Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Diabetologia ; 65(2): 366-374, 2022 02.
Article in English | MEDLINE | ID: mdl-34806114

ABSTRACT

AIMS/HYPOTHESIS: Fatty acid-binding protein 4 (FABP4) is an adipokine with a key regulatory role in glucose and lipid metabolism. We prospectively evaluated the role of FABP4 in the pathophysiology of diabetic ketoacidosis (DKA) in new-onset type 1 diabetes. METHODS: Clinical and laboratory data were prospectively collected from consecutive children presenting with new-onset type 1 diabetes. In addition to blood chemistry and gases, insulin, C-peptide, serum FABP4 and NEFA were collected upon presentation and 48 h after initiation of insulin treatment. In a mouse model of type 1 diabetes, glucose, insulin, ß-hydroxybutyrate and weight were compared between FABP4 knockout (Fabp4-/-) and wild-type (WT) mice. RESULTS: Included were 33 children (mean age 9.3 ± 3.5 years, 52% male), of whom 14 (42%) presented with DKA. FABP4 levels were higher in the DKA group compared with the non-DKA group (median [IQR] 10.1 [7.9-14.2] ng/ml vs 6.3 [3.9-7] ng/ml, respectively; p = 0.005). The FABP4 level was positively correlated with HbA1c at presentation and inversely correlated with venous blood pH and bicarbonate levels (p < 0.05 for all). Following initiation of insulin therapy, a marked reduction in FABP4 was observed in all children. An FABP4 level of 7.22 ng/ml had a sensitivity of 86% and a specificity of 78% for the diagnosis of DKA, with an area under the receiver operating characteristic curve of 0.78 (95% CI 0.6, 0.95; p = 0.008). In a streptozotocin-induced diabetes mouse model, Fabp4-/- mice exhibited marked hypoinsulinaemia and hyperglycaemia similar to WT mice but displayed no significant increase in ß-hydroxybutyrate and were protected from ketoacidosis. CONCLUSIONS/INTERPRETATION: FABP4 is suggested to be a necessary regulator of ketogenesis in insulin-deficient states.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Diabetic Ketoacidosis/metabolism , Fatty Acid-Binding Proteins/physiology , Animals , Blood Glucose/metabolism , Child , Diabetes Mellitus, Experimental , Female , Glycated Hemoglobin/metabolism , Humans , Insulin/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL