Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 254
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hum Mol Genet ; 31(7): 1115-1129, 2022 03 31.
Article in English | MEDLINE | ID: mdl-34718578

ABSTRACT

To observe a long-term prognosis in late-onset multiple acyl-coenzyme-A dehydrogenation deficiency (MADD) patients and to determine whether riboflavin should be administrated in the long-term and high-dosage manner, we studied the clinical, pathological and genetic features of 110 patients with late-onset MADD in a single neuromuscular center. The plasma riboflavin levels and a long-term follow-up study were performed. We showed that fluctuating proximal muscle weakness, exercise intolerance and dramatic responsiveness to riboflavin treatment were essential clinical features for all 110 MADD patients. Among them, we identified 106 cases with ETFDH variants, 1 case with FLAD1 variants and 3 cases without causal variants. On muscle pathology, fibers with cracks, atypical ragged red fibers (aRRFs) and diffuse decrease of SDH activity were the distinctive features of these MADD patients. The plasma riboflavin levels before treatment were significantly decreased in these patients as compared to healthy controls. Among 48 MADD patients with a follow-up of 6.1 years on average, 31 patients were free of muscle weakness recurrence, while 17 patients had episodes of slight muscle weakness upon riboflavin withdrawal, but recovered after retaking a small-dose of riboflavin for a short-term. Multivariate Cox regression analysis showed vegetarian diet and masseter weakness were independent risk factors for muscle weakness recurrence. In conclusion, fibers with cracks, aRRFs and diffuse decreased SDH activity could distinguish MADD from other genotypes of lipid storage myopathy. For late-onset MADD, increased fatty acid oxidation and reduced riboflavin levels can induce episodes of muscle symptoms, which can be treated by short-term and small-dose of riboflavin therapy.


Subject(s)
Iron-Sulfur Proteins , Multiple Acyl Coenzyme A Dehydrogenase Deficiency , Oxidoreductases Acting on CH-NH Group Donors , Acyl Coenzyme A/genetics , Death Domain Receptor Signaling Adaptor Proteins/genetics , Electron-Transferring Flavoproteins/genetics , Electron-Transferring Flavoproteins/metabolism , Follow-Up Studies , Guanine Nucleotide Exchange Factors/genetics , Humans , Iron-Sulfur Proteins/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/drug therapy , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Muscle Weakness/pathology , Muscle, Skeletal/metabolism , Mutation , Oxidoreductases Acting on CH-NH Group Donors/genetics , Retrospective Studies , Riboflavin/genetics , Riboflavin/therapeutic use
2.
Anal Chem ; 96(8): 3318-3328, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38355404

ABSTRACT

Contrast-enhanced magnetic resonance imaging (CE-MRI) is a promising approach for the diagnosis of kidney diseases. However, safety concerns, including nephrogenic systemic fibrosis, limit the administration of gadolinium (Gd)-based contrast agents (GBCAs) in patients who suffer from renal impairment. Meanwhile, nanomaterials meet biosafety concerns because of their long-term retention in the body. Herein, we propose a small-molecule manganese-based imaging probe Mn-PhDTA as an alternative to GBCAs to assess renal insufficiency for the first time. Mn-PhDTA was synthesized via a simple three-step reaction with a total yield of up to 33.6%, and a gram-scale synthesis can be realized. Mn-PhDTA has an r1 relaxivity of 2.72 mM-1 s-1 at 3.0 T and superior kinetic inertness over Gd-DTPA and Mn-EDTA with a dissociation time of 60 min in the presence of excess Zn2+. In vivo and in vitro experiments demonstrate their good stability and biocompatibility. In the unilateral ureteral obstruction rats, Mn-PhDTA provided significant MR signal enhancement, enabled distinguishing structure changes between the normal and damaged kidneys, and evaluated the renal function at different injured stages. Mn-PhDTA could act as a potential MRI contrast agent candidate for the replacement of GBCAs in the early detection of kidney dysfunction and analysis of kidney disease progression.


Subject(s)
Manganese , Renal Insufficiency , Humans , Rats , Animals , Manganese/chemistry , Gadolinium DTPA/chemistry , Magnetic Resonance Imaging/methods , Contrast Media/chemistry , Kidney/diagnostic imaging
3.
Small ; : e2401061, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963320

ABSTRACT

The precise mapping of collateral circulation and ischemic penumbra is crucial for diagnosing and treating acute ischemic stroke (AIS). Unfortunately, there exists a significant shortage of high-sensitivity and high-resolution in vivo imaging techniques to fulfill this requirement. Herein, a contrast enhanced susceptibility-weighted imaging (CE-SWI) using the minimalist dextran-modified Fe3O4 nanoparticles (Fe3O4@Dextran NPs) are introduced for the highly sensitive and high-resolution AIS depiction under 9.4 T for the first time. The Fe3O4@Dextran NPs are synthesized via a simple one-pot coprecipitation method using commercial reagents under room temperature. It shows merits of small size (hydrodynamic size 25.8 nm), good solubility, high transverse relaxivity (r2) of 51.3 mM-1s-1 at 9.4 T, and superior biocompatibility. The Fe3O4@Dextran NPs-enhanced SWI can highlight the cerebral vessels readily with significantly improved contrast and ultrahigh resolution of 0.1 mm under 9.4 T MR scanner, enabling the clear spatial identification of collateral circulation in the middle cerebral artery occlusion (MCAO) rat model. Furthermore, Fe3O4@Dextran NPs-enhanced SWI facilitates the precise depiction of ischemia core, collaterals, and ischemic penumbra post AIS through matching analysis with other multimodal MR sequences. The proposed Fe3O4@Dextran NPs-enhanced SWI offers a high-sensitivity and high-resolution imaging tool for individualized characterization and personally precise theranostics of stroke patients.

4.
Phys Rev Lett ; 132(15): 156301, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38683008

ABSTRACT

A valley filter capable of generating a valley-polarized current is a crucial element in valleytronics, yet its implementation remains challenging. Here, we propose a valley filter made of a graphene bilayer which exhibits a 1D moiré pattern in the overlapping region of the two layers controlled by heterostrain. In the presence of a lattice modulation between layers, electrons propagating in one layer can have valley-dependent dissipation due to valley asymmetric interlayer coupling, thus giving rise to a valley-polarized current. Such a process can be described by an effective non-Hermitian theory, in which the valley filter is driven by a valley-resolved non-Hermitian skin effect. Nearly 100% valley polarization can be achieved within a wide parameter range and the functionality of the valley filter is electrically tunable. The non-Hermitian topological scenario of the valley filter ensures high tolerance against imperfections such as disorder and edge defects. Our work opens a new route for efficient and robust valley filters while significantly relaxing the stringent implementation requirements.

5.
Phys Rev Lett ; 132(24): 240402, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949339

ABSTRACT

In the context of measurement-induced entanglement phase transitions, the influence of quantum noises, which are inherent in real physical systems, is of great importance and experimental relevance. In this Letter, we present a comprehensive theoretical analysis of the effects of both temporally uncorrelated and correlated quantum noises on entanglement generation and information protection. This investigation reveals that entanglement within the system follows q^{-1/3} scaling for both types of quantum noises, where q represents the noise probability. The scaling arises from the Kardar-Parisi-Zhang fluctuation with effective length scale L_{eff}∼q^{-1}. More importantly, the information protection timescales of the steady states are explored and shown to follow q^{-1/2} and q^{-2/3} scaling for temporally uncorrelated and correlated noises, respectively. The former scaling can be interpreted as a Hayden-Preskill protocol, while the latter is a direct consequence of Kardar-Parisi-Zhang fluctuations. We conduct extensive numerical simulations using stabilizer formalism to support the theoretical understanding. This Letter not only contributes to a deeper understanding of the interplay between quantum noises and measurement-induced phase transition but also provides a new perspective to understand the effects of Markovian and non-Markovian noises on quantum computation.

6.
Int J Cancer ; 152(1): 7-14, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35362560

ABSTRACT

We aimed to determine participation in low-dose computed tomography (LDCT) of individuals with a family history of common cancers in a population-based screening program to provide timely evidence in high-risk populations in China. The analysis was conducted using data from the Cancer Screening Program in Urban China (CanSPUC), which recruited 282 377 participants aged 40 to 74 years from eight cities in the Henan province. Using the CanSPUC risk score system, 55 428 participants were evaluated to have high risk for lung cancer and were recommended for LDCT. We calculated the overall and group-specific participation rates using family history of common cancers and compared differences in participation rates between different groups. Odds ratios (ORs) and 95% confidence intervals were derived by multivariable logistic regression. Of the 55 428 participants, 22 260 underwent LDCT (participation rate, 40.16%). Family history of lung, esophageal, stomach, liver and colorectal cancer was associated with increased participation in LDCT screening. The odds of participants with a family history of one, two, three and four or more cancer cases undergoing LDCT screening were 1.9, 2.7, 2.8 and 3.5 times, respectively, than those without a family history of cancer. Compared to those without a history of cancer, participation in LDCT gradually increased as the number of cancer cases in the family increased (P < .001). Our findings suggest that there is room for improvement in lung cancer screening given the relatively low participation rate. Lung cancer screening in populations with a family history of cancer may improve efficiency and cost-effectiveness; however, this requires further verification.


Subject(s)
Early Detection of Cancer , Lung Neoplasms , Humans , Early Detection of Cancer/methods , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/epidemiology , Tomography, X-Ray Computed/methods , Mass Screening , China/epidemiology
7.
Cell Commun Signal ; 21(1): 95, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37143096

ABSTRACT

The higher prevalence of metabolic syndrome (MetS) in women after menopause is associated with a decrease in circulating 17ß-oestradiol. To explore novel treatments for MetS in women with oestrogen deficiency, we studied the effect of exogenous butyrate on diet-induced obesity and metabolic dysfunctions using ovariectomized (OVX) mice as a menopause model. Oral administration of sodium butyrate (NaB) reduced the body fat content and blood lipids, increased whole-body energy expenditure, and improved insulin sensitivity. Additionally, NaB induced oestrogen receptor alpha (ERα) expression, activated the phosphorylation of AMPK and PGC1α, and improved mitochondrial aerobic respiration in cultured skeletal muscle cells. In conclusion, oral NaB improves metabolic parameters in OVX mice with diet-induced obesity. Oral supplementation with NaB might provide a novel therapeutic approach to treating MetS in women with menopause. Video Abstract.


Subject(s)
Estrogen Receptor alpha , Metabolic Syndrome , Mice , Female , Animals , Estrogen Receptor alpha/metabolism , AMP-Activated Protein Kinases/metabolism , Muscle, Skeletal/metabolism , Diet, High-Fat , Obesity/drug therapy , Obesity/metabolism , Metabolic Syndrome/drug therapy , Butyric Acid/metabolism , Butyric Acid/pharmacology , Butyric Acid/therapeutic use , Receptors, Estrogen/metabolism , Mice, Inbred C57BL
8.
J Fluoresc ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37615895

ABSTRACT

Cisplatin is an important platinum drug in cancer chemotherapy in clinical practice. It is well established that the main target of cisplatin is nuclear DNA. However, recent studies have demonstrated that platinum drugs may act on some important functional proteins in the human body. E-cadherin is a newly discovered glycoprotein that has been regarded as an important sign of the occurrence and development of some tumors. This study examines the interactions between cisplatin and E-cadherin by fluorescence spectrometry and atomic force microscopy (AFM). The fluorescence spectrometry results indicated that cisplatin can efficiently quench the fluorescence of E-cadherin. The calculated binding constant Kb was 3.20 × 106 (25 ℃), 1.36 × 106(31 ℃), and 8.22 × 105 L mol-1 (37 ℃). These results reveal that the fluorescence quenching effect of cisplatin on E-cadherin is static quenching. The obtained thermodynamic parameters ΔH < 0, ΔS < 0, and ΔG < 0, indicate that the binding of cisplatin on E-cadherin is a spontaneous process dominated by hydrogen bonds and Van der Waals forces. The AFM results revealed that E-cadherins are interlaced with each other to form a spherical-chain structure. The addition of cisplatin can significantly disrupt the interlaced structure of the E-cadherin molecules.

9.
J Chem Phys ; 158(23)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37318172

ABSTRACT

Mn-based phosphors with the wavelength of 700-750 nm are an important category of far-red phosphors that have promising potential in the application of plant lighting, and the higher ability of the far-red light emitting of the phosphors is beneficial to plant growth. Herein, a series of Mn4+- and Mn4+/Ca2+-doped double perovskite SrGd2Al2O7 red-emitting phosphors with wavelengths centered at about 709 nm were successfully synthesized by means of a traditional high-temperature solid-state method. First-principles calculations were conducted to explore the intrinsic electronic structure of SrGd2Al2O7 for a better understanding of the luminescence behavior in this material. Extensive analysis demonstrates that the introduction of Ca2+ ions into the SrGd2Al2O7:Mn4+ phosphor has significantly boosted the emission intensity, internal quantum efficiency, and thermal stability by 170%, 173.4%, and 113.7%, respectively, which are superior to those of most other Mn4+-based far-red phosphors. The mechanism of the concentration quench effect and the positive effect of co-doping Ca2+ ions in the phosphor were extensively explored. All studies suggest that the SrGd2Al2O7:0.1%Mn4+, 11%Ca2+ phosphor is a novel phosphor that can be used to effectively promote the growth of plants and regulate the flowering cycle. Therefore, promising applications can be anticipated from this new phosphor.

10.
Hum Brain Mapp ; 43(18): 5421-5431, 2022 12 15.
Article in English | MEDLINE | ID: mdl-35866384

ABSTRACT

To examine selective atrophy patterns and resting-state functional connectivity (FC) alterations in the amygdala at different stages of amyotrophic lateral sclerosis (ALS), and to explore any correlations between amygdala abnormalities and neuropsychiatric symptoms. We used the King's clinical staging system for ALS to divide 83 consecutive patients with ALS into comparable subgroups at different disease stages. We explored the pattern of selective amygdala subnucleus atrophy and amygdala-based whole-brain FC alteration in these patients and 94 healthy controls (HCs). Cognitive and emotional functions were also evaluated using a neuropsychological test battery. There were no significant differences between ALS patients at King's stage 1 and HCs for any amygdala subnucleus volumes. Compared with HCs, ALS patients at King's stage 2 had significantly lower left accessory basal nucleus and cortico-amygdaloid transition volumes. Furthermore, ALS patients at King's stage 3 demonstrated significant reductions in most amygdala subnucleus volumes and global amygdala volumes compared with HCs. Notably, amygdala-cuneus FC was increased in ALS patients at King's stage 3. Specific subnucleus volumes were significantly associated with Mini-Mental State Examination scores and Hamilton Anxiety Rating Scale scores in ALS patients. In conclusions, our study provides a comprehensive profile of amygdala abnormalities in ALS patients. The pattern of amygdala abnormalities in ALS patients differed greatly across King's clinical disease stages, and amygdala abnormalities are an important feature of patients with ALS at relatively advanced stages. Moreover, our findings suggest that amygdala volume may play an important role in anxiety and cognitive dysfunction in ALS patients.


Subject(s)
Amygdala , Amyotrophic Lateral Sclerosis , Humans , Amygdala/abnormalities , Amygdala/diagnostic imaging , Amyotrophic Lateral Sclerosis/diagnostic imaging , Amyotrophic Lateral Sclerosis/complications , Atrophy , Neuropsychological Tests , Case-Control Studies
11.
Phys Rev Lett ; 128(2): 020601, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35089734

ABSTRACT

Deconfined quantum critical point (DQCP) characterizes a kind of exotic phase transition beyond the usual Landau-Ginzburg-Wilson paradigm. Here we study the nonequilibrium imaginary-time dynamics of the DQCP in the two-dimensional J-Q_{3} model. We explicitly show the deconfinement dynamic process and identify that it is the spinon confinement length, rather than the usual correlation length, that increases proportionally to the time. Moreover, we find that, in the relaxation process, the order parameters of the Néel and the valence-bond-solid orders can be controlled by different length scales, although they satisfy the same equilibrium scaling forms. A dual dynamic scaling theory is then proposed. Our findings not only constitute a new realm of nonequilibrium criticality in DQCP, but also offer a controllable knob by which to investigate the dynamics in strongly correlated systems. Possible realizations in foreseeable quantum computers are also discussed.

12.
Molecules ; 27(24)2022 Dec 18.
Article in English | MEDLINE | ID: mdl-36558171

ABSTRACT

Chitosan (CTS) has been used as a nerve guidance conduit (NGC) material for bridging peripheral nerve defects due to its biocompatible, biodegradable, and non-toxic properties. However, the nerve regeneration effect of chitosan alone is restricted due to its inadequate biological activity. Herein, a composite, bioactive chitosan based nerve conduit, consisting of outer warp-knitted tube scaffold made from medical-grade chitosan fiber, and inner porous cross linked carboxymethyl chitosan (C-CM-CTS) sponge with radial texture was developed. The inner wall of the scaffold was coated with C-CM-CTS solution. CM-CTS provided favorable bioactivities in the composite chitosan-based nerve conduit. An in vitro study of CM-CTS revealed its satisfying biocompatibility with fibroblast and its inhibition of oxidative damage to Schwann cells. As the internal filler of the NGC, the lyophilized sponge of C-CM-CTS showed a longitudinal guidance effect for nerve reconstruction. After 10 mm defect in rat sciatic nerve was bridged with the composite bioactive chitosan-based nerve conduit, the nerve conduit was able to effectively promote axonal regeneration and played a positive role in inducing nerve regeneration and functional recovery. In addition to the functional advantages, which are equal to those of an autograft; the technology for the preparation of this conduit can be put into mass production.


Subject(s)
Chitosan , Rats , Animals , Chitosan/pharmacology , Sciatic Nerve , Nerve Regeneration , Schwann Cells , Prostheses and Implants
13.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(1): 30-39, 2022 Feb.
Article in Zh | MEDLINE | ID: mdl-35300762

ABSTRACT

Objective To measure the prevalence of mental health symptoms and identify the associated factors among college students at the beginning of coronavirus disease 2019(COVID-19)outbreak in China. Methods We carried out a multi-center cross-sectional study via snowball sampling and convenience sampling of the college students in different areas of China.The rates of self-reported depression,anxiety,and stress and post-traumatic stress disorder(PTSD)were assessed via the 21-item Depression-Anxiety-Stress Scale(DASS-21)and the 6-item Impact of Event Scale-Revised(IES-6),respectively.Covariates included sociodemographic characteristics,health-related data,and information of the social environment.Data pertaining to mental health service seeking were also collected.Multivariate Logistic regression analyses were performed to identify the risk factors. Results A total of 3641 valid questionnaires were collected from college students.At the beginning of the COVID-19 outbreak,535(14.69%)students had negative emotions,among which 402(11.04%),381(10.49%),and 171(4.90%)students had the symptoms of depression,anxiety,and stress,respectively.Meanwhile,1245(34.19%)college students had PTSD.Among the risk factors identified,male gender was associated with a lower likelihood of reporting depression symptoms(AOR=0.755,P=0.037],and medical students were at higher risk of depression and stress symptoms than liberal arts students(AOR=1.497,P=0.003;AOR=1.494,P=0.045).Family support was associated with lower risks of negative emotions and PTSD in college students(AOR=0.918,P<0.001;AOR=0.913,P<0.001;AOR=0.899,P<0.001;AOR=0.971,P=0.021). Conclusions College students were more sensitive to public health emergencies,and the incidence of negative emotions and PTSD was significantly higher than that before the outbreak of COVID-19.More attention should be paid to female college students who were more likely to develop negative emotions.We should strengthen positive and proper propaganda via mass media and help college students understand the situation and impact of COVID-19.Furthermore,we should enhance family support for college students.The government and relevant agencies need to provide appropriate mental health services to the students under similar circumstances to avoid the deterioration of their mental well-being.


Subject(s)
COVID-19 , COVID-19/epidemiology , Cross-Sectional Studies , Female , Health Status , Humans , Male , Students/psychology , Universities
14.
Angew Chem Int Ed Engl ; 61(41): e202211523, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35979632

ABSTRACT

Developing porous materials to overcome the trade-off between adsorption capacity and selectivity for C2 H2 /CO2 separation remains a challenge. Herein, we report a stable HKUST-1-like MOF (ZJU-50a), featuring large cages decorated with high density of supramolecular binding sites to achieve both high C2 H2 storage and selectivity. ZJU-50a exhibits one of the highest C2 H2 storage capacity (192 cm3 g-1 ) and concurrently high C2 H2 /CO2 selectivity (12) at 298 K and 1 bar. Single-crystal X-ray diffraction studies on gas-loaded ZJU-50a crystal unveil that the incorporated supramolecular binding sites can selectively take up C2 H2 molecule but not CO2 to result in both high C2 H2 storage and selectivity. Breakthrough experiments validated its separation performance for C2 H2 /CO2 mixtures, providing a high C2 H2 recovery capacity of 84.2 L kg-1 with 99.5 % purity. This study suggests a novel strategy of engineering supramolecular binding sites into MOFs to overcome the trade-off for this separation.

15.
Phys Rev Lett ; 127(22): 227001, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34889620

ABSTRACT

Charge-4e superconductivity as a novel phase of matter remains elusive so far. Here, we show that charge-4e phase can arise as a vestigial order above the nematic superconducting transition temperature in time-reversal-invariant nematic superconductors. On the one hand, the nontrivial topological defect-nematic vortex-is energetically favored over the superconducting phase vortex when the nematic stiffness is less than the superfluid stiffness; consequently the charge-4e phase emerges by proliferation of nematic vortices upon increasing temperatures. On the other hand, the Ginzburg-Landau theory of the nematic superconductors has two distinct decoupling channels to either charge-4e orders or nematic orders; by analyzing the competition between the effective mass of the charge-4e order and the cubic potential of the nematic order, we find a sizable regime where the charge-4e order is favored. These two analyses consistently show that nematic superconductors can provide a promising route to realize charge-4e phases, which may apply to candidate nematic superconductors such as PbTaSe_{2} and twisted bilayer graphene.

16.
Phys Rev Lett ; 127(14): 140601, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34652178

ABSTRACT

We construct Brownian Sachdev-Ye-Kitaev (SYK) chains subjected to continuous monitoring and explore possible entanglement phase transitions therein. We analytically derive the effective action in the large-N limit and show that an entanglement transition is caused by the symmetry breaking in the enlarged replica space. In the noninteracting case with SYK_{2} chains, the model features a continuous O(2) symmetry between two replicas and a transition corresponding to spontaneous breaking of that symmetry upon varying the measurement rate. In the symmetry broken phase at low measurement rate, the emergent replica criticality associated with the Goldstone mode leads to a log-scaling entanglement entropy that can be attributed to the free energy of vortices. In the symmetric phase at higher measurement rate, the entanglement entropy obeys area-law scaling. In the interacting case, the continuous O(2) symmetry is explicitly lowered to a discrete C_{4} symmetry, giving rise to volume-law entanglement entropy in the symmetry-broken phase due to the enhanced linear free energy cost of domain walls compared to vortices. The interacting transition is described by C_{4} symmetry breaking. We also verify the large-N critical exponents by numerically solving the Schwinger-Dyson equation.

17.
Bioorg Med Chem Lett ; 34: 127762, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33359605

ABSTRACT

In an effort to discover new agents with good fungicidal activities against CDM (cucumber downy mildew), a series of tetrazole derivatives containing phenyloxadiazole moieties were designed and synthesized. The EC50 values for fungicidal activities against CDM were determined. Bioassay results indicated that most synthesized compounds exhibited potential in vivo fungicidal activity against CDM. A CoMFA (comparative molecular field analysis) model based on the bioactivity was developed to identify some primary structural quality for the efficiency. The values of q2 and r2 for the established model were 0.791 and 0.982 respectively, which reliability and predict abilities were verified. Three analogues (q3, q4, q5) were designed and synthesized based on the model. All these compounds exhibited significant fungicidal activity on CDM with the EC50 of 1.43, 1.52, 1.77 mg·L-1. This work could provide a useful instruction for the further structure optimization.


Subject(s)
Fungicides, Industrial/pharmacology , Oomycetes/drug effects , Oxadiazoles/pharmacology , Quantitative Structure-Activity Relationship , Tetrazoles/pharmacology , Cucumis sativus/drug effects , Cucumis sativus/microbiology , Dose-Response Relationship, Drug , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/chemistry , Microbial Sensitivity Tests , Molecular Structure , Oxadiazoles/chemistry , Plant Diseases/microbiology , Tetrazoles/chemical synthesis , Tetrazoles/chemistry
18.
Metab Brain Dis ; 36(8): 2313-2322, 2021 12.
Article in English | MEDLINE | ID: mdl-34480681

ABSTRACT

Previous studies demonstrated that diabetic stroke patients had a poor prognosis and excess complement system activation in the peripheral blood. In this study, the association of serum complement levels with the prognosis of diabetic stroke was examined. Patients with acute ischemic stroke were recruited and were divided into two groups according to their history of diabetes. Baseline data on the admission, including C3 and C4 were collected. Neurologic function at discharge was the primary outcome and was quantified by the National Institutes of Health Stroke Scale (NIHSS). A total of 426 patients with acute ischemic stroke (116 diabetic strokes and 310 non-diabetic strokes) were recruited in this study. There were significant differences between the two groups in hypertension, coronary disease, triglyceride, high-density lipoprotein cholesterol, fasting blood sugar, C4, and mortality rates. Furthermore, the values of complement protein levels were divided into tertiles. In the diabetic stroke group, serum C4 level at the acute phase in the upper third was independently associated with NIHSS score at discharge and concurrent infection. These associations were not significant in non-diabetic stroke. High serum C4 level at admission, as a unique significant predictor, was associated with unfavorable clinical outcomes in the diabetic stroke, independently of traditional risk factors.


Subject(s)
Brain Ischemia , Diabetes Mellitus , Ischemic Stroke , Stroke , Brain Ischemia/complications , Humans , Prognosis , Risk Factors
19.
Angew Chem Int Ed Engl ; 60(29): 15995-16002, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-33977622

ABSTRACT

Separation of acetylene from carbon dioxide remains a daunting challenge because of their very similar molecular sizes and physical properties. We herein report the first example of using copper(I)-alkynyl chemistry within an ultra-microporous MOF (CuI @UiO-66-(COOH)2 ) to achieve ultrahigh C2 H2 /CO2 separation selectivity. The anchored CuI ions on the pore surfaces can specifically and strongly interact with C2 H2 molecule through copper(I)-alkynyl π-complexation and thus rapidly adsorb large amount of C2 H2 at low-pressure region, while effectively reduce CO2 uptake due to the small pore sizes. This material thus exhibits the record high C2 H2 /CO2 selectivity of 185 at ambient conditions, significantly higher than the previous benchmark ZJU-74a (36.5) and ATC-Cu (53.6). Theoretical calculations reveal that the unique π-complexation between CuI and C2 H2 mainly contributes to the ultra-strong C2 H2 binding affinity and record selectivity. The exceptional separation performance was evidenced by breakthrough experiments for C2 H2 /CO2 gas mixtures. This work suggests a new perspective to functionalizing MOFs with copper(I)-alkynyl chemistry for highly selective separation of C2 H2 over CO2 .

20.
J Mol Cell Cardiol ; 138: 49-58, 2020 01.
Article in English | MEDLINE | ID: mdl-31751566

ABSTRACT

Cardiovascular disease (CVD) is one of the most threatening diseases to human health and life, and the number of patients is increasing year by year. Thus, it is of great significance to study the pathogenesis, prevention and treatment of CVDs. The occurrence and development of CVDs involve dynamic, complex and delicate intracellular processes and the pathogenesis is not entirely clear. In contrast to genetic mutations, most of the protein post-translational modifications (PTMs) are reversible, and can affect the activity, stability, subcellular localization, protein-protein interaction etc., of the substrate targets, emerging as key mediators of a number of CVD progression. Under pathological conditions, the PTMs undergo aberrant balances which cause changes of the substrate target proteins in expression level, localization and capacity to activate downstream signaling pathways. Therefore, new approaches can be created aiming to correct the abnormal PTM alterations in treating CVDs. This review summarizes some of the more recent advances in PTMs, focusing on SUMOylation, neddylation, succinylation, and prenylation, and the effect of these modifications on cardiovascular function and progression, which may provide potential targets for future therapeutics.


Subject(s)
Cardiovascular Diseases/metabolism , Prenylation , Protein Processing, Post-Translational , Succinic Acid/metabolism , Sumoylation , Ubiquitination , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL