Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Nucleic Acids Res ; 52(7): 4021-4036, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38324474

ABSTRACT

Ribosome-enhanced translational miscoding of the genetic code causes protein dysfunction and loss of cellular fitness. During evolution, open reading frame length increased, necessitating mechanisms for enhanced translation fidelity. Indeed, eukaryal ribosomes are more accurate than bacterial counterparts, despite their virtually identical, conserved active centers. During the evolution of eukaryotic organisms ribosome expansions at the rRNA and protein level occurred, which potentially increases the options for translation regulation and cotranslational events. Here we tested the hypothesis that ribosomal RNA expansions can modulate the core function of the ribosome, faithful protein synthesis. We demonstrate that a short expansion segment present in all eukaryotes' small subunit, ES7S, is crucial for accurate protein synthesis as its presence adjusts codon-specific velocities and guarantees high levels of cognate tRNA selection. Deletion of ES7S in yeast enhances mistranslation and causes protein destabilization and aggregation, dramatically reducing cellular fitness. Removal of ES7S did not alter ribosome architecture but altered the structural dynamics of inter-subunit bridges thus affecting A-tRNA selection. Exchanging the yeast ES7S sequence with the human ES7S increases accuracy whereas shortening causes the opposite effect. Our study demonstrates that ES7S provided eukaryal ribosomes with higher accuracy without perturbing the structurally conserved decoding center.


Subject(s)
Protein Biosynthesis , RNA, Ribosomal , Ribosomes , Saccharomyces cerevisiae , Protein Biosynthesis/genetics , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Ribosomes/metabolism , Ribosomes/genetics , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Transfer/metabolism , RNA, Transfer/genetics , Codon/genetics
2.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33372142

ABSTRACT

The human striatum can be subdivided into the caudate, putamen, and nucleus accumbens (NAc). Each of these structures have some overlapping and some distinct functions related to motor control, cognitive processing, motivation, and reward. Previously, we used a "time-of-death" approach to identify diurnal rhythms in RNA transcripts in human cortical regions. Here, we identify molecular rhythms across the three striatal subregions collected from postmortem human brain tissue in subjects without psychiatric or neurological disorders. Core circadian clock genes are rhythmic across all three regions and show strong phase concordance across regions. However, the putamen contains a much larger number of significantly rhythmic transcripts than the other two regions. Moreover, there are many differences in pathways that are rhythmic across regions. Strikingly, the top rhythmic transcripts in NAc (but not the other regions) are predominantly small nucleolar RNAs and long noncoding RNAs, suggesting that a completely different mechanism might be used for the regulation of diurnal rhythms in translation and/or RNA processing in the NAc versus the other regions. Further, although the NAc and putamen are generally in phase with regard to timing of expression rhythms, the NAc and caudate, and caudate and putamen, have several clusters of discordant rhythmic transcripts, suggesting a temporal wave of specific cellular processes across the striatum. Taken together, these studies reveal distinct transcriptome rhythms across the human striatum and are an important step in helping to understand the normal function of diurnal rhythms in these regions and how disruption could lead to pathology.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/physiology , Ventral Striatum/metabolism , Brain/metabolism , Humans , Nucleus Accumbens/metabolism , Putamen/metabolism , Transcriptome
3.
Nucleic Acids Res ; 48(6): 3244-3256, 2020 04 06.
Article in English | MEDLINE | ID: mdl-31960048

ABSTRACT

Fine-tuned regulation of protein biosynthesis is crucial for cellular fitness and became even more vital when cellular and organismal complexity increased during the course of evolution. In order to cope with this augmented demand for translation control, eukaryal ribosomes have gained extensions both at the ribosomal protein and rRNA levels. Here we analyze the functional role of ES27L, an rRNA expansion segment in the large ribosomal subunit of Saccharomyces cerevisiae. Deletion of the b-arm of this expansion segment, called ES27Lb, did not hamper growth during optimal conditions, thus demonstrating that this 25S rRNA segment is not inherently crucial for ribosome functioning. However, reductive stress results in retarded growth and rendered unique protein sets prone to aggregation. Lack of ES27Lb negatively affects ribosome-association of known co-translational N-terminal processing enzymes which in turn contributes to the observed protein aggregation. Likely as a compensatory response to these challenges, the truncated ribosomes showed re-adjusted translation of specific sets of mRNAs and thus fine-tune the translatome in order to re-establish proteostasis. Our study gives comprehensive insight into how a highly conserved eukaryal rRNA expansion segment defines ribosomal integrity, co-translational protein maturation events and consequently cellular fitness.


Subject(s)
Proteome/genetics , Ribosomal Proteins/genetics , Ribosomes/genetics , Protein Binding/genetics , RNA, Fungal/genetics , RNA, Ribosomal/genetics , Saccharomyces cerevisiae/genetics
5.
Neuropsychopharmacology ; 49(5): 796-805, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38182777

ABSTRACT

The human striatum can be subdivided into the caudate, putamen, and nucleus accumbens (NAc). In mice, this roughly corresponds to the dorsal medial striatum (DMS), dorsal lateral striatum (DLS), and ventral striatum (NAc). Each of these structures have some overlapping and distinct functions related to motor control, cognitive processing, motivation, and reward. Previously, we used a "time-of-death" approach to identify diurnal rhythms in RNA transcripts in these three human striatal subregions. Here, we identify molecular rhythms across similar striatal subregions collected from C57BL/6J mice across 6 times of day and compare results to the human striatum. Pathway analysis indicates a large degree of overlap between species in rhythmic transcripts involved in processes like cellular stress, energy metabolism, and translation. Notably, a striking finding in humans is that small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs) are among the most highly rhythmic transcripts in the NAc and this is not conserved in mice, suggesting the rhythmicity of RNA processing in this region could be uniquely human. Furthermore, the peak timing of overlapping rhythmic genes is altered between species, but not consistently in one direction. Taken together, these studies reveal conserved as well as distinct transcriptome rhythms across the human and mouse striatum and are an important step in understanding the normal function of diurnal rhythms in humans and model organisms in these regions and how disruption could lead to pathology.


Subject(s)
Corpus Striatum , Ventral Striatum , Humans , Mice , Animals , Mice, Inbred C57BL , Corpus Striatum/metabolism , Nucleus Accumbens , Gene Expression Profiling , Transcriptome
6.
Biol Psychiatry ; 93(2): 137-148, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36302706

ABSTRACT

BACKGROUND: Psychosis is a defining feature of schizophrenia and highly prevalent in bipolar disorder. Notably, individuals with these illnesses also have major disruptions in sleep and circadian rhythms, and disturbances of sleep and circadian rhythms can precipitate or exacerbate psychotic symptoms. Psychosis is associated with the striatum, though to our knowledge, no study to date has directly measured molecular rhythms and determined how they are altered in the striatum of subjects with psychosis. METHODS: We performed RNA sequencing and both differential expression and rhythmicity analyses to investigate diurnal alterations in gene expression in human postmortem striatal subregions (nucleus accumbens, caudate, and putamen) in subjects with psychosis (n = 36) relative to unaffected comparison subjects (n = 36). RESULTS: Across regions, we found differential expression of immune-related transcripts and a substantial loss of rhythmicity in core circadian clock genes in subjects with psychosis. In the nucleus accumbens, mitochondrial-related transcripts had decreased expression in subjects with psychosis, but only in those who died at night. Additionally, we found a loss of rhythmicity in small nucleolar RNAs and a gain of rhythmicity in glutamatergic signaling in the nucleus accumbens of subjects with psychosis. Between-region comparisons indicated that rhythmicity in the caudate and putamen was far more similar in subjects with psychosis than in matched comparison subjects. CONCLUSIONS: Together, these findings reveal differential and rhythmic gene expression differences across the striatum that may contribute to striatal dysfunction and psychosis in psychotic disorders.


Subject(s)
Psychotic Disorders , Humans , Psychotic Disorders/genetics , Circadian Rhythm/genetics , Corpus Striatum , Putamen , Gene Expression
7.
Nat Commun ; 12(1): 2803, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33990576

ABSTRACT

Macrolide antibiotics bind in the nascent peptide exit tunnel of the bacterial ribosome and prevent polymerization of specific amino acid sequences, selectively inhibiting translation of a subset of proteins. Because preventing translation of individual proteins could be beneficial for the treatment of human diseases, we asked whether macrolides, if bound to the eukaryotic ribosome, would retain their context- and protein-specific action. By introducing a single mutation in rRNA, we rendered yeast Saccharomyces cerevisiae cells sensitive to macrolides. Cryo-EM structural analysis showed that the macrolide telithromycin binds in the tunnel of the engineered eukaryotic ribosome. Genome-wide analysis of cellular translation and biochemical studies demonstrated that the drug inhibits eukaryotic translation by preferentially stalling ribosomes at distinct sequence motifs. Context-specific action markedly depends on the macrolide structure. Eliminating macrolide-arrest motifs from a protein renders its translation macrolide-tolerant. Our data illuminate the prospects of adapting macrolides for protein-selective translation inhibition in eukaryotic cells.


Subject(s)
Anti-Bacterial Agents/pharmacology , Macrolides/pharmacology , Ribosomes/drug effects , Anti-Bacterial Agents/chemistry , Binding Sites , Cryoelectron Microscopy , Eukaryotic Cells/drug effects , Eukaryotic Cells/metabolism , Humans , Macrolides/chemistry , Models, Molecular , Mutation , Protein Binding , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors/chemistry , Protein Synthesis Inhibitors/pharmacology , RNA, Fungal/genetics , RNA, Ribosomal/genetics , Ribosomes/genetics , Ribosomes/metabolism , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/biosynthesis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL