Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Stem Cells ; 41(4): 384-399, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36648299

ABSTRACT

Although electroacupuncture (EA) stimulation is a widely used therapy for chronic pain and comorbid psychiatric disorders, its long-term effects on chronic neuropathic pain-induced depression and the underlying mechanisms remain elusive. In the present study, we found that EA stimulation was able to restore adult neurogenesis in the ventral dentate gyrus (DG), by both increasing neuronal differentiation and restoring the normal morphology of newborn dendrites, in mice with spared nerve injury surgery. By ablating the Nestin+ neural stem cells (NSCs) via diphtheria toxin fragment A expression, we further proved that neurogenesis in the ventral DG was crucial to the long-term, but not the immediate antidepressant effect of EA, nor was it associated with nociception. Furthermore, we found that the restoration of neurogenesis was dependent on Tet1-mediated epigenetic modification upon EA treatment. Tet1 could bind to the promoter of the Prox1 gene, thus catalyzing its demethylation and facilitating its expression, which finally contributed to the restoration of neurogenesis and amelioration of depression-like behaviors induced by chronic neuropathic pain. Thus, we conclude that EA stimulation restores inhibited Tet1 expression in hippocampal NSCs of mice with chronic neuropathic pain, and increased Tet1 expression ameliorates hypermethylation of Prox1 and restores normal adult neurogenesis in the ventral DG, which contributes to the long-term antidepressant effect of EA.


Subject(s)
Electroacupuncture , Neuralgia , Mice , Animals , Depression/complications , Depression/therapy , Neurogenesis , Hippocampus/metabolism , Neuralgia/therapy , Neuralgia/metabolism , DNA-Binding Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
2.
Cereb Cortex ; 33(20): 10711-10721, 2023 10 09.
Article in English | MEDLINE | ID: mdl-37679857

ABSTRACT

Pain-related aversive memory is common in chronic pain patients. Electroacupuncture has been demonstrated to block pain-related aversive memory. The insular cortex is a key region closely related to aversive behaviors. In our study, a potential mechanism underlying the effect of electroacupuncture treatment on pain-related aversive memory behaviors relative to the insular cortex was investigated. Our study used the chemogenetic method, pharmacological method, electroacupuncture intervention, and behavioral detection. Our study showed that both inhibition of gamma-aminobutyric acidergic neurons and activation of the kappa opioid receptor in the insular cortex blocked the pain-related aversive memory behaviors induced by 2 crossover injections of carrageenan in mice; conversely, both the activation of gamma-aminobutyric acidergic neurons and inhibition of kappa opioid receptor in the insular cortex play similar roles in inducing pain-related aversive memory behaviors following 2 crossover injections of carrageenan. In addition, activation of gamma-aminobutyric acidergic neurons in the insular cortex reversed the effect of kappa opioid receptor activation in the insular cortex. Moreover, electroacupuncture effectively blocked pain-related aversive memory behaviors in model mice, which was reversed by both activation of gamma-aminobutyric acidergic neurons and inhibition of kappa opioid receptor in the insular cortex. The effect of electroacupuncture on blocking pain-related aversive memory behaviors may be related to the activation of the kappa opioid receptor and inhibition of gamma-aminobutyric acidergic neurons in the insular cortex.


Subject(s)
Chronic Pain , Electroacupuncture , Mice , Humans , Animals , Receptors, Opioid, kappa/metabolism , Insular Cortex , Carrageenan/toxicity , GABAergic Neurons/physiology , gamma-Aminobutyric Acid/pharmacology , Chronic Disease , Recurrence
3.
J Neuroinflammation ; 20(1): 109, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37158939

ABSTRACT

BACKGROUND: Complex regional pain syndrome type-I (CRPS-I) causes excruciating pain that affect patients' life quality. However, the mechanisms underlying CRPS-I are incompletely understood, which hampers the development of target specific therapeutics. METHODS: The mouse chronic post-ischemic pain (CPIP) model was established to mimic CRPS-I. qPCR, Western blot, immunostaining, behavioral assay and pharmacological methods were used to study mechanisms underlying neuroinflammation and chronic pain in spinal cord dorsal horn (SCDH) of CPIP mice. RESULTS: CPIP mice developed robust and long-lasting mechanical allodynia in bilateral hindpaws. The expression of inflammatory chemokine CXCL13 and its receptor CXCR5 was significantly upregulated in ipsilateral SCDH of CPIP mice. Immunostaining revealed CXCL13 and CXCR5 was predominantly expressed in spinal neurons. Neutralization of spinal CXCL13 or genetic deletion of Cxcr5 (Cxcr5-/-) significantly reduced mechanical allodynia, as well as spinal glial cell overactivation and c-Fos activation in SCDH of CPIP mice. Mechanical pain causes affective disorder in CPIP mice, which was attenuated in Cxcr5-/- mice. Phosphorylated STAT3 co-expressed with CXCL13 in SCDH neurons and contributed to CXCL13 upregulation and mechanical allodynia in CPIP mice. CXCR5 coupled with NF-κB signaling in SCDH neurons to trigger pro-inflammatory cytokine gene Il6 upregulation, contributing to mechanical allodynia. Intrathecal CXCL13 injection produced mechanical allodynia via CXCR5-dependent NF-κB activation. Specific overexpression of CXCL13 in SCDH neurons is sufficient to induce persistent mechanical allodynia in naïve mice. CONCLUSIONS: These results demonstrated a previously unidentified role of CXCL13/CXCR5 signaling in mediating spinal neuroinflammation and mechanical pain in an animal model of CRPS-I. Our work suggests that targeting CXCL13/CXCR5 pathway may lead to novel therapeutic approaches for CRPS-I.


Subject(s)
Chemokine CXCL13 , Chronic Pain , Receptors, CXCR5 , Reflex Sympathetic Dystrophy , Animals , Mice , Chemokine CXCL13/metabolism , Disease Models, Animal , Hyperalgesia , Neuroinflammatory Diseases , NF-kappa B , Spinal Cord Dorsal Horn , Receptors, CXCR5/metabolism
4.
Purinergic Signal ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37870716

ABSTRACT

Diabetic neuropathic pain (DNP) is a common and destructive complication of diabetes mellitus. The discovery of effective therapeutic methods for DNP is vitally imperative because of the lack of effective treatments. Although 2 Hz electroacupuncture (EA) was a successful approach for relieving DNP, the mechanism underlying the effect of EA on DNP is still poorly understood. Here, we established a rat model of DNP that was induced by streptozotocin (STZ) injection. P2X4R was upregulated in the spinal cord after STZ-injection. The upregulation of P2X4R was mainly expressed on activated microglia. Intrathecal injection of a P2X4R antagonist or microglia inhibitor attenuated STZ-induced nociceptive thermal hyperalgesia and reduced the overexpression of brain-derived neurotrophic factor (BDNF), interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) in the spinal cord. We also assessed the effects of EA treatment on the pain hypersensitivities of DNP rats, and further investigated the possible mechanism underlying the analgesic effect of EA. EA relieved the hyperalgesia of DNP. In terms of mechanism, EA reduced the upregulation of P2X4R on activated microglia and decreased BDNF, IL-1ß and TNF-α in the spinal cord. Mechanistic research of EA's analgesic impact would be beneficial in ensuring its prospective therapeutic effect on DNP as well as in extending EA's applicability.

5.
Purinergic Signal ; 19(1): 29-41, 2023 03.
Article in English | MEDLINE | ID: mdl-35218450

ABSTRACT

Diabetic neuropathic pain (DNP) is highly common in diabetes patients. P2X receptors play critical roles in pain sensitization. We previously showed that elevated P2X3 expression in dorsal root ganglion (DRG) contributes to DNP. However, the role of other P2X receptors in DNP is unclear. Here, we established the DNP model using a single high-dose streptozotocin (STZ) injection and investigated the expression of P2X genes in the DRG. Our data revealed elevated P2X2, P2X4, and P2X7 mRNA levels in DRG of DNP rats. The protein levels of P2X4 and P2X7 in DNP rats increased, but the P2X2 did not change significantly. To study the role of P2X4 and P2X7 in diabetes-induced hyperalgesia, we treated the DNP rats with TNP-ATP (2',3'-O-(2,4,6-trinitrophenyl)-adenosine 5'-triphosphate), a nonspecific P2X1-7 antagonist, and found that TNP-ATP alleviated thermal hyperalgesia in DNP rats. 2 Hz electroacupuncture is analgesic against DNP and could downregulate P2X4 and P2X7 expression in DRG. Our findings indicate that P2X4 and P2X7 in L4-L6 DRGs contribute to diabetes-induced hyperalgesia, and that EA reduces thermal hyperalgesia and the expression of P2X4 and P2X7.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Electroacupuncture , Rats , Animals , Hyperalgesia/metabolism , Down-Regulation , Ganglia, Spinal/metabolism , Receptors, Purinergic P2X7/metabolism , Diabetic Neuropathies/metabolism , Receptors, Purinergic P2X3/metabolism , Diabetes Mellitus/metabolism
6.
Purinergic Signal ; 19(1): 99-111, 2023 03.
Article in English | MEDLINE | ID: mdl-34973115

ABSTRACT

Diabetic neuropathic pain (DNP) is frequent among patients with diabetes. We previously showed that P2X3 upregulation in dorsal root ganglia (DRG) plays a role in streptozotocin (STZ)-induced DNP but the underlying mechanism is unclear. Here, a rat model of DNP was established by a single injection of STZ (65 mg/kg). Fasting blood glucose was significantly elevated from the 1st to 3rd week. Paw withdrawal thresholds (PWTs) and paw withdrawal latencies (PWLs) in diabetic rats significantly reduced from the 2nd to 3rd week. Western blot analysis revealed that elevated p-CaMKIIα levels in the DRG of DNP rats were accompanied by pain-associated behaviors while CaMKIIα levels were unchanged. Immunofluorescence revealed significant increase in the proportion of p-CaMKIIα immune positive DRG neurons (stained with NeuN) in the 2nd and 3rd week and p-CaMKIIα was co-expressed with P2X3 in DNP rats. KN93, a CaMKII antagonist, significantly reduce mechanical hyperalgesia and thermal hyperalgesia and these effects varied dose-dependently, and suppressed p-CaMKIIα and P2X3 upregulation in the DRGs of DNP rats. These results revealed that the p-CaMKIIα upregulation in DRG is involved in DNP, which possibly mediated P2X3 upregulation, indicating CaMKIIα may be an effective pharmacological target for DNP management.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Neuropathies , Neuralgia , Rats , Animals , Rats, Sprague-Dawley , Diabetes Mellitus, Experimental/metabolism , Calcium/metabolism , Streptozocin/metabolism , Streptozocin/pharmacology , Receptors, Purinergic P2X3/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/pharmacology , Ganglia, Spinal/metabolism , Neuralgia/metabolism , Hyperalgesia/metabolism , Diabetic Neuropathies/metabolism
7.
Purinergic Signal ; 19(1): 13-27, 2023 03.
Article in English | MEDLINE | ID: mdl-35478452

ABSTRACT

Upregulation of P2X3 receptor (P2X3R) has been strongly implicated in nociceptive signaling including bone cancer pain (BCP). The present study, using rat bone cancer model, aimed to explore the role of P2X3R in regulating rat pain behavior under the intervention of electroacupuncture (EA). The BCP model was successfully established by injection with MRMT-1 breast cancer cell into the medullary cavity of left tibia for 3 × 104 cells/3 µL PBS in rats as revealed by obvious bone destruction, decreased paw withdrawal thresholds (PWTs), and reduced paw withdrawal latencies (PWLs). Western blot analyses showed that P2X3R expression was significantly upregulated in ipsilateral lumbar 4-6 (L4-6) dorsal root ganglia (DRG), but the difference not seen in spinal cord dorsal horn (SCDH). With the in-depth study of P2X3R activation, we observed that intrathecal injection of P2X3R agonist α,ß-meATP aggravated MRMT-1 induced BCP, while injection of P2X3R inhibitor A-317491 alleviated pain. Subsequently, we demonstrated that BCP induced mechanical allodynia and thermal hyperalgesia were attenuated after EA treatment. Under EA treatment, total P2X3R protein expression in ipsilateral DRGs was decreased, and it is worth mentioning that decreased expression of P2X3R membrane protein, which indicated that both the expression and membrane trafficking of P2X3R were inhibited by EA. The immunofluorescence assay showed that EA stimulation exerted functions by reducing the expression of P2X3R-positive cells in ipsilateral DRGs of BCP rats. Ca2+ imaging analysis revealed that the EA stimulation decreased the percentage of α,ß-meATP responsive neurons in DRGs and inhibited calcium influx. Notably, the inhibitory effect of EA on mechanical allodynia and nociceptive flinches was abolished by intrathecal injection of α,ß-meATP. These findings demonstrated EA stimulation ameliorated mechanical allodynia and thermal hyperalgesia in rat model of MRMT-1-induced BCP. EA exerts analgesic effect on BCP by reducing the overexpression and functional activity of P2X3R in ipsilateral DRGs of BCP rats. Our work first demonstrates the critical and overall role of P2X3R in EA's analgesia against peripheral sensitization of MRMT-1-induced BCP and further supports EA as a potential therapeutic option for cancer pain in clinic.


Subject(s)
Bone Neoplasms , Cancer Pain , Electroacupuncture , Rats , Animals , Hyperalgesia/metabolism , Cancer Pain/metabolism , Receptors, Purinergic P2X3/metabolism , Rats, Sprague-Dawley , Electroacupuncture/methods , Pain/metabolism , Bone Neoplasms/metabolism , Analgesics , Ganglia, Spinal/metabolism
8.
Support Care Cancer ; 32(1): 16, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38085376

ABSTRACT

PURPOSE: The opioid crisis resulting from its use disorder and overdose poses additional challenges for cancer pain management. The American Society of Clinical Oncology Practice Guideline recommends acupuncture therapy for the management of adult cancer-related pain (CRP), but the effectiveness of transcutaneous electrical acupoint stimulation (TEAS) on CRP remains uncertain. METHODS: This 5-week prospective randomized clinical trial was conducted at 2 hospitals in China, and participants with CRP receiving chronic opioid therapy were randomized 1:1 into two groups between December 2014 and June 2018. The true TEAS group underwent 15 sessions of TEAS treatments over 3 consecutive weeks, while the control group received sham stimulation. The primary outcome was the numerical rating scale (NRS) score in the past 24h at week 3. The secondary outcomes included morphine equivalent daily dose, quality of life and adverse events. RESULTS: A total of 159 participants were included in the modified intention-to-treat population. The baseline characteristics were similar in both groups. The mean NRS scores were 0.98 points at week 3 in the true TEAS group and 1.41 points in the sham group, with the mean difference between groups of -0.43 points (P < 0.001; OR = 0.68, P < 0.05). The proportion of patients with NRS reduction more than thirty percentage at week 3 was 50.00% in the true TEAS group and 35.44% in the sham group (RD = 0.15, P > 0.05; RR = 1.41, P > 0.05). No significant difference in pain intensity between the two groups was observed during the follow-up period without TEAS intervention (week 4, OR = 0.83, P > 0.05; week 5, OR = 0.83, P > 0.05). The Karnofsky Performance Status value suggested that patients in the true TEAS group experienced an improved quality of life (Between-group differences: week 3, 3.5%, P < 0.05; week 4, 4.6%, P < 0.001; week 5, 5.6%, P < 0.001). CONCLUSIONS: The 3-week application of TEAS in patients with CRP receiving chronic opioid therapy resulted in a statistically significant reduction in pain scores, but the observed reduction was of uncertain clinical significance. The prolonged analgesic effect of TEAS was not confirmed in this trial. CLINICALTRIAL: GOV: ChiCTR-TRC-13003803.


Subject(s)
Cancer Pain , Neoplasms , Transcutaneous Electric Nerve Stimulation , Adult , Humans , Acupuncture Points , Analgesics, Opioid/adverse effects , Cancer Pain/drug therapy , Cancer Pain/etiology , Morphine , Neoplasms/therapy , Neoplasms/drug therapy , Pain Management , Prospective Studies , Quality of Life , Transcutaneous Electric Nerve Stimulation/methods
9.
Cell Mol Biol Lett ; 27(1): 16, 2022 Feb 19.
Article in English | MEDLINE | ID: mdl-35183104

ABSTRACT

BACKGROUND: Allergic contact dermatitis (ACD) is a common skin condition characterized by contact hypersensitivity to allergens, accompanied with skin inflammation and a mixed itch and pain sensation. The itch and pain dramatically affects patients' quality of life. However, still little is known about the mechanisms triggering pain and itch sensations in ACD. METHODS: We established a mouse model of ACD by sensitization and repetitive challenge with the hapten oxazolone. Skin pathological analysis, transcriptome RNA sequencing (RNA-seq), qPCR, Ca2+ imaging, immunostaining, and behavioral assay were used for identifying gene expression changes in dorsal root ganglion innervating the inflamed skin of ACD model mice and for further functional validations. RESULTS: The model mice developed typical ACD symptoms, including skin dryness, erythema, excoriation, edema, epidermal hyperplasia, inflammatory cell infiltration, and scratching behavior, accompanied with development of eczematous lesions. Transcriptome RNA-seq revealed a number of differentially expressed genes (DEGs), including 1436-DEG mRNAs and 374-DEG-long noncoding RNAs (lncRNAs). We identified a number of DEGs specifically related to sensory neuron signal transduction, pain, itch, and neuroinflammation. Comparison of our dataset with another published dataset of atopic dermatitis mouse model identified a core set of genes in peripheral sensory neurons that are exclusively affected by local skin inflammation. We further found that the expression of the pain and itch receptor MrgprD was functionally upregulated in dorsal root ganglia (DRG) neurons innervating the inflamed skin of ACD model mice. MrgprD activation induced by its agonist ß-alanine resulted in exaggerated scratching responses in ACD model mice compared with naïve mice. CONCLUSIONS: We identified the molecular changes and cellular pathways in peripheral sensory ganglia during ACD that might participate in neurogenic inflammation, pain, and itch. We further revealed that the pain and itch receptor MrgprD is functionally upregulated in DRG neurons, which might contribute to peripheral pain and itch sensitization during ACD. Thus, targeting MrgprD may be an effective method for alleviating itch and pain in ACD.


Subject(s)
Dermatitis, Allergic Contact , Transcriptome , Animals , Dermatitis, Allergic Contact/complications , Dermatitis, Allergic Contact/metabolism , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Neurons/metabolism , Quality of Life , Skin
10.
Mol Pain ; 17: 17448069211011315, 2021.
Article in English | MEDLINE | ID: mdl-33906494

ABSTRACT

Peripheral inflammatory and neuropathic pain are closely related to the activation of purinergic receptor P2X ligand-gated ion channel 3 (P2X3) and transient receptor potential vanilloid 1 (TRPV1), but the interaction between P2X3 and TRPV1 in different types of pathological pain has rarely been reported. In this study, complete Freund's adjuvant (CFA)-induced inflammatory pain and spared nerve injury (SNI)-induced neuropathic pain models were established in adult rats. The interactions between P2X3 and TRPV1 in the dorsal root ganglion were observed by pharmacological, co-immunoprecipitation, immunofluorescence and whole-cell patch-clamp recording assays. TRPV1 was shown to promote the induction of spontaneous pain caused by P2X3 in the SNI model, but the induction of spontaneous pain behaviour by TRPV1 was not completely dependent on P2X3 in vivo. In both the CFA and SNI models, the activation of peripheral P2X3 enhanced the effect of TRPV1 on spontaneous pain, while the inhibition of peripheral TRPV1 reduced the induction of spontaneous pain by P2X3 in the CFA model. TRPV1 and P2X3 had inhibitory effects on each other in the inflammatory pain model. During neuropathic pain, P2X3 facilitated the function of TRPV1, while TRPV1 had an inhibitory effect on P2X3. These results suggest that the mutual effects of P2X3 and TRPV1 differ in cases of inflammatory and neuropathic pain in rats.


Subject(s)
Ganglia, Spinal/metabolism , Pain/metabolism , Receptors, Purinergic P2X3/metabolism , TRPV Cation Channels/metabolism , Animals , Behavior, Animal/physiology , Capsaicin/analogs & derivatives , Capsaicin/pharmacology , Ganglia, Spinal/drug effects , Inflammation/metabolism , Male , Neuralgia/metabolism , Neurons/drug effects , Neurons/metabolism , Pain Measurement , Rats , Rats, Sprague-Dawley , Sensory System Agents/pharmacology
11.
Exp Brain Res ; 239(3): 983-995, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33464388

ABSTRACT

Peripheral inflammation and nerve injury usually accompany each other. However, whether inflammatory and neuropathic pain share similar mechanisms at all stages is unknown. TRPV1 and P2X3 are two major ion channels in dorsal root ganglia (DRGs) and are involved in chronic pain. Here, their function and expression in DRGs at different phases of the two types of pain were investigated. Both the paw withdrawal threshold (PWT) and paw withdrawal latency were decreased in rats injected with complete Freud's adjuvant (CFA). However, only the PWT was decreased in rats with spared nerve injury (SNI). CFA increased the magnitude of the TRPV1-mediated Ca2+ response but not the P2X3-mediated Ca2+ response 14 days after injection. Consistent with this result, the P2X3 expression level in CFA rats was increased only at 3 days after injection. SNI surgery increased the magnitudes of the TRPV1- and P2X3-mediated Ca2+ responses and upregulated both TRPV1 and P2X3 expression in lumbar DRGs. The distributions of TRPV1 and P2X3 in DRGs after modeling were observed, and TRPV1 was found to be highly expressed mainly in the L4-L5 DRGs in CFA rats and in the L5-L6 DRGs in SNI rats. P2X3 was highly expressed in the L4-L6 DRGs in CFA rats 3 days after injection but was only highly expressed in the L4 DRG 14 days after modeling. On the other hand, SNI promoted the P2X3 expression L4-L5 DRGs 3 days after surgery, but only L6 DRG 14 days after modeling. All the results indicate that P2X3 and TPRV1 are involved in inflammatory and neuropathic pain by different expression levels and distributions in the lumbar DRG in the chronic stage.


Subject(s)
Chronic Pain , Neuralgia , Animals , Freund's Adjuvant/toxicity , Ganglia, Spinal , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P2X5 , TRPV Cation Channels/genetics
12.
Neural Plast ; 2020: 8859672, 2020.
Article in English | MEDLINE | ID: mdl-33273908

ABSTRACT

Peripheral nerve networks (PNNs) play a vital role in the neural recovery after spinal cord injury (SCI). Electroacupuncture (EA), as an alternative medicine, has been widely used in SCI and was proven to be effective on neural functional recovery. In this study, the interaction between PNNs and semaphrin3A (Sema3A) in the recovery of the motor function after SCI was observed, and the effect of EA on them was evaluated. After the establishment of the SCI animal model, we found that motor neurons in the ventral horn of the injured spinal cord segment decreased, Nissl bodies were blurry, and PNNs and Sema3A as well as its receptor neuropilin1 (NRP1) aggregated around the central tube of the gray matter of the spinal cord. When we knocked down the expression of Sema3A at the damage site, NRP1 also downregulated, importantly, PNNs concentration decreased, and tenascin-R (TN-R) and aggrecan were also reduced, while the Basso-Beattie-Bresnahan (BBB) motor function score dramatically increased. In addition, when conducting EA stimulation on Jiaji (EX-B2) acupoints, the highly upregulated Sema3A and NRP1 were reversed post-SCI, which can lessen the accumulation of PNNs around the central tube of the spinal cord gray matter, and simultaneously promote the recovery of motor function in rats. These results suggest that EA may further affect the plasticity of PNNs by regulating the Sema3A signal and promoting the recovery of the motor function post-SCI.


Subject(s)
Electroacupuncture , Motor Skills/physiology , Peripheral Nerves/metabolism , Semaphorin-3A/metabolism , Signal Transduction/physiology , Spinal Cord Injuries/therapy , Acupuncture Points , Animals , Disease Models, Animal , Male , Motor Neurons/metabolism , Nerve Net/metabolism , Nerve Net/physiopathology , Peripheral Nerves/physiopathology , Rats , Rats, Sprague-Dawley , Recovery of Function/physiology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/physiopathology , Up-Regulation
13.
Neural Plast ; 2020: 8865096, 2020.
Article in English | MEDLINE | ID: mdl-33123189

ABSTRACT

Electroacupuncture (EA) can effectively modulate pain perception and pain-related negative affect; however, we do not know whether the effect of EA on sensation and affect is parallel, or dissociated, interactional. In this study, we observed the effects of the anterior cingulate cortex (ACC) lesion and the primary somatosensory cortex (S1) activation on pain perception, pain-related affection, and neural oscillation in S1. ACC lesions did not affect pain perception but relieved pain-paired aversion. S1 activation increased pain perception and anxious behavior. EA can mitigate pain perception regardless of whether there is an ACC lesion. Chronic pain may increase the delta and theta band oscillatory activity in the S1 brain region and decrease the oscillatory activity in the alpha, beta, and gamma bands. EA intervention may inhibit the oscillatory activity of the alpha and beta bands. These results suggest that EA may mitigate chronic pain by relieving pain perception and reducing pain-related affection through different mechanisms. This evidence builds upon findings from previous studies of chronic pain and EA treatment.


Subject(s)
Affect/physiology , Electroacupuncture , Gyrus Cinguli/physiology , Pain Perception/physiology , Somatosensory Cortex/physiology , Animals , Male , Rats, Sprague-Dawley
14.
Mol Pain ; 15: 1744806919842473, 2019.
Article in English | MEDLINE | ID: mdl-30990108

ABSTRACT

Endothelin-1 (ET-1) is a potent endogenous vasoconstrictor that has been widely known as a pain mediator involved in various pain states. Evidence indicates that ET-1 sensitizes transient receptor potential cation channel, subfamily A, member 1 (TRPA1) in vivo. But the molecular mechanisms still remain unknown. We aim to explore whether ET-1 sensitizes TRPA1 in primary sensory neurons and the molecular mechanisms. Ca2+ imaging, immunostaining, electrophysiology, animal behavioral assay combined with pharmacological experiments were performed. ET-1 sensitized TRPA1-mediated Ca2+ responses in human embryonic kidney (HEK)293 cells as well as in cultured native mouse dorsal root ganglion (DRG) neurons. ET-1 also sensitized TRPA1 channel currents. ET-1 sensitized TRPA1 activated by endogenous agonist H2O2. ETA receptor (ETAR) colocalized with TRPA1 in DRG neurons. ET-1-induced TRPA1 sensitization in vivo was mediated via ETAR and protein kinase A (PKA) pathway in HEK293 cells and DRG neurons. Pharmacological blocking of ETAR, PKA, and TRPA1 significantly attenuated ET-1-induced mechanical hyperalgesia in mice. Our results suggest that TRPA1 acts as a molecular target for ET-1, and sensitization of TRPA1 through ETAR-PKA pathway contributes to ET-1-induced mechanical hyperalgesia. Pharmacological targeting of TRPA1 and ETAR-PKA pathway may provide effective strategies to alleviate pain conditions associated with ET-1.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Endothelin-1/pharmacology , Hyperalgesia/metabolism , Receptor, Endothelin A/metabolism , Signal Transduction , TRPA1 Cation Channel/metabolism , Animals , Ganglia, Spinal/metabolism , HEK293 Cells , Humans , Hydrogen Peroxide/pharmacology , Hyperalgesia/pathology , Male , Mice, Inbred C57BL , Sensory Receptor Cells/metabolism , Signal Transduction/drug effects
15.
Med Sci Monit ; 25: 5482-5492, 2019 Jul 24.
Article in English | MEDLINE | ID: mdl-31337746

ABSTRACT

BACKGROUND The recombinant avirulent Newcastle disease virus (NDV) LaSota strain expressing the rabies virus glycoprotein (rL-RVG) can induce much greater apoptosis than can NDV in gastric carcinoma cells, but the mechanisms involved remains unclear. MATERIAL AND METHODS The 2 gastric carcinoma cell lines were divided into the rL-RVG group, the NDV group, and the PBS group. MTT assay was used to detect and analyze cell viability. siRNA for alpha7-nAChR, alpha7-nAChR antagonist, or alpha7-nAChR agonist, AKT antagonist, and p-AKT agonist were used for pretreatment. The protein expressions of RVG, NDV, alpha7-nAChR, cleaved caspase-3, p-AKT, PI3K, Bcl-2, and Bax proteins were detected by Western blot assay. Immunofluorescence was used to detect expressions of alpha7-nAChR proteins. Light microscopy, flow cytometry, and TUNEL assay were used to assess apoptosis. RESULTS The results showed that 2 virus concentrations over 10³ dilution caused greater cell proliferation inhibition. rL-RVG treatment increased the expression of alpha7-nAChR, cleaved caspase-3, and Bax protein but decreased the expression of p-AKT, PI3K, and Bcl-2 protein. When the groups were pretreated with alpha7-nAChR antagonist, the alpha7-nAChR, cleaved caspase-3, and Bax protein expression increased, but the expression of p-AKT, PI3K, and Bcl-2 protein was clearly decreased. However, the results in the alpha7-nAChR agonist group were the opposite. When treated with the AKT antagonist, the result was the same as in the rL-RVG treatment group. The result in the AKT agonist group was the opposite of that in the AKT antagonist group. Compared with the NDV group, the results of light microscopy, FCM, and TUNEL assay showed that alpha7-nAChR antagonist significantly affected the apoptosis of gastric cancer cells in the rL-RVG group. CONCLUSIONS rL-RVG leads to much greater apoptosis through the alpha7-nAChR/PI3K/AKT pathway.


Subject(s)
Glycoproteins/therapeutic use , Peptide Fragments/therapeutic use , Stomach Neoplasms/therapy , Viral Proteins/therapeutic use , Apoptosis , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation , Cell Survival , Humans , Newcastle disease virus/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , Rabies virus , Signal Transduction , alpha7 Nicotinic Acetylcholine Receptor/metabolism , bcl-2-Associated X Protein/metabolism
16.
Proc Natl Acad Sci U S A ; 113(47): E7572-E7579, 2016 11 22.
Article in English | MEDLINE | ID: mdl-27821781

ABSTRACT

Poison ivy-induced allergic contact dermatitis (ACD) is the most common environmental allergic condition in the United States. Case numbers of poison ivy ACD are increasing due to growing biomass and geographical expansion of poison ivy and increasing content of the allergen, urushiol, likely attributable to rising atmospheric CO2 Severe and treatment-resistant itch is the major complaint of affected patients. However, because of limited clinical data and poorly characterized models, the pruritic mechanisms in poison ivy ACD remain unknown. Here, we aim to identify the mechanisms of itch in a mouse model of poison ivy ACD by transcriptomics, neuronal imaging, and behavioral analysis. Using transcriptome microarray analysis, we identified IL-33 as a key cytokine up-regulated in the inflamed skin of urushiol-challenged mice. We further found that the IL-33 receptor, ST2, is expressed in small to medium-sized dorsal root ganglion (DRG) neurons, including neurons that innervate the skin. IL-33 induces Ca2+ influx into a subset of DRG neurons through neuronal ST2. Neutralizing antibodies against IL-33 or ST2 reduced scratching behavior and skin inflammation in urushiol-challenged mice. Injection of IL-33 into urushiol-challenged skin rapidly exacerbated itch-related scratching via ST2, in a histamine-independent manner. Targeted silencing of neuronal ST2 expression by intrathecal ST2 siRNA delivery significantly attenuated pruritic responses caused by urushiol-induced ACD. These results indicate that IL-33/ST2 signaling is functionally present in primary sensory neurons and contributes to pruritus in poison ivy ACD. Blocking IL-33/ST2 signaling may represent a therapeutic approach to ameliorate itch and skin inflammation related to poison ivy ACD.


Subject(s)
Dermatitis, Toxicodendron/genetics , Gene Expression Profiling/methods , Interleukin-1 Receptor-Like 1 Protein/genetics , Interleukin-33/genetics , Oligonucleotide Array Sequence Analysis/methods , Sensory Receptor Cells/metabolism , Animals , Catechols/adverse effects , Dermatitis, Toxicodendron/metabolism , Disease Models, Animal , Humans , Interleukin-1 Receptor-Like 1 Protein/metabolism , Interleukin-33/metabolism , Mice , Signal Transduction , Skin/metabolism , Up-Regulation
17.
Neural Plast ; 2019: 2057308, 2019.
Article in English | MEDLINE | ID: mdl-31223307

ABSTRACT

Our previous studies have confirmed that electroacupuncture (EA) can effectively intervene in pain memory, but the neural mechanism involved remains unclear. In this study, we observed the effects of EA in regulating pain memory-related behaviors and synchronous neural oscillations in the rostral anterior cingulate cortex (rACC). During nociceptive behavioral testing, pain memory induced a nonpain stimulus that spurred a neural oscillatory reaction similar to that caused by pain stimuli in the rACC. After EA, nonpain stimuli did not induce decreased neural oscillatory activity in the rACC until the presentation of pain stimuli. During aversive behavioral testing, EA, through the downregulation of theta power, inhibited the retrieval of aversive memory and relieved pain memory-induced aversive behaviors. These changes of oscillatory activity may be the hallmarks of EA therapy for pain memory.


Subject(s)
Behavior, Animal/physiology , Brain Waves/physiology , Electroacupuncture , Gyrus Cinguli/physiopathology , Memory/physiology , Pain/physiopathology , Animals , Male , Nociception/physiology , Pain Threshold , Rats , Rats, Sprague-Dawley
18.
Int J Mol Sci ; 20(23)2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31775332

ABSTRACT

Paclitaxel-induced peripheral neuropathy is a common adverse effect during paclitaxel treatment resulting in sensory abnormalities and neuropathic pain during chemotherapy and in cancer survivors. Conventional therapies are usually ineffective and possess adverse effects. Here, we examined the effects of electroacupuncture (EA) on a rat model of paclitaxel-induced neuropathic pain and related mechanisms. EA robustly and persistently alleviated paclitaxel-induced pain hypersensitivities. Mechanistically, TLR4 (Toll-Like Receptor 4) and downstream signaling MyD88 (Myeloid Differentiation Primary Response 88) and TRPV1 (Transient Receptor Potential Vallinoid 1) were upregulated in dorsal root ganglion (DRGs) of paclitaxel-treated rats, whereas EA reduced their overexpression. Ca2+ imaging further indicated that TRPV1 channel activity was enhanced in DRG neurons of paclitaxel-treated rats whereas EA suppressed the enhanced TRPV1 channel activity. Pharmacological blocking of TRPV1 mimics the analgesic effects of EA on the pain hypersensitivities, whereas capsaicin reversed EA's effect. Spinal astrocytes and microglia were activated in paclitaxel-treated rats, whereas EA reduced the activation. These results demonstrated that EA alleviates paclitaxel-induced peripheral neuropathic pain via mechanisms possibly involving suppressing TLR4 signaling and TRPV1 upregulation in DRG neurons, which further result in reduced spinal glia activation. Our work supports EA as a potential alternative therapy for paclitaxel-induced neuropathic pain.


Subject(s)
Electroacupuncture/methods , Neuralgia/prevention & control , Paclitaxel/toxicity , Peripheral Nervous System Diseases/prevention & control , Sensory Receptor Cells/metabolism , TRPV Cation Channels/antagonists & inhibitors , Toll-Like Receptor 4/antagonists & inhibitors , Animals , Antineoplastic Agents, Phytogenic/toxicity , Gene Expression Regulation , Male , Myeloid Differentiation Factor 88/antagonists & inhibitors , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Neuralgia/chemically induced , Neuralgia/metabolism , Neuralgia/pathology , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/pathology , Rats , Rats, Sprague-Dawley , Sensory Receptor Cells/drug effects , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
19.
Purinergic Signal ; 14(4): 359-369, 2018 12.
Article in English | MEDLINE | ID: mdl-30084084

ABSTRACT

Painful diabetic neuropathy (PDN) is a common and troublesome diabetes complication. Protein kinase C (PKC)-mediated dorsal root ganglia (DRG) P2X3 receptor upregulation is one important mechanism underlying PDN. Accumulating evidence demonstrated that electroacupuncture (EA) at low frequency could effectively attenuate neuropathic pain. Our previous study showed that 2-Hz EA could relieve pain well in PDN. The study aimed to investigate whether 2-Hz EA relieves pain in PDN through suppressing PKC-mediated DRG P2X3 receptor upregulation. A 7-week feeding of high-fat and high-sugar diet plus a single injection of streptozotocin (STZ) in a dose of 35 mg/kg after a 5-week feeding of the diet successfully induced type 2 PDN in rats as revealed by the elevated body weight, fasting blood glucose, fasting insulin and insulin resistance, and the reduced paw withdrawal threshold (PWT), as well as the destructive ultrastructural change of sciatic nerve. DRG plasma membrane P2X3 receptor level and DRG PKC expression were elevated. Two-hertz EA failed to improve peripheral neuropathy; however, it reduced PWT, DRG plasma membrane P2X3 receptor level, and DRG PKC expression in PDN rats. Intraperitoneal administration of P2X3 receptor agonist αß-meATP or PKC activator phorbol 12-myristate 13-acetate (PMA) blocked 2-Hz EA analgesia. Furthermore, PMA administration increased DRG plasma membrane P2X3 receptor level in PDN rats subject to 2-Hz EA treatment. These findings together indicated that the analgesic effect of EA in PDN is mediated by suppressing PKC-dependent membrane P2X3 upregulation in DRG. EA at low frequency is a valuable approach for PDN control.


Subject(s)
Ganglia, Spinal/metabolism , Neuralgia/metabolism , Receptors for Activated C Kinase/metabolism , Receptors, Purinergic P2X3/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Diabetic Neuropathies/metabolism , Purinergic P2X Receptor Antagonists/pharmacology , Rats, Sprague-Dawley , Receptors for Activated C Kinase/drug effects , Receptors, Purinergic P2X3/drug effects , Up-Regulation
20.
Virol J ; 14(1): 190, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28974241

ABSTRACT

BACKGROUND: The aim of this study were to investigate the possible pro-apoptotic mechanisms of the recombinant Newcastle disease virus (NDV) strain rL-RVG, which expresses the rabies virus glycoprotein, in A549 lung adenocarcinoma cells via the regulation of alpha 7 nicotinic acetylcholine receptors (α7 nAChRs) and to analyze the relationships between α7 nAChR expression in lung cancer and the clinical pathological features. METHODS: α7 nAChR expression in A549, LΑ795, and small-cell lung carcinoma (SCLC) cells, among others, was detected using reverse transcription polymerase chain reaction (RT-PCR). The optimal α7 nAChR antagonist and agonist concentrations for affecting A549 lung adenocarcinoma cells were detected using MTT assays. The α7 nAChR expression in A549 cells after various treatments was assessed by Western blot, immunofluorescence and RT-PCR analyses. Apoptosis in the various groups was also monitored by Western blot and TUNEL assays, followed by the detection of cell migration via transwell and scratch tests. Furthermore, α7 nAChR expression was examined by immunohistochemistry in lung cancer tissue samples from 130 patients and 40 pericancerous tissue samples, and the apoptotis in lung adenocarcinoma tissue was detected by Tunel assay, Then, the expression levels and clinicopathological characteristics were analyzed. RESULTS: Of the A549, LΑ795, SCLC and U251 cell lines, the A549 cells exhibited the highest α7 nAChR expression. The cells infected with rL-RVG exhibited high RVG gene and protein expression. The rL-RVG group exhibited weaker α7 nAChR expression compared with the methyllycaconitine citrate hydrate (MLA, an α7 nAChR antagonist) and NDV groups. At the same time, the MLA and rL-RVG treatments significantly inhibited proliferation and migration and promoted apoptosis in the lung cancer cells (P < 0.05). The expression of α7 nAChR was upregulated in lung cancer tissue compared with pericancerous tissue (P = 0.000) and was significantly related to smoking, clinical tumor-node-metastases stage, and histological differentiation (P < 0.05). The AI in lung adenocarcinoma tissue in high-medium differentiation group was lower than that in low differentiation group (p < 0.01). CONCLUSIONS: An antagonist of α7 nAChR may be used as a molecular target for lung adenocarcinoma therapy. Recombinant NDV rL-RVG enhances the apoptosis and inhibits the migration of A549 lung adenocarcinoma cells by regulating α7 nAChR signaling pathways.


Subject(s)
Apoptosis , Cell Movement , Epithelial Cells/physiology , Glycoproteins/metabolism , Newcastle disease virus/physiology , Peptide Fragments/metabolism , Viral Proteins/metabolism , alpha7 Nicotinic Acetylcholine Receptor/antagonists & inhibitors , Cell Line, Tumor , Cell Survival , Gene Expression Profiling , Glycoproteins/genetics , Humans , Newcastle disease virus/genetics , Peptide Fragments/genetics , Staining and Labeling , Tetrazolium Salts/metabolism , Thiazoles/metabolism , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL