ABSTRACT
The formation of dimer-Cu species, which serve as the active sites of the low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR), relies on the mobility of CuI species in the channels of the Cu-SSZ-13 catalysts. Herein, the key role of framework Brønsted acid sites in the mobility of reactive Cu ions was elucidated via a combination of density functional theory calculations, in situ impedance spectroscopy, and in situ diffuse reflectance ultraviolet-visible spectroscopy. When the number of framework Al sites decreases, the Brønsted acid sites decrease, leading to a systematic increase in the diffusion barrier for [Cu(NH3)2]+ and less formation of highly reactive dimer-Cu species, which inhibits the low-temperature NH3-SCR reactivity and vice versa. When the spatial distribution of Al sites is uneven, the [Cu(NH3)2]+ complexes tend to migrate from an Al-poor cage to an Al-rich cage (e.g., cage with paired Al sites), which effectively accelerates the formation of dimer-Cu species and hence promotes the SCR reaction. These findings unveil the mechanism by which framework Brønsted acid sites influence the intercage diffusion and reactivity of [Cu(NH3)2]+ complexes in Cu-SSZ-13 catalysts and provide new insights for the development of zeolite-based catalysts with excellent SCR activity by regulating the microscopic spatial distribution of framework Brønsted acid sites.
ABSTRACT
Water molecules commonly inhibit the selective catalytic reduction (SCR) of NOx with NH3 on most catalysts, and water resistance is a long-standing challenge for SCR technology. Herein, by combining experimental measurements and density functional theory (DFT) calculations, we found that water molecules do not inhibit and even promote the NOx conversion to some extent over the Cu-SSZ-39 zeolites, a promising SCR catalyst. Water acting as a ligand on active Cu sites and as a reactant in the SCR reaction significantly improves the O2 activation performance and reduces the overall energy barrier of the catalytic cycle. This work unveils the mechanism of the unexpected promotion effect of water on the NH3-SCR reaction over Cu-SSZ-39 and provides fundamental insight into the development of zeolite-based SCR catalysts with excellent activity and water resistance.
ABSTRACT
Metal-free carbon-based catalysts are attracting much attention in the low-temperature selective catalytic reduction of NOx with NH3 (NH3-SCR). However, the mechanism of the NH3-SCR reaction on carbon-based catalysts is still controversial, which severely limits the development of carbon-based SCR catalysts. Herein, we successfully reconstructed carbon-based catalysts through oxidation treatment with nitric acid, thereby enhancing their low-temperature activity in NH3-SCR. Combining experimental results and density functional theory (DFT) calculations, we proposed a previously unreported NH3-SCR reaction mechanism over carbon-based catalysts. We demonstrated that C-OH and C-O-C groups not only effectively activate NH3 but also remarkedly promote the decomposition of intermediate NH2NO. This study enhances the understanding of the NH3-SCR mechanism on carbon-based catalysts and paves the way to develop low-temperature metal-free SCR catalysts.
Subject(s)
Ammonia , Carbon , Density Functional Theory , Oxidation-Reduction , Metals , CatalysisABSTRACT
The presence of light hydrocarbons (HCs) in diesel exhaust, specifically C3H6, significantly affects the performance of the state-of-the-art Cu-SSZ-13 zeolite NH3-SCR catalysts. It also leads to the formation of highly toxic HCN, posing risks to the environment and human health. In this work, the highly toxic HCN formation is inhibited, and the C3H6 resistance of Cu-SSZ-13 is improved by secondary metal modification via doping with rare earth/transition metal elements. Upon introduction of C3H6, the activity of Cu-SSZ-13 significantly decreases at medium-high temperatures. This is primarily due to the competitive reaction between C3H6 and NH3, which compete for the NH3 reductant required in the NH3-SCR reaction, resulting in the production of HCN. The unfavorable effect is alleviated on the modified catalysts due to their enhanced oxidation capabilities toward C3H6 and the HCHO intermediate, facilitating the complete oxidation of C3H6 to COx. This inhibits the undesirable partial oxidation reaction between C3H6 and NH3, thereby improving the activity of Cu-SSZ-13 at medium to high temperatures and significantly reducing the formation of highly toxic HCN.
Subject(s)
Zeolites , Zeolites/chemistry , Catalysis , Copper/chemistry , Ammonia/chemistry , Vehicle Emissions , Hydrocarbons/chemistry , Oxidation-Reduction , Hydrogen Cyanide/chemistryABSTRACT
Aiming at purification of NOx from hydrogen internal combustion engines (HICEs), the hydrogen selective catalytic reduction (H2-SCR) reaction was investigated over a series of Pt/KFI zeolite catalysts. H2 can readily reduce NOx to N2 and N2O while O2 inhibited the deNOx efficiency by consuming the reductant H2. The Pt/KFI zeolite catalysts with Pt loading below 0.1 wt.% are optimized H2-SCR catalysts due to its suitable operation temperature window since high Pt loading favors the H2-O2 reaction which lead to the insufficient of reactants. Compared to metal Pt0 species, Ptδ+ species showed lower activation energy of H2-SCR reaction and thought to be as reasonable active sites. Further, Eley-Rideal (E-R) reaction mechanism was proposed as evidenced by the reaction orders in kinetic studies. Last, the optimized reactor was designed with hybrid Pt/KFI catalysts with various Pt loading which achieve a high NOx conversion in a wide temperature range.
Subject(s)
Hydrogen , Zeolites , Hydrogen/chemistry , Oxidation-Reduction , Kinetics , Ammonia/chemistry , CatalysisABSTRACT
The trade-off between activity and selectivity is a century-old puzzle in catalysis. In the selective catalytic reduction of NO with NH3 (NH3-SCR), various typical oxide catalysts exhibit distinct characteristics of activity and selectivity: Mn-based catalysts show outstanding low-temperature activity and poor N2 selectivity, mainly caused by N2O formation, while Fe- and V-based catalysts possess inverse characteristics. The underlying mechanism, however, has remained elusive. In this study, by combining experimental measurements and density functional theory calculations, we demonstrate that the distinct difference in the selectivity of oxide catalysts is determined by the gap in the energy barriers between N2 formation and N2O formation from the consumption of the key intermediate NH2NO. The gaps in the energy barriers follow the order of α-MnO2 < α-Fe2O3 < V2O5/TiO2, in correspondence with the order of N2 selectivity of the catalysts. This work discloses the intrinsic link between the target reaction and side reactions in the selective catalytic reduction of NO, providing fundamental insights into the origin of selectivity.
Subject(s)
Manganese Compounds , Oxides , Oxidation-Reduction , Temperature , Catalysis , AmmoniaABSTRACT
Electrocatalytic hydrogenation is acknowledged as a promising strategy for chlorophenol dechlorination. However, the widely used Pd catalysts exhibit drawbacks, such as high costs and low selectivity for phenol hydrosaturation. Herein, we demonstrate the potential and mechanism of Ru in serving as a Pd substitute using 2,4,6-trichlorophenol (TCP) as a model pollutant. Up to 99.8% TCP removal efficiency and 99% selectivity to cyclohexanol, a value-added compound with an extremely low toxicity, were achieved on the Ru electrode. In contrast, only 66% of TCP was removed on the Pd electrode, with almost no hydrosaturation selectivity. The superiority of Ru over Pd was especially noteworthy in alkaline conditions or the presence of interfering species such as S2-. The theoretical simulation demonstrates that Ru possesses a hydrodechlorination energy barrier of 0.72 eV, which is comparable to that on Pd. Meanwhile, hydrosaturation requires an activation energy of 0.69 eV on Ru, which is much lower than that on Pd (0.92 eV). The main reaction mechanism on Ru is direct electron transfer, which is distinct from that on Pd (indirect pathway via atomic hydrogen, H*). This work thereby provides new insights into designing cost-effective electrocatalysts for halogenated phenol detoxification and resource recovery.
Subject(s)
Chlorophenols , Hydrogenation , Electrons , Phenol , Electron TransportABSTRACT
Commercial vanadium oxide catalysts exhibit high efficiency for the selective catalytic reduction (SCR) of NO with NH3, especially in the presence of NO2 (i.e., occurrence of fast NH3-SCR). The high-activity sites and their working principle for the fast NH3-SCR reaction, however, remain elusive. Here, by combining in situ spectroscopy, isotopic labeling experiments, and density functional theory (DFT) calculations, we demonstrate that polymeric vanadyl species act as the main active sites in the fast SCR reaction because the coupling effect of the polymeric structure alters the elementary reaction step and effectively avoids the high energy barrier of the rate-determining step over monomeric vanadyl species. This study unveils the high-activity dinuclear mechanism of the NO2-involved SCR reaction over vanadia-based catalysts and provides a fundamental basis for developing high-efficiency and low V2O5-loading SCR catalysts.
Subject(s)
Nitrogen Dioxide , Vanadates , Ammonia/chemistry , Oxides/chemistry , CatalysisABSTRACT
The application of small-pore chabazite-type SSZ-13 zeolites, key materials for the reduction of nitrogen oxides (NOx) in automotive exhausts and the selective conversion of methane, is limited by the use of expensive N,N,N-trimethyl-1-ammonium adamantine hydroxide (TMAdaOH) as an organic structure-directing agent (OSDA) during hydrothermal synthesis. Here, we report an economical and sustainable route for SSZ-13 synthesis by recycling and reusing the OSDA-containing waste liquids. The TMAdaOH concentration in waste liquids, determined by a bromocresol green colorimetric method, was found to be a key factor for SSZ-13 crystallization. The SSZ-13 zeolite synthesized under optimized conditions demonstrates similar physicochemical properties (surface area, porosity, crystallinity, Si/Al ratio, etc.) as that of the conventional synthetic approach. We then used the waste liquid-derived SSZ-13 as the parent zeolite to synthesize Cu ion-exchanged SSZ-13 (i.e., Cu-SSZ-13) for ammonia-mediated selective catalytic reduction of NOx (NH3-SCR) and observed a higher activity as well as better hydrothermal stability than Cu-SSZ-13 by conventional synthesis. In situ infrared and ultraviolet-visible spectroscopy investigations revealed that the superior NH3-SCR performance of waste liquid-derived Cu-SSZ-13 results from a higher density of Cu2+ sites coordinated to paired Al centers on the zeolite framework. The technoeconomic analysis highlights that recycling OSDA-containing waste liquids could reduce the raw material cost of SSZ-13 synthesis by 49.4% (mainly because of the higher utilization efficiency of TMAdaOH) and, meanwhile, the discharging of wastewater by 45.7%.
Subject(s)
Zeolites , Zeolites/chemistry , Oxidation-Reduction , Ammonia/chemistry , Nitrogen Oxides/chemistryABSTRACT
As a new type of catalyst with the potential for commercial application in NOx removal from diesel engine exhausts, Cu-SSZ-39 catalysts must have excellent resistance to complex and harsh conditions. In this paper, the effects of phosphorus on Cu-SSZ-39 catalysts before and after hydrothermal aging treatment were investigated. Compared with fresh Cu-SSZ-39 catalysts, phosphorus poisoning significantly decreased the low-temperature NH3-SCR catalytic activity. However, such activity loss was alleviated by further hydrothermal aging treatment. To reveal the reason for this interesting result, a variety of characterization techniques including NMR, H2-TPR, X-ray photoelectron spectroscopy, NH3-TPD, and in situ DRIFTS measurements were employed. It was found that Cu-P species produced by phosphorus poisoning decreased the redox ability of active copper species, resulting in the observed low-temperature deactivation. After hydrothermal aging treatment, however, Cu-P species partly decomposed with the formation of active CuOx species and a release of active copper species. As a result, the low-temperature NH3-SCR catalytic activity of Cu-SSZ-39 catalysts was recovered.
Subject(s)
Ammonia , Copper , Ammonia/chemistry , Oxidation-Reduction , CatalysisABSTRACT
The complex poisoning of Cu-KFI catalysts by SO2 and hydrothermal aging (HTA) was investigated. The low-temperature activity of Cu-KFI catalysts was restrained by the formation of H2SO4 and then CuSO4 after sulfur poisoning. Hydrothermally aged Cu-KFI exhibited better SO2 resistance than fresh Cu-KFI since HTA significantly reduced the number of Brønsted acid sites, which were considered to be the H2SO4 storage sites. The high-temperature activity of SO2-poisoned Cu-KFI was basically unchanged compared to the fresh catalyst. However, SO2 poisoning promoted the high-temperature activity of hydrothermally aged Cu-KFI since it triggered CuOx into CuSO4 species, which was considered as an important role in the NH3-SCR reaction at high temperatures. In addition, hydrothermally aged Cu-KFI catalysts were more easily regenerated after SO2 poisoning than fresh Cu-KFI on account of the instability of CuSO4.
Subject(s)
Ammonia , Oxidation-Reduction , Temperature , CatalysisABSTRACT
In the current article, the effect of Si/Al ratio on the NOx adsorption and storage capacity over Pd/Beta with 1 wt% Pd loading was investigated. The XRD, 27Al NMR and 29Si NMR measurements were used to determine the structure of Pd/Beta zeolites. XAFS, XPS, CO-DRIFT, TEM and H2-TPR were used to identify the Pd species. The results showed that the NOx adsorption and storage capacity on Pd/Beta zeolites gradually decreased with the increase of Si/Al ratio. Pd/Beta-Si (Si-rich, Si/Al~260) rarely has NOx adsorption and storage capacity, while Pd/Beta-Al (Al-rich, Si/Al~6) and Pd/Beta-C (Common, Si/Al~25) exhibit excellent NOx adsorption and storage capacity and suitable desorption temperature. Pd/Beta-C has slightly lower desorption temperature compared to Pd/Beta-Al. The NOx adsorption and storage capacity increased for Pd/Beta-Al and Pd/Beta-C by hydrothermal aging treatment, while the NOx adsorption and storage capacity on Pd/Beta-Si had no change.
ABSTRACT
Diesel vehicles have caused serious environmental problems in China. Hence, the Chinese government has launched serious actions against air pollution and imposed more stringent regulations on diesel vehicle emissions in the latest China VI standard. To fulfill this stringent legislation, two major technical routes, including the exhaust gas recirculation (EGR) and high-efficiency selective catalytic reduction (SCR) routes, have been developed for diesel engines. Moreover, complicated aftertreatment technologies have also been developed, including use of a diesel oxidation catalyst (DOC) for controlling carbon monoxide (CO) and hydrocarbon (HC) emissions, diesel particulate filter (DPF) for particle mass (PM) emission control, SCR for the control of NOx emission, and an ammonia slip catalyst (ASC) for the control of unreacted NH3. Due to the stringent requirements of the China VI standard, the aftertreatment system needs to be more deeply integrated with the engine system. In the future, aftertreatment technologies will need further upgrades to fulfill the requirements of the near-zero emission target for diesel vehicles.
Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Vehicle Emissions/prevention & control , Vehicle Emissions/analysis , Air Pollution/prevention & control , Air Pollution/analysis , Catalysis , China , Gasoline , Particulate Matter/analysis , Motor VehiclesABSTRACT
A comparative study was performed to investigate the NH3-selective catalytic reduction (SCR) reaction activity of Cu-SSZ-13 zeolites having Si/Al ratios (SARs) of 5, 18, and 30. Remarkably, the Cu-SSZ-13 zeolite catalysts exhibited completely opposite behaviors as a function of SAR under standard SCR (SSCR) and fast SCR (FSCR) reaction atmospheres. Under SSCR conditions, the NOx conversion increased as expected with the decreasing SAR. Under FSCR conditions, however, the NOx conversion decreased as the SAR decreased, contrary to expectations. In this study, based on characterization of the catalysts by X-ray diffraction, transmission electron microscopy, electron paramagnetic resonance, H2-temperature-programmed reduction, temperature-programmed desorption, and diffuse reflectance infrared Fourier transform spectroscopy, together with theoretical calculations, the authors found that the amount of Brønsted acid sites goes up while the SAR goes down, leading to an increase in the accumulation of NH4NO3 under FSCR reaction conditions. Moreover, the accumulated NH4NO3 is of greater stability for those low SAR Cu-SSZ-13 catalysts. These two reasons cause the FSCR performance of Cu-SSZ-13 to decrease with a decrease in SAR. As a result, the NO2 effect on SCR activity changes from promotion to inhibition as the SAR decreases.
ABSTRACT
Cu-SSZ-39 exhibits excellent hydrothermal stability and is expected to be used for NOx purification in diesel vehicles. In this work, the selective catalytic reduction (SCR) activities in the presence or absence of NO2 were tested over Cu-SSZ-39 catalysts with different Cu contents. The results showed that the NOx conversion of Cu-SSZ-39 was improved by NO2 when NO2/NOx = 0.5, especially for the catalysts with low Cu loadings. The kinetic studies showed two kinetic regimes for fast SCR from 150 to 220 °C due to a change in the rate-controlling mechanism. The activity test and diffuse reflectance infrared Fourier transform spectra demonstrated that the reduction of NO mainly occurred on the Cu species in the absence of feed NO2, and when NO2/NO = 1, NO could react with NH4NO3 on the Brønsted acid sites in addition to undergoing reduction on Cu species. Thus, NO2 can promote the SCR reaction over Cu-SSZ-39 by facilitating the formation of surface nitrate species.
Subject(s)
Ammonia , Copper , Catalysis , Kinetics , Oxidation-ReductionABSTRACT
Cu-SSZ-13 and Cu-SSZ-39, with similar structures, are both highly active and hydrothermally stable in the selective catalytic reduction of NOx with NH3 (NH3-SCR), attracting great attention for applications on diesel vehicles. In this study, it was interestingly found that NO2 has distinct effects on the NOx conversion over Cu-SSZ-13 and Cu-SSZ-39, with an inhibiting effect for Cu-SSZ-13 but a promoting effect for Cu-SSZ-39. The distinct NO2 effects were found to be associated with the differences in the reactivity of surface NH4NO3, a key intermediate for NH3-SCR, on these two Cu-based small-pore zeolites. Cu-SSZ-13 has excellent standard SCR activity, but the reactivity of surface NH4NO3 with NO is relatively low, which would induce the accumulation of NH4NO3 on the surface and thus inhibit NOx conversion. Surface Brønsted acid sites play key roles in the reduction of surface NH4NO3 by NO, and Cu-SSZ-39 showed much higher surface acidity than Cu-SSZ-13. Compared with Cu-SSZ-13, the intrinsic standard SCR activity of Cu-SSZ-39 was lower but NH4NO3 could be reduced by NO rapidly on Cu-SSZ-39, even faster than the reduction of NO by the adsorbed NH3 on Cu active sites; thus, NOx conversion was promoted by NO2 on Cu-SSZ-39. This work provides an improved understanding of fast SCR on Cu-based small-pore zeolites.
Subject(s)
Ammonia , Nitrogen Dioxide , Catalysis , Copper , Oxidation-ReductionABSTRACT
The control of NOx emission from diesel vehicles is of great importance to the environment, and Cu-SAPO-34 is considered to be an effective catalyst for the abatement of NOx from diesel vehicles. Along with catalytic activity, hydrothermal stability is a key property for NOx abatement catalysts. The attack of Cu species and framework atoms by H2O may result in activity loss under both low/high temperature humid conditions, which are inevitable in practical application. Therefore, apart from good catalytic activity, hydrothermal stability under both low/high temperatures for Cu-SAPO-34 is also critical for NOx control in diesel vehicles. Three Cu-SAPO-34 samples were prepared by a one-pot hydrothermal method using propylamine, triethylamine, and morpholine, with Cu-TEPA (tetraethylenepentamine) as the cotemplate. The NH3-SCR activity and the effects of hydrothermal aging at 70 and 800 °C on these Cu-SAPO-34 samples were investigated. The type of cotemplate can affect the Si and Cu species in one-pot-synthesized Cu-SAPO-34 catalysts, so that the catalytic activity as well as the low/high temperature hydrothermal stability is affected by the choice of template. Generally speaking, Cu-SAPO-34 prepared using PA as cotemplate showed superior catalytic activity and hydrothermal stability under low/high temperatures compared with the other two catalysts, which makes PA a more suitable template for one-pot-synthesized Cu-SAPO-34 for use in NOx abatement from diesel vehicle exhaust.
Subject(s)
Vehicle Emissions , Zeolites , Ammonia , Oxidation-ReductionABSTRACT
The surface species formed in the reaction of NO and NO2 with pre-adsorbed NH3 over a Fe-ZSM-5 catalyst (1.27 wt.% Fe, SiO2/Al2O3 = 25) at low temperature (140°C) were studied by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Through using a background spectrum of NH3-saturated Fe-ZSM-5, we clearly observed the formation of common intermediates resulting from the reaction of NO2 or NO + O2 with pre-adsorbed NH3. This presents strong evidence that the oxidation of NO to form surface nitrates and nitrites is the key step for standard SCR at low temperature. In addition, the results suggest that in the SCR reaction at low temperature, the NH4+ ions absorbed on Brønsted acid sites are less active than NH3 adsorbed on Lewis acid sites related to Fe species.
Subject(s)
Ammonia , Silicon Dioxide , Catalysis , Fourier Analysis , Nitric Oxide , Spectrum Analysis , TemperatureABSTRACT
CeO2-WO3-ZrO2 mixed oxides were prepared by the homogeneous precipitation method for the selective catalytic reduction of NOx with NH3 (NH3-SCR). The effects of hydrothermal aging on the catalytic performances of CeO2-WO3-ZrO2 were investigated. The results showed that CeO2-WO3-ZrO2 catalyst exhibited excellent NH3-SCR activity for removal of NOx and hydrothermal stability. After hydrothermal aging at 850 °C for 16 h, the optimum CeO2-WO3-ZrO2 catalyst could still realize 80% NOx conversion at 300-500 °C even under a high gas hourly space velocity of 250â¯000 h-1. The structural properties, redox ability, surface species, and acidity of fresh and hydrothermally aged CeO2-WO3-ZrO2 catalysts were characterized by N2-physisorption, XRD, Raman, H2-TPR, XPS, NH3-TPD, and in situ DRIFTS. The characterization results showed that decreases of 89% of the surface area and 71% of the NH3 storage capacity as well as new phase formation occurred for the CeO2-WO3-ZrO2 sample after hydrothermal aging at 850 °C for 16 h. The activity of hydrothermally aged CeO2-WO3-ZrO2 was mainly attributed to the retention of redox-acid sites and their interaction due to the formation of Ce-Zr solid solutions and Ce4W9O33.
Subject(s)
Cerium , Oxides , Ammonia , Catalysis , Oxidation-ReductionABSTRACT
In the present work, we report on two passive NOx adsorber (PNA) material candidates: the novel support CeSnOx with and without Pd loading. The NOx adsorption and storage capacities of fresh and hydrothermally aged CeSnOx and Pd/CeSnOx were investigated. The results show that CeSnOx exhibits a rather large NOx uptake and storage capacity (28.9 µmol/g), while the loading of Pd on CeSnOx can further increase the storage capacity to 37.6 µmol/g and affect the desorption temperature of NOx. It was found that the NOx desorption temperature of Pd/CeSnOx was compatible with the efficient operating window of selective catalytic reduction (SCR) catalysts. After a hydrothermal aging treatment at 800 °C for 12 h, the NOx adsorption and storage capacities of CeSnOx and Pd/CeSnOx increased, indicating excellent hydrothermal stability. The interaction of Pd with CeSnOx, the state of Pd species, and the structure of CeSnOx and Pd/CeSnOx are studied by combination of the characterization results.