acid (PDA) has been explored as "turn-off" florescent probe for florescent detection of Cu (II) ions. This sensor showed highly selective complexing ability towards Cu (II) ions. Addition of aqueous solution of Cu (II) ions remarkably quenched the fluorescence intensity of PDA while, on contrary, there was no any prominent fluorescence quenching interference on addition of various metal ions. The binding mode of PDA and Cu (II) ions was determined as stoichiometry of 1:1 and it was further confirmed by single crystal XRD analysis. Mechanisms of static and dynamic quenching were confirmed by stern-volmer plot. Limit of detection (LOD) and limit of quantification (LOQ) for Cu (II) ions was calculated as 3.6 µM and 1.23 µM respectively, which is far below the acceptable value (31.5µM) according to the World Health Organization. The use of the sensor for detection of Cu (II) ions in real samples in aqueous media was also performed.

5.
Environ Res ; 249: 118451, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38341073

ABSTRACT

Respiratory viruses have a significant impact on health, as highlighted by the COVID-19 pandemic. Exposure to air pollution can contribute to viral susceptibility and be associated with severe outcomes, as suggested by recent epidemiological studies. Furthermore, exposure to particulate matter (PM), an important constituent of air pollution, is linked to adverse effects on the brain, including cognitive decline and Alzheimer's disease (AD). The olfactory mucosa (OM), a tissue located at the rooftop of the nasal cavity, is directly exposed to inhaled air and in direct contact with the brain. Increasing evidence of OM dysfunction related to neuropathogenesis and viral infection demonstrates the importance of elucidating the interplay between viruses and air pollutants at the OM. This study examined the effects of subacute exposure to urban PM 0.2 and PM 10-2.5 on SARS-CoV-2 infection using primary human OM cells obtained from cognitively healthy individuals and individuals diagnosed with AD. OM cells were exposed to PM and subsequently infected with the SARS-CoV-2 virus in the presence of pollutants. SARS-CoV-2 entry receptors and replication, toxicological endpoints, cytokine release, oxidative stress markers, and amyloid beta levels were measured. Exposure to PM did not enhance the expression of viral entry receptors or cellular viral load in human OM cells. However, PM-exposed and SARS-CoV-2-infected cells showed alterations in cellular and immune responses when compared to cells infected only with the virus or pollutants. These changes are highly pronounced in AD OM cells. These results suggest that exposure of human OM cells to PM does not increase susceptibility to SARS-CoV-2 infection in vitro, but it can alter cellular immune responses to the virus, particularly in AD. Understanding the interplay of air pollutants and COVID-19 can provide important insight for the development of public health policies and interventions to reduce the negative influences of air pollution exposure.


Subject(s)
COVID-19 , Olfactory Mucosa , Particulate Matter , SARS-CoV-2 , Particulate Matter/toxicity , Humans , Olfactory Mucosa/drug effects , Olfactory Mucosa/virology , COVID-19/immunology , Air Pollutants/toxicity , Aged , Male , Female , Alzheimer Disease/immunology , Alzheimer Disease/chemically induced , Alzheimer Disease/virology , Middle Aged , Cytokines/metabolism , Aged, 80 and over , Oxidative Stress/drug effects
6.
Plant Dis ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720541

ABSTRACT

Mungbean, Vigna radia (L.) R. Wilczek, is ranked 2nd next to chickpea (Cicer arietinum) in total cultivation and production in Pakistan. In August of 2022 and 2023, mungbean plants (cv. PRI Mung-2018) were found wilting in a field at the Ayub Agricultural Research Institute, Faisalabad, Pakistan. Wilted leaves turned yellow, died, but remained attached to the stem. Vascular tissue at the base of the stem showed light to dark brown discoloration. Roots were stunted with purplish brown to black discoloration. Symptomatic mungbean plants were collected from fields at five different locations (20 samples/location). Disease incidence was similar among the five fields, ranging from 5 to 10% at each location depending upon type of germplasm and date of sowing. For fungal isolation and morphological identification, symptomatic stem and root tissues were cut into ~5 mm2 pieces with a sterilized blade. Tissues were surface-sterilized for one min in a 0.5% sodium hypochlorite solution, rinsed twice in sterilized water, air dried on sterilized filter paper, and aseptically placed on potato dextrose agar (PDA) containing 0.5 g/L-1 streptomycin sulphate. Plates were incubated for 3-4 days at 25 ± 2°C with a 12-h photoperiod. Single-spore cultures were used for morphological and molecular analyses. Isolates on PDA grew rapidly and produced abundant white aerial mycelium that turned off-white to beige with age. Macroconidia were hyaline, falcate, typically 3-to-6 septate with a pointed apical cell and a foot-shaped basal cell, measuring 24.5-49.5 x 2.7-4.7 µm (n = 40). Globose to obovate chlamydospores measuring 5.8 ± 0.5 µm (n = 40) were produced singly or in chains and were intercalary or terminal and possessed roughened walls. The morphological data indicated the isolates were members of the genus Fusarium (Leslie and Summerell 2006). To obtain a species-level identification, a portion of translation elongation factor 1-α (TEF1), the largest subunit of RNA polymerase (RPB1), and the second largest subunit of RNA polymerase (RPB2) region were PCR amplified and sequenced using EF1/EF2 (O'Donnell et al. 1998), Fa/G2R (Hofstetter et al. 2007), and 5f2/7cr (Liu et al. 1999) primers, respectively. DNA sequences of these genes were deposited in GenBank under accession numbers MW059021, MW059017 and MW059019, respectively. The partial TEF1, RPB1 and RPB2 sequences were queried against the Fusarium MLST database (https://fusarium.mycobank.org/page/Fusarium_identification), using the polyphasic identification tool. The BLASTn search revealed 99.9% identity of the isolate to F. nanum (Xia et al. 2019), formerly FIESC 25 of the F. incarnatum-equiseti species complex (MRC 2610, NRRL 54143; O'Donnell et al. 2018). To confirm pathogenicity, roots of 3-5 leaf stage mungbean seedlings were soaked in a 106 spores ml-1 conidial suspension of the fungus for 15 min and then planted in 10 cm pots containing sterilized soil. Mock-inoculated plants with sterile water served as a negative control. Twenty pots that were used for each inoculated and control treatment were maintained at 25 ± 2°C, 14:8 h photoperiod, and 80% relative humidity in a growth chamber. After 15 days, leaf yellowing, internal browning from the base of stems and root discoloration was observed in all the inoculated plants. The uninoculated negative control plants remained asymptomatic. Fusarium nanum was re-isolated from artificially inoculated plants and identified by colony growth, conidial characteristics on PDA and molecular analyses (TEF1). To our knowledge, this is the first report of wilt caused by F.nanum on mungbean in Pakistan. In Pakistan, mungbean cultivation in irrigated areas has increased in recent years. It has been introduced frequently in citrus orchards, crop rotation of maize and sesame, intercropping with sugarcane and as green manure. However, citrus, maize, sesame and sugarcane are also hosts of Fusarium spp. Therefore, this information warrants sustainable crop protection and may have an impact on further interaction of F. nanum with other wilt pathogens.

7.
J Environ Manage ; 360: 121174, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759557

ABSTRACT

Every nation on earth has the responsibility to implement effective environmental management measures for sustainable environmental quality. In doing so, this study scrutinizes the relationship between economic globalisation and energy diversification in the Chinese economy from 1995 to 2022 for designing and implanting policies for environmental management. It uses industrialization, foreign direct investment, foreign remittances, and information & communication technology as supplementary factors into augmented energy diversification demand function. This empirical analysis shows cointegration between the variables, with economic globalisation positively impacting energy diversification. Factors such as foreign direct investment, foreign remittances, and information & communication technology contribute to energy diversity. However, industrialization has an adverse relationship with energy diversification. The relationship forms an inverted-U shaped between economic globalization and energy diversification. Our causality analysis indicates that economic globalization positively causes energy diversification. This study also reveals a reciprocal and beneficial cause-and-effect association between foreign direct investment and energy diversification. Lastly, foreign remittances and information & communication technologies positively cause energy diversification.


Subject(s)
Internationality , China , Conservation of Natural Resources
8.
J Environ Manage ; 351: 119648, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38056331

ABSTRACT

Against the backdrop of the great challenge of climate change and growing global environmental concerns, this study deals a systematic literature review of research related to Environmental Kuznets Curve (EKC) from 1991 to 2023, details the background, definition, significance, critiques, theoretical foundations and model specifications of EKC, and summarizes the data, variables, econometric methods and findings used in over 100 EKC studies. This study focuses on EKC studies that examine the relationship between energy consumption, economic growth and environmental degradation, with most of the studies reviewed using global pollutants (carbon emissions) to measure the level of environmental degradation. This study found that EKC still has great research potential, and with the development of energy diversification, energy consumption in EKC studies have been further subdivided into renewable or non-renewable energy consumption; innovative EKC studies in the last few years have favoured the use of novel environmental and economic indicators and econometric method, and have validated the existence of EKC at the sectoral level rather than the national level. Finally, the present study summarizes the development and innovations of EKC and provides suggestions for future research aimed at advancing the development of EKC and environmental management.


Subject(s)
Conservation of Natural Resources , Environmental Pollutants , Carbon Dioxide/analysis , Economic Development , Carbon
9.
J Environ Manage ; 351: 119709, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38043304

ABSTRACT

Given the dire state of climate change, investigating key elements that impact the energy transition process and help monitor progress in greenhouse gas emissions to achieve environmental sustainability is of critical importance. The current study explores the association between energy transition, compliance with environmental agreements, fossil fuels costs, environmental technologies, economic growth, and environmental degradation in G20 economies from 1995 to 2019. Our findings from extensive econometric analysis reveal that economic growth, environmental innovation, renewable energy, and environmental compliance facilitate while fossil fuels and environmental degradation hinder the energy transition process. Our findings conclude that developed countries must focus on alternate energy resources to overcome environmental challenges and subsidize renewable energy and environmental technologies to replace fossil fuels with green energy resources methodologically. Further, policy measures have been discussed in detail in the study.


Subject(s)
Carbon Dioxide , Fossil Fuels , Carbon Dioxide/analysis , Renewable Energy , Costs and Cost Analysis , Economic Development
10.
J Environ Manage ; 352: 120030, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38194875

ABSTRACT

Rapid developments in environmental infrastructure have contributed to significant improvements in green total factor productivity, but further investigation is required to provide a detailed assessment to understand the policy mechanisms involved. This paper analyzes environmental progress in China through MMQR, CCEMG, and AMG as empirical strategies for 30 provinces in China. Our empirical results reveal that energy optimization through renewable energy is the most effective channel to improve green total factor productivity, though it is not the only available option. Since environmental regulations, infrastructure development, and green technology innovation also directly impact energy efficiency, adopting these within policy channels will positively impact environmental sustainability. Our empirical approach helps suggest novel environmental policy suggestions. In particular, policymakers must introduce structural changes within energy developments to foster renewable energy. Furthermore, China must increase environmental spending to upgrade its energy infrastructure further and solve ecological issues. These insights offer valuable policy guidance for decision-makers in China and globally, aiming to foster economic and environmental sustainability and achieve zero-carbon transition goals.


Subject(s)
Carbon , Environmental Policy , China , Policy , Renewable Energy , Economic Development , Carbon Dioxide
11.
J Environ Manage ; 367: 121984, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39096725

ABSTRACT

This study examines how business, financial, monetary, and trade freedom influence Turkiye's green growth from 1995 to 2022, utilizing the ARDL approach to cointegration. Our results confirm the long-term cointegration among the variables. Robustness tests, such as Fully Modified Ordinary Least Squares (FMOLS) and Dynamic Ordinary Least Squares (DOLS), consistently show that business and trade freedom hinder Turkiye's green growth. Financial freedom and monetary freedom consistently foster it. Business freedom and heightened trade freedom lead to increased fossil fuel consumption, whereas monetary freedom stabilizes Turkiye's currency, and financial freedom promotes entrepreneurship. Enhancing eco-friendly energy sources and investing in green technologies are crucial for promoting sustainable growth, reducing production costs, fostering entrepreneurship, and encouraging competition. The fact that the impact of these variables on green growth in Turkiye has not been studied before makes the study's findings novel.


Subject(s)
Sustainable Growth , Commerce , Conservation of Natural Resources
12.
J Environ Manage ; 370: 122359, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243636

ABSTRACT

The inverted U-shaped relationship between economic growth and environmental degradation is known as environmental Kuznets curve (EKC) and has been tested in many empirical studies since more than 3 decades. Technological change is one of the tools that can be used to examine the existence of EKC in CGE models. The objective is to extract EKC for G7 countries using a multi-regional CGE model and investigate the effects of some key factors affecting EKC using historical data for the period of 1861-2021. First, we have considered the effects of energy efficiency, on CO2 emissions, on carbon intensity and on economic growth. Then, EKC was extracted based on the obtained results. In addition, the effects of factors such as carbon tax, revenue recycling schemes and various types of substitution elasticities are evaluated on EKC. Our results show that, with a 3% improvement in productivity, by 2050, GDP will increase by nearly 12% and carbon emissions will decrease by 4.4%. The combination of such two effects has led to an inverted U-shaped relationship between economic growth and carbon emissions. Among the elasticity of substitutions, the elasticity of substitution of capital and energy, as well as the substitution elasticity of energy inputs has the greatest effect on EKC. The slope of EKC becomes negative if a carbon tax is imposed. The EKC moves downwards if carbon tax income is transferred to the production tax-cut in renewable sectors. The results suggest that carbon tax and its allocation to renewable sectors will improve environmental effects.

13.
J Environ Manage ; 360: 121091, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38761617

ABSTRACT

In an exploration of environmental concerns, this groundbreaking research delves into the relationship between GDP per capita, coal rents, forest rents, mineral rents, oil rents, natural gas rents, fossil fuels, renewables, environmental tax and environment-related technologies on CO2 emissions in 30 highly emitting countries from 1995 to 2021 using instrumental-variables regression Two-Stage least squares (IV-2SLS) regression and two-step system generalized method of moments (GMM) estimates. Our results indicate a significant positive relationship between economic growth and CO2 emissions across all quantiles, showcasing an EKC with diminishing marginal effects. Coal rents exhibit a statistically significant negative relationship with emissions, particularly in higher quantiles, and mineral rents show a negative association with CO2 emissions in lower and middle quantiles, reinforcing the idea of resource management in emissions reduction. Fossil fuels exert a considerable adverse impact on emissions, with a rising effect in progressive quantiles. Conversely, renewable energy significantly curtails CO2 emissions, with higher impacts in lower quantiles. Environmental tax also mitigates CO2 emissions. Environment-related technologies play a pivotal role in emission reduction, particularly in lower and middle quantiles, emphasizing the need for innovative solutions. These findings provide valuable insights for policymakers, highlighting the importance of tailoring interventions to different emission levels and leveraging diverse strategies for sustainable development.


Subject(s)
Carbon Dioxide , Economic Development , Carbon Dioxide/analysis , Fossil Fuels , Conservation of Natural Resources , Natural Gas
14.
J Environ Manage ; 368: 121898, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39121622

ABSTRACT

Amidst pressing global environmental challenges, exacerbated by climate change and the imminent threat of global warming, there is a critical need to assess the efficacy of environmental policies. This study centers its attention on the pivotal role of these policies in addressing environmental concerns. Specifically, our research aims to scrutinize the impact of stringent environmental policies on environmental quality under the theoretical underpinnings of environmental Kuznets curve. To achieve this objective, the study collected data from BRICS-T economies over the period of 1990-2020. This study employed the method of moments quantile regression technique for empirical analysis. Our study validates the presence of the Environmental Kuznets curve (EKC hypothesis). Empirical findings reveal the sustained significance of environmental stringency across all quantiles, demonstrating a positive correlation in lower quantiles and a negative correlation in higher quantiles. At lower quantiles, the impact is insignificant initially, but pronounced due to efficiency improvements induced by stringent policies. The effects became negative at middle quantiles, indicating stringent policies might encounter diminishing returns where policy measures start stabilizing ecological impacts. At higher quantiles, the influence of ESI remains significant, reflecting ongoing adaptations in larger economies with higher ecological footprints. This suggests the potential effectiveness of stringent regulatory measures in mitigating environmental impacts and reducing ecological footprints. The identified inverted U-shaped curve signifies that while stringent policies may not inherently enhance environmental health, beyond a certain threshold, they can indeed contribute to its improvement. Our policy recommendation advocates for the widespread adoption and promotion of such stringent measures to safeguard environmental health.


Subject(s)
Climate Change , Conservation of Natural Resources , Environmental Policy , Conservation of Natural Resources/methods , Global Warming , Environment
15.
J Environ Manage ; 368: 122205, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39168007

ABSTRACT

The world has experienced climate-related issues, which increase the importance of ESG disclosures and corporate governance (CG) of companies, which take place at the heart of economies. Therefore, improving ESG disclosures and CG practices becomes significant to combat climate change at the company level. Considering that Türkiye restructured ESG disclosures in 2022, this study investigates the role of CG on the nexus between ESG scores of publicly traded companies (PTC) and ESG reports. So, the study analyzes 102 PTC (full sample), 51 PTC in Borsa Istanbul Corporate Governance Index (in-sample), and the remaining 51 PTC (out-sample) using ESG disclosures of 2022 and applying novel super learner (SL) algorithm. Our results show that (i) SL has a higher prediction performance reaching ∼94.3%; (ii) the environment (governance) layer has the highest (lowest) total relative importance (contribution) to ESG scores in all samples; (iii) C8, S6, and E5 are the most important ESG principles in the full sample, in-sample, and out-sample, respectively; (iv) the contribution of each ESG principles to the total ESG scores varies by sample; (v) CG plays a smoothing role for the relative importance of each ESG principle, while the relative importance in the out-sample shows much higher volatility. Overall, the study reveals the non-linear contributions of ESG principles on ESG scores and suggests that PTC should prioritize highly important ESG principles, consider the moderating role of CG on the link between ESG scores and ESG disclosures, and use ESG disclosures as a strategic tool to develop ESG scores and disclosures.


Subject(s)
Disclosure , Turkey , Climate Change , Environment
16.
J Environ Manage ; 359: 120971, 2024 May.
Article in English | MEDLINE | ID: mdl-38677233

ABSTRACT

Consistent with the increasing environmental interest, the clean energy transition is highly critical to achieving decarbonization targets. Also, energy security has become an important topic under the shadow of the energy crisis,. Accordingly, countries have been trying to stimulate clean energy use to preserve the environment and ensure energy security. So, considering the leading role of economic size and volume of energy use, the study examines the USA to define whether energy transition helps decrease energy security risk (ESR) and curb CO2 emissions. So, the study applies a disaggregated level analysis by performing quantile-based models for the period from 2001/Q1 through 2022/Q4. The results demonstrate that (i) the energy transition index decreases environmental ESR at higher quantiles and reliability ESR at lower and middle quantiles, whereas it is not beneficial in declining economic and geopolitical ESR; (ii) energy transition curbs CO2 emissions in building and transport sectors at lower quantiles, whereas it does not help decrease CO2 emissions in industrial and power sectors; (iii) energy transition is mostly ineffective on ESR, whereas it is highly effective in curbing CO2 emissions in all sectors except for transport across various quantiles as time passes; (iv) the results differ according to the aggregated and disaggregated levels; (v) the results are consistent across main and alternative models. Hence, the study highlights the dominant effect of energy transition in curbing sectoral CO2 emissions rather than easing ESR. Accordingly, the study discusses various policy implications for the USA.


Subject(s)
Carbon Dioxide , Carbon Dioxide/analysis , United States , Models, Theoretical
17.
J Environ Manage ; 359: 121037, 2024 May.
Article in English | MEDLINE | ID: mdl-38714039

ABSTRACT

Russia ranks among the top five countries worldwide in terms of carbon emissions, with the energy, transportation, and manufacturing sectors as the major contributors. This poses a significant threat to both current and future generations. Russia faces challenges in achieving Sustainable Development Goal 13, necessitating the implementation of more innovative policies to promote environmental sustainability. Considering this alarming situation, this study investigates the role of financial regulations, energy price uncertainty, and climate policy uncertainty in reshaping sectoral CO2 emissions in Russia. This study utilizes a time-varying bootstrap rolling-window causality (BRW) approach using quarterly data from 1990 to 2021. The stability test for parameters indicates instability, suggesting that the full sample causality test may yield incorrect inferences. Thus, the BRW approach is employed for valid inferences. Our findings confirm the time-varying negative impact of financial regulations on CO2 emissions from energy, manufacturing, and transportation sectors. Additionally, findings confirm time-varying positive impact of energy prices and climate policy uncertainty on CO2 emissions from the energy, manufacturing, and transportation sectors. Strong financial regulations and stable energy and climate policies are crucial for achieving sustainability, highlighting significant policy implications for policymakers and stakeholders.


Subject(s)
Carbon Dioxide , Uncertainty , Carbon Dioxide/analysis , Transportation , Climate Change , Environmental Policy , Sustainable Development , Russia
18.
J Environ Manage ; 359: 121036, 2024 May.
Article in English | MEDLINE | ID: mdl-38718603

ABSTRACT

Researchers have shown a growing interest in investigating the environmental consequences of energy exploitation and green technologies, particularly in light of the escalating severity of climate change issues in recent times. However, these researches remain incomplete in terms of the various elements and mechanisms of impact. By assessing the novel facet of resource diversification, this study has assessed the direct and indirect effects of this feature on environmental quality. This study used the Moment quantile Regression technique to examine data from 31 OECD nations spanning the time frame of 2009-2019. The findings indicate that resource diversification has an adverse effect on environmental quality, however this effect is not homogeneously observed across all countries. Countries with favorable environmental conditions will encounter a more pronounced influence from the diversification of natural resources extraction. This study further demonstrates that expanding the variety of natural resource exploitation will amplify the negative effects of resource exploitation on environmental quality. Furthermore, the degree of environmental technology exerts a beneficial impact on environmental quality across various degrees of environmental quality. Our findings offer several insightful policies for natural resources management in the context of the ongoing industrial revolution.


Subject(s)
Climate Change , Conservation of Natural Resources , Natural Resources , Technology , Environment
19.
J Environ Manage ; 365: 121664, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38968880

ABSTRACT

Public interest in climate change-related problems has been developing with the contribution of the recent energy crisis. Accordingly, countries have been increasing their efforts to decarbonize economies. In this context, energy transition and energy-related research and development (R&D) investments can be important strategic tools to be helpful to countries in the decarbonization of economies. Among all, Nordic countries have come to the force because of their well-known position as green economies. Hence, this study examines Nordic countries to investigate the impact of energy transition, renewable energy R&D investments (RRD), energy efficiency R&D investments (EEF) on carbon dioxide (CO2) emissions by performing wavelet local multiple correlation (WLMC) model and using data from 2000/1 to 2021/12. The outcomes reveal that (i) based on bi-variate cases, energy transition and RRD have a mixed impact on CO2 emissions in all countries across all frequencies; EEF has a declining impact on CO2 emissions in Norway (Sweden) at low and medium (very high) frequencies; (ii) according to four-variate cases, all variables have a combined increasing impact on CO2 emissions; (iii) RRD is the most influential dominant factor in all countries excluding Norway, where EEF is the pioneering one. Thus, the reach proves the varying impacts of energy transition, RRD, and EEF investments on CO2 emissions. In line with the outcomes of the novel WLMC model, various policy endeavors, such as focusing on displacement between sub-types of R&D investments, are argued to ensure the decarbonization of the economies.


Subject(s)
Carbon Dioxide , Climate Change , Scandinavian and Nordic Countries , Carbon Dioxide/analysis , Investments , Renewable Energy , Models, Theoretical
20.
World J Microbiol Biotechnol ; 40(7): 217, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38806748

ABSTRACT

Plant pathogens with their abundance are harmful and cause huge damage to different agricultural crops and economy of a country as well as lead towards the shortage of food for humans. For their management, the utilization of entomopathogenic fungi is an eco-friendly technique, sustainable to the environment, safe for humans and has promising effect over chemical-based pesticides. This process requires a biochemical mechanism, including the production of enzymes, toxins, and other metabolites that facilitate host infection and invasion. Essential enzymes such as chitinase, proteinase, and lipase play a direct role in breaking down the host cuticle, the primary barrier to EPF (Entomopathogenic Fungi) infection. Additionally, secondary metabolites such as destruxins in Metarhizium, beauvericin in Beauveria, hirsutellides in Hirsutella, isarolides in Isaria, cordyols in Cordyceps, and vertihemipterins in Verticillium, among others, act both directly and indirectly to disable the defense mechanisms of insect hosts, thereby accelerating the EPF infection process. The chemical composition of these secondary metabolites varies, ranging from simple non-peptide pigments such as oosporine to highly complex piperazine derivatives such as vertihemiptellides. The biocontrol efficacy of EPF is extensively studied, with numerous fungal strains commercially available on a large scale for managing arthropod pests. This review emphasizes the role of proteins and enzymes against crop pathogens, detailing their mode of action, and describing the metabolites from entomopathogenic fungi and their biological activities. In doing so, these findings contribute to establishing a symbiotic equilibrium between agricultural productivity and environmental conservation.


Subject(s)
Crops, Agricultural , Fungi , Insecta , Pest Control, Biological , Animals , Beauveria/metabolism , Biological Control Agents/metabolism , Cordyceps/metabolism , Crop Protection/methods , Crops, Agricultural/parasitology , Fungi/metabolism , Insecta/microbiology , Metarhizium/metabolism , Plant Diseases/parasitology , Plant Diseases/prevention & control , Secondary Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL