Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Biomacromolecules ; 25(5): 2965-2972, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38682378

ABSTRACT

Nucleic acid therapeutics have attracted recent attention as promising preventative solutions for a broad range of diseases. Nonviral delivery vectors, such as cationic polymers, improve the cellular uptake of nucleic acids without suffering the drawbacks of viral delivery vectors. However, these delivery systems are faced with a major challenge for worldwide deployment, as their poor thermal stability elicits the need for cold chain transportation. Here, we demonstrate a biomaterial strategy to drastically improve the thermal stability of DNA polyplexes. Importantly, we demonstrate long-term room temperature storage with a transfection efficiency maintained for at least 9 months. Additionally, extreme heat shock studies show retained luciferase expression after heat treatment at 70 °C. We therefore provide a proof of concept for a platform biotechnology that could provide long-term room temperature storage for temperature-sensitive nucleic acid therapeutics, eliminating the need for the cold chain, which in turn would reduce the cost of distributing life-saving therapeutics worldwide.


Subject(s)
DNA , Humans , DNA/chemistry , Transfection/methods , Polymers/chemistry , Heat-Shock Response/drug effects , Temperature , Hot Temperature
2.
Nat Commun ; 15(1): 1665, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396019

ABSTRACT

The clinical development of an effective Chlamydia vaccine requires in-depth understanding of how well protective pre-clinical immune signatures translate to humans. Here, we report a comparative immunological characterization of CTH522/CAF®01 in female mice and humans. We find a range of immune signatures that translate from mouse to human, including a Th1/Th17 cytokine profile and antibody functionality. We identify vaccine-induced T cell epitopes, conserved among Chlamydia serovars, and previously found in infected individuals. Using the mouse model, we show that the common immune signature protected against ascending infection in mice, and vaccine induced antibodies could delay bacterial ascension to the oviduct, as well as development of pathology, in a T cell depleted mouse model. Finally, we demonstrate long-lasting immunity and protection of mice one year after vaccination. Based on the results obtained in the present study, we propose to further investigate CTH522/CAF®01 in a phase IIb study.


Subject(s)
Chlamydia Infections , Chlamydia , Vaccines , Humans , Female , Animals , Mice , Chlamydia Infections/microbiology , Antibodies , Vaccination , Bacterial Vaccines
3.
J Control Release ; 374: 280-292, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39142355

ABSTRACT

Lipid nanoparticle (LNP) formulation plays a vital role in RNA vaccine delivery. However, further optimisation of self-amplifying RNA (saRNA) vaccine formulation could help enhance seroconversion rates in humans and improve storage stability. Altering either the ionisable or helper lipid can alter the characteristics and performance of formulated saRNA through the interplay of the phospholipid's packing parameter and the geometrical shape within the LNP membrane. In this study, we compared the impact of three helper lipids (DSPC, DOPC, or DOPE) used with two different ionisable lipids (MC3 and C12-200) on stability, transfection efficiency and the inflammation and immunogenicity of saRNA. While helper lipid identity altered saRNA expression across four cell lines in vitro, this was not predictive of an ex vivo or in vivo response. The helper lipid used influenced LNP storage where DSPC provided the best stability profile over four weeks at 2-8 °C. Importantly, helper lipid impact on LNP storage stability was the best predictor of expression in human skin explants, where C12-200 in combination with DSPC provided the most durable expression. C12-200 LNPs also improved protein expression (firefly luciferase) and humoral responses to a SARS-CoV-2 spike saRNA vaccine compared to MC3 LNPs, where the effect of helper lipids was less apparent. Nevertheless, the performance of C12-200 in combination with DSPC appears optimal for saRNA when balancing preferred storage stability requirements against in vivo and ex vivo potency. These data suggest that helper lipid influences the stability and functionality of ionisable lipid nanoparticle-formulated saRNA.

4.
EBioMedicine ; 104: 105140, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744110

ABSTRACT

BACKGROUND: Chlamydia trachomatis (CT) Major Outer Membrane Protein (MOMP) holds a neutralising epitope in the Variable Domain 4 (VD4), and this region's immune dominance during infection is well known. This study aimed to assess the antibody response induced after infection and compare it for specificity and functionality to the response following vaccination with the vaccine CTH522, which contains VD4's from serovars D, E, F, and G. METHODS: We assessed the antibody epitopes in MOMP by a high density peptide array. Furthermore, the role of the VD4 epitope in neutralisation was explored by competitive inhibition experiments with a fusion protein holding the neutralising VD4 linear epitope. This was done in two independent groups: 1) MOMP seropositive individuals infected with CT (n = 10, from case-control study) and 2) CTH522/CAF®01-vaccinated females (n = 14) from the CHLM-01 clinical trial. FINDINGS: We identified the major antigenic regions in MOMP as VD4 and the conserved region just before VD3 in individuals infected with CT. The same regions, with the addition of VD1, were identified in vaccine recipients. Overall, the VD4 peptide responses were uniform in vaccinated individuals and led to inhibition of infection in vitro in all tested samples, whereas the VD4 responses were more heterogenous in individuals infected with CT, and only 2 out of 10 samples had VD4-mediated neutralising antibody responses. INTERPRETATION: These data provide insights into the role of antibodies against MOMP VD4 induced after infection and vaccination, and show that their functionality differs. The induction of functional VD4-specific antibodies in vaccine recipients mimics previous results from animal models. FUNDING: This work was supported by the European Commission through contract FP7-HEALTH-2011.1.4-4-280873 (ADITEC) and Fonden til Lægevidenskabens Fremme.


Subject(s)
Antibodies, Bacterial , Bacterial Vaccines , Chlamydia Infections , Chlamydia trachomatis , Epitopes , Vaccination , Humans , Chlamydia trachomatis/immunology , Antibodies, Bacterial/immunology , Antibodies, Bacterial/blood , Chlamydia Infections/immunology , Chlamydia Infections/microbiology , Female , Bacterial Vaccines/immunology , Epitopes/immunology , Antibodies, Neutralizing/immunology , Bacterial Outer Membrane Proteins/immunology , Adult , Male , Case-Control Studies , Young Adult
5.
Nanoscale Adv ; 6(5): 1409-1422, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38419881

ABSTRACT

Therapeutic self-amplifying RNA (saRNA) is a promising approach for disease treatment, as it can be administered in lower doses than messenger RNA (mRNA) to achieve comparable protein production levels. However, saRNA requires an appropriate delivery vehicle to protect it during transit and facilitate its transfection. A widely-adopted approach has been to use polycations to condense these large anionic macromolecules into polyplex nanoparticles, however their high charge density often elicits cytotoxic effects. In this study we postulated that we could improve the potency and tolerability of such delivery vehicles by co-formulating poly(ß-amino ester)s saRNA polyplexes with a non-toxic anionic polymer, γ-polyglutamic acid (γ-PGA) to neutralize partially this positive charge. Accordingly, we prepared a poly(ß-amino ester) from 1,6-hexanedioldiacrylate (HDDA) and 4-aminobutanol (ABOL) and initially evaluated the physicochemical properties of the binary polyplexes (i.e. formed from polymer and saRNA only). Optimised binary polyplex formulations were then taken forward for preparation of ternary complexes containing pHDDA-ABOL, saRNA and γ-PGA. Our findings demonstrate that γ-PGA integration into polyplexes significantly enhanced transfection efficacy in HEK293T and A431 cells without affecting polyplex size. Notably, γ-PGA incorporation leads to a pronounced reduction in zeta potential, which reduced the toxicity of the ternary complexes in moDC, NIH3T3, and A431 cells. Furthermore, the presence of γ-PGA contributed to colloidal stability, reducing aggregation of the ternary complexes, as evidenced by insignificant changes in polydispersity index (PDI) after freeze-thaw cycles. Overall, these results suggest that incorporating the appropriate ratio of a polyanion such as γ-PGA with polycations in RNA delivery formulations is a promising way to improve the in vitro delivery of saRNA.

6.
Lancet Infect Dis ; 24(8): 829-844, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38615673

ABSTRACT

BACKGROUND: There is no vaccine against the major global pathogen Chlamydia trachomatis; its different serovars cause trachoma in the eye or chlamydia in the genital tract. We did a clinical trial administering CTH522, a recombinant version of the C trachomatis major outer membrane molecule, in different dose concentrations with and without adjuvant, to establish its safety and immunogenicity when administered intramuscularly, intradermally, and topically into the eye, in prime-boost regimens. METHODS: CHLM-02 was a phase 1, double-blind, randomised, placebo-controlled trial at the National Institute for Health Research Imperial Clinical Research Facility, London, UK. Participants were healthy men and non-pregnant women aged 18-45 years, without pre-existing C trachomatis genital infection. Participants were assigned into six groups by the electronic database in a pre-prepared randomisation list (A-F). Participants were randomly assigned (1:1:1:1:1) to each of the groups A-E (12 participants each) and 6 were randomly assigned to group F. Investigators were masked to treatment allocation. Groups A-E received investigational medicinal product and group F received placebo only. Two liposomal adjuvants were compared, CAF01 and CAF09b. The groups were intramuscular 85 µg CTH522-CAF01, or placebo on day 0 and two boosters or placebo at day 28 and 112, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (A); intramuscular 85 µg CTH522-CAF01, two boosters at day 28 and 112 with additional topical ocular administration of CTH522, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (B); intramuscular 85 µg CTH522-CAF01, two boosters at day 28 and 112 with additional intradermal administration of CTH522, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (C); intramuscular 15 µg CTH522-CAF01, two boosters at day 28 and 112, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (D); intramuscular 85 µg CTH522-CAF09b, two boosters at day 28 and 112, and a mucosal recall with either placebo or CTH522 topical ocularly at day 140 (E); intramuscular placebo (F). The primary outcome was safety; the secondary outcome (humoral immunogenicity) was the percentage of trial participants achieving anti-CTH522 IgG seroconversion, defined as four-fold and ten-fold increase over baseline concentrations. Analyses were done as intention to treat and as per protocol. The trial is registered with ClinicalTrials.gov, NCT03926728, and is complete. FINDINGS: Between Feb 17, 2020 and Feb 22, 2022, of 154 participants screened, 65 were randomly assigned, and 60 completed the trial (34 [52%] of 65 women, 46 [71%] of 65 White, mean age 26·8 years). No serious adverse events occurred but one participant in group A2 discontinued dosing after having self-limiting adverse events after both placebo and investigational medicinal product doses. Study procedures were otherwise well tolerated; the majority of adverse events were mild to moderate, with only seven (1%) of 865 reported as grade 3 (severe). There was 100% four-fold seroconversion rate by day 42 in the active groups (A-E) and no seroconversion in the placebo group. Serum IgG anti-CTH522 titres were higher after 85 µg CTH522-CAF01 than 15 µg, although not significantly (intention-to-treat median IgG titre ratio groups A-C:D=5·6; p=0·062), with no difference after three injections of 85 µg CTH522-CAF01 compared with CTH522-CAF09b (group E). Intradermal CTH522 (group C) induced high titres of serum IgG anti-CTH522 neutralising antibodies against serovars B (trachoma) and D (urogenital). Topical ocular CTH522 (group B) at day 28 and 112 induced higher total ocular IgA compared with baseline (p<0·001). Participants in all active vaccine groups, particularly groups B and E, developed cell mediated immune responses against CTH522. INTERPRETATION: CTH522, adjuvanted with CAF01 or CAF09b, is safe and immunogenic, with 85 µg CTH522-CAF01 inducing robust serum IgG binding titres. Intradermal vaccination conferred systemic IgG neutralisation breadth, and topical ocular administration increased ocular IgA formation. These findings indicate CTH522 vaccine regimens against ocular trachoma and urogenital chlamydia for testing in phase 2, clinical trials. FUNDING: The EU Horizon Program TRACVAC.


Subject(s)
Bacterial Vaccines , Chlamydia trachomatis , Liposomes , Trachoma , Humans , Adult , Double-Blind Method , Female , Male , Young Adult , Chlamydia trachomatis/immunology , Trachoma/prevention & control , Adolescent , Bacterial Vaccines/administration & dosage , Bacterial Vaccines/immunology , Bacterial Vaccines/adverse effects , Middle Aged , Injections, Intramuscular , Antibodies, Bacterial/blood , Adjuvants, Immunologic/administration & dosage , Healthy Volunteers
SELECTION OF CITATIONS
SEARCH DETAIL