Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
BMC Plant Biol ; 24(1): 831, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39232677

ABSTRACT

BACKGROUND: Phenylalanine ammonia-lyase (PAL) serves as a key gateway enzyme, bridging primary metabolism and the phenylpropanoid pathway, and thus playing an indispensable role in flavonoid, anthocyanin and lignin biosynthesis. PAL gene families have been extensively studied across species using public genomes. However, a comprehensive exploration of PAL genes in Epimedium species, especially those involved in prenylated flavonol glycoside, anthocyanin, or lignin biosynthesis, is still lacking. Moreover, an in-depth investigation into PAL gene family evolution is warranted. RESULTS: Seven PAL genes (EpPAL1-EpPAL7) were identified. EpPAL2 and EpPAL3 exhibit low sequence identity to other EpPALs (ranging from 61.09 to 64.38%) and contain two unique introns, indicating distinct evolutionary origins. They evolve at a rate ~ 10 to ~ 54 times slower compared to EpPAL1 and EpPAL4-7, suggesting strong purifying selection. EpPAL1 evolved independently and is another ancestral gene. EpPAL1 formed EpPAL4 through segmental duplication, which lead to EpPAL5 and EpPAL6 through tandem duplications, and EpPAL7 through transposed duplication, shaping modern EpPALs. Correlation analysis suggests EpPAL1, EpPAL2 and EpPAL3 play important roles in prenylated flavonol glycosides biosynthesis, with EpPAL2 and EpPAL3 strongly correlated with both Epimedin C and total prenylated flavonol glycosides. EpPAL1, EpPAL2 and EpPAL3 may play a role in anthocyanin biosynthesis in leaves. EpPAL2, EpPAL3, EpPAL6, and EpPAL7 might be engaged in anthocyanin production in petals, and EpPAL2 and EpPAL3 might also contribute to anthocyanin synthesis in sepals. Further experiments are needed to confirm these hypotheses. Novel insights into the evolution of PAL gene family suggest that it might have evolved from a monophyletic group in bryophytes to large-scale sequence differentiation in gymnosperms, basal angiosperms, and Magnoliidae. Ancestral gene duplications and vertical inheritance from gymnosperms to angiosperms likely occurred during PAL evolution. Most early-diverging eudicotyledons and monocotyledons have distinct histories, while modern angiosperm PAL gene families share similar patterns and lack distant gene types. CONCLUSIONS: EpPAL2 and EpPAL3 may play crucial roles in biosynthesis of prenylated flavonol glycosides and anthocyanins in leaves and flowers. This study provides novel insights into PAL gene family evolution. The findings on PAL genes in E. pubescens will aid in synthetic biology research on prenylated flavonol glycosides production.


Subject(s)
Epimedium , Evolution, Molecular , Multigene Family , Phenylalanine Ammonia-Lyase , Phylogeny , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Epimedium/genetics , Epimedium/enzymology , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Genes, Plant , Gene Expression Regulation, Plant
2.
Int J Mol Sci ; 23(24)2022 Dec 16.
Article in English | MEDLINE | ID: mdl-36555695

ABSTRACT

Prenylated flavonol glycosides in Epimedium plants, as key medicinal components, are known to have great pharmaceutical activities for human health. Among the main prenylated flavonol glycosides, the modification mechanism of different sugar moieties is still not well understood. In the current study, a novel prenylated flavonol rhamnoside xylosyltransferase gene (EpF3R2″XylT) was cloned from E. pubescens, and the enzymatic activity of its decoding proteins was examined in vitro with different prenylated flavonol rhamnoside substrates and different 3-O-monosaccharide moieties. Furthermore, the functional and structural domains of EpF3R2″XylT were analyzed by bioinformatic approaches and 3-D protein structure remodeling. In summary, EpF3R2″XylT was shown to cluster with GGT (glycosyltransferase that glycosylates sugar moieties of glycosides) through phylogenetic analysis. In enzymatic analysis, EpF3R2″XylT was proven to transfer xylose moiety from UDP-xylose to prenylated flavonol rhamnoside at the 2″-OH position of rhamnose. The analysis of enzymatic kinetics showed that EpF3R2″XylT had the highest substrate affinity toward icariin with the lowest Km value of 75.96 ± 11.91 mM. Transient expression of EpF3R2″XylT in tobacco leaf showed functional production of EpF3R2″XylT proteins in planta. EpF3R2″XylT was preferably expressed in the leaves of E. pubescens, which is consistent with the accumulation levels of major prenylflavonol 3-O-triglycoside. The discovery of EpF3R2″XylT will provide an economical and efficient alternative way to produce prenylated flavonol trisaccharides through the biosynthetic approach.


Subject(s)
Epimedium , Glycosides , Flavonoids , Flavonols/chemistry , Glycosides/chemistry , Phylogeny , Sugars , Xylose , UDP Xylose-Protein Xylosyltransferase
3.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6020-6026, 2022 Nov.
Article in Zh | MEDLINE | ID: mdl-36471925

ABSTRACT

Epimedii Folium is a well-known Chinese herbal medicine with the effect of nourishing kidney and strengthening Yang. Its main active ingredients are flavonoids. In this study, 60 samples of Epimedium sagittatum were collected for the determination of total flavonoids(TF) including the total amount of epimedin A, epimedin B, epimedin C, and icariin(abbreviated as ABCI) specified in the Chinese Pharmacopoeia as well as rhamnosylicariside Ⅱ and icariside Ⅱ. The calibration parameters of "first derivativemultiva-riate scattering correction in 1 900-650 cm~(-1) band(4-point smoothing)" and "first derivativestandard normal variable correction in 4 000-650 cm~(-1) full band(4-point smoothing)" were confirmed respectively. The quantitative model was established via Fourier infrared spectroscopy plus attenuated total reflection(FTIR-ATR) accessory combined with partial least squares(PLS) method and then used to predict the flavonoid content of 11 validation sets. The average prediction accuracy for ABCI in calibration set and validation set was 98.985% and 96.087%, respectively. The average prediction accuracy for TF in calibration set and validation set was 98.998% and 94.771%, respectively. These results indicated that FTIR-ATR combined with PLS model could be used for rapid prediction of flavonoid content in E. sagittatum, with the prediction accuracy above 94.7%. The establishment of this method provides a new solution for the detection of a large number of E. sagittatum samples.


Subject(s)
Epimedium , Epimedium/chemistry , Flavonoids/chemistry , Plant Leaves , Least-Squares Analysis , Spectrophotometry, Infrared
4.
Zhongguo Zhong Yao Za Zhi ; 47(13): 3447-3451, 2022 Jul.
Article in Zh | MEDLINE | ID: mdl-35850795

ABSTRACT

In this study, 10 PA-type Perilla germplasms were selected to detect the content of two phenolic acids, i.e., rosmarinic acid(RA) and caffeic acid(CA), and six flavonoids, including scutellarin-7-O-diglucuronoside(SDG), luteolin-7-O-diglucuronoside(LDG), apigenin-7-O-diglucuronoside(ADG), scutellarin-7-O-glucuroside(SG), luteolin-7-O-glucuroside(LG), and apigenin-7-O-glucuroside(AG) in leaves, stems, and fruits. The total content of phenolic acids and flavonoids in leaves was 3.991-12.028 mg·g~(-1) and 12.309-25.071 mg·g~(-1), respectively, which was much higher than that in stems(0.586-2.015 mg·g~(-1) and 0.879-1.413 mg·g~(-1), respectively) and fruits(0.004-2.222 mg·g~(-1) and 0.651-1.936 mg·g~(-1), respectively). RA was detected in five fruit samples, and RA content between leaves and fruits showed a significant negative correlation in the other five samples. For flavonoids, only LG and LDG could be detected in stems, and SG and SDG were not detected in fruits, while other flavonoids were not detected in some samples. The content of total flavonoids and LG in leaves and fruits was significantly positively correlated, and the content of LG in stems and fruits was significantly positively correlated. In 10 stem samples, seven met the standard that the content of RA in the stem should be not less than 0.1% specified in the Chinese Pharmacopoeia(2020 edition). Only one fruit sample reached the standard of RA content in the fruit not less than 0.25% specified in the Chinese Pharmacopoeia.


Subject(s)
Flavonoids , Perilla , Apigenin , Luteolin , Phenols , Plant Extracts , Plant Leaves
5.
Planta ; 252(4): 68, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32990805

ABSTRACT

MAIN CONCLUSION: GbMYBR1, a new type of R2R3-MYB repressor from Ginkgo biloba, displayed pleiotropic effects on plant growth, phenylpropanoid accumulation, by regulating multiple related genes at different levels. Ginkgo biloba is a typical gymnosperm that has been thriving on earth for millions of years. MYB transcription factors (TFs) play important roles in diverse processes in plants. However, the role of MYBs remains largely unknown in Ginkgo. Here, an MYB TF gene from Ginkgo, designated as GbMYBR1, was found to act as a repressor in multiple processes. GbMYBR1 was mainly expressed in the leaves of Ginkgo. Over-expression of GbMYBR1 in Arabidopsis thaliana led to growth retardation, decreases in lignin content, reduced trichome density, and remarkable reduction in anthocyanin and flavonol contents in leaves. Proanthocyanidin content was decreased in the seeds of transgenic Arabidopsis, which led to light-brown seed color. Both qPCR and transcriptome sequencing analyses demonstrated that the transcript levels of multiple genes related to phenylpropanoid biosynthesis, trichome formation, and pathogen resistance were down-regulated in the transgenic Arabidopsis. In particular, we found that GbMYBR1 directly interacts with the bHLH cofactor GL3 as revealed by yeast two-hybrid assays. Our work indicated that GbMYBR1 has pleiotropic effects on plant growth, phenylpropanoid accumulation, and trichome development, mediated by interaction with GL3 or direct suppression of key pathway genes. Thus, GbMYBR1 represents a novel type of R2R3 MYB repressor.


Subject(s)
Arabidopsis , Ginkgo biloba , Plant Proteins , Trichomes , Anthocyanins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Gene Expression Regulation, Plant/genetics , Ginkgo biloba/genetics , Phenylpropionates/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Trichomes/genetics , Trichomes/growth & development
6.
Zhongguo Zhong Yao Za Zhi ; 45(11): 2502-2508, 2020 Jun.
Article in Zh | MEDLINE | ID: mdl-32627481

ABSTRACT

In this study, the growth index including plant height, compound leaf area, specific leaf area, leaf water content, number of branches, and leaf biomass per plant and the icariin flavonoids such as epimedin A, epimedin B, epimedin C and icariin of Epimedium pseudowushanense were determined on 30 d and 60 d under light intensity(18.2±2.5) µmol·m~(-2)·s~(-1)(L1) and(90.9 ±2.5) µmol·m~(-2)·s~(-1)(L2), and white light as control, red light, blue light and yellow light were used as three light quality treatments, to study the effect of light quality on the growth and flavonoids accumulation of E. pseudowushanense. The E. pseudowushanense was sui-table for growth under L1 light intensity, the blue light treatment significantly reduced the leaf area, but had little effect on the stem height, the red light treatment and the yellow light treatment had no obvious effect on the stem height and leaf area, but the yellow light treatment significantly increased the germination of new branches, and had a sustained promoting effect, and the biomass was significantly higher than the white light treatment at 60 d. The content of icariin flavonoids in red light, blue light and yellow light treatment was higher than that in white light treatment at 30 d and 60 d under L1 light intensity, while yellow light treatment promoted the synthesis of icariin flavonoids to the largest extent, which was 1.8 and 1.9 times of white light treatment(30 d and 60 d).Under L2 light intensity, the effect of strong light on promoting stem germination became the main factor, while the yellow light treatment showed no significant effect on promoting stem germination, and the red light treatment exhibited a significant effect on reducing leaf area. Icariin flavonoids under red light, blue light and yellow light treatment were all lower than that under white light treatment, that is, the effect of white light treatment on the synthesis of icariin flavonoids is better than red light, blue light and yellow light treatment. When the time of strong light treatment was longer, the degradation range of icariin flavonoids in other light treatment appeared, while red light treatment promotes the synthesis of icariin flavonoids. Therefore, the influence of light quality on E. pseudowushanense is quite different under different light intensity, no matter from growth index or flavonoid content index. The results support that the biomass and icariin flavonoid content can be increased by providing appropriate red and yellow light.


Subject(s)
Drugs, Chinese Herbal , Epimedium , Flavonoids , Plant Leaves
7.
Plant Cell Physiol ; 59(1): 128-141, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29140457

ABSTRACT

Prenylated isoflavonoids have been found in several legume plants, and they possess various biological activities that play important roles in both plant defense and human health. However, it is still unknown whether prenylated isoflavonoids are present in the model legume plant Lotus japonicus. In the present study, we found that the prenylated isoflavonoid wighteone was produced in L. japonicus when leaf was supplemented with genistein. Furthermore, a novel prenyltransferase gene, LjG6DT, was identified, which shared high similarity with and was closely related to several known prenyltransferase genes involved in isoflavonoid biosynthesis. The recombinant LjG6DT protein expressed in yeast exhibited prenylation activity toward genistein as an exclusive substrate, which produced wighteone, a prenylated genistein at the C-6 position that occurs normally in legume plants. The LjG6DT-green fluorescent protein (GFP) fusion protein is targeted to plastids. The transcript level of LjG6DT is induced by glutathione, methyl jasmonate and salicylic acid, implying that LjG6DT is involved in stress response. Overexpression of LjG6DT in L. japonicus hairy roots led to increased accumulation of wighteone when genistein was supplied, indicating that LjG6DT is functional in vivo. Feeding assays with the upstream intermediate naringenin revealed that accumulation of wighteone in L. japonicus was dependent on genistein supplementation, and accumulation of wighteone is competed by genistein methylation. This study demonstrated that phytoalexin wighteone is inducibly produced in L. japonicus, and it provides new insight into the biosynthesis and accumulation of prenylated isoflavonoids in legume plants.


Subject(s)
Dimethylallyltranstransferase/genetics , Gene Expression Regulation, Plant/drug effects , Genistein/pharmacology , Isoflavones/biosynthesis , Lotus/genetics , Plant Proteins/genetics , Dimethylallyltranstransferase/metabolism , Flavonoids/biosynthesis , Glutathione/pharmacology , Lotus/metabolism , Phytoestrogens/pharmacology , Plant Growth Regulators/pharmacology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Plastids/genetics , Plastids/metabolism , Sesquiterpenes/metabolism , Phytoalexins
8.
Plant Cell Physiol ; 58(9): 1558-1572, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28633497

ABSTRACT

Flavonoids, natural products abundant in the model legume Glycine max, confer benefits to plants and to animal health. Flavonoids are present in soybean mainly as glycoconjugates. However, the mechanisms of biosynthesis of flavonoid glycosides are largely unknown in G. max. In the present study, 212 putative UDP-glycosyltransferase (UGT) genes were identified in G. max by genome-wide searching. The GmUGT genes were distributed differentially among the 20 chromosomes, and they were expressed in various tissues with distinct expression profiles. We further analyzed the enzymatic activities of 11 GmUGTs that are potentially involved in flavonoid glycosylation, and found that six of them (UGT72X4, UGT72Z3, UGT73C20, UGT88A13, UGT88E19 and UGT92G4) exhibited activity toward flavonol, isoflavone, flavone and flavanol aglycones with different kinetic properties. Among them, UGT72X4, UGT72Z3 and UGT92G4 are flavonol-specific UGTs, and UGT73C20 and UGT88E19 exhibited activity toward both flavonol and isoflavone aglycones. In particular, UGT88A13 exhibited activity toward epicatechin, but not for the flavonol aglycones kaempferol and quercetin. Overexpression of these six GmUGT genes significantly increased the contents of isoflavone and flavonol glucosides in soybean hairy roots. In addition, overexpression of these six GmUGT genes also affected flavonol glycoside contents differently in seedlings and seeds of transgenic Arabidopsis thaliana. We provide valuable information on the identification of all UGT genes in soybean, and candidate GmUGT genes for potential metabolic engineering of flavonoid compounds in both Escherichia coli and plants.


Subject(s)
Biosynthetic Pathways/genetics , Flavonols/biosynthesis , Genome, Plant , Glucosyltransferases/genetics , Glycine max/enzymology , Glycine max/genetics , Amino Acid Sequence , Arabidopsis/genetics , Cluster Analysis , Gene Expression Regulation, Plant , Genes, Plant , Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Kinetics , Molecular Docking Simulation , Plant Roots/metabolism , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Proteins/metabolism , Sequence Analysis, Protein , Substrate Specificity
9.
J Exp Bot ; 68(3): 597-612, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28204516

ABSTRACT

Flavonols are one of the largest groups of flavonoids that confer benefits for the health of plants and animals. Flavonol glycosides are the predominant flavonoids present in the model legume Lotus japonicus. The molecular mechanisms underlying the biosynthesis of flavonol glycosides as yet remain unknown in L. japonicus. In the present study, we identified a total of 188 UDP-glycosyltransferases (UGTs) in L. japonicus by genome-wide searching. Notably, 12 UGTs from the UGT72 family were distributed widely among L. japonicus chromosomes, expressed in all tissues, and showed different docking scores in an in silico bioinformatics docking analysis. Further enzymatic assays showed that five recombinant UGTs (UGT72AD1, UGT72AF1, UGT72AH1, UGT72V3, and UGT72Z2) exhibit activity toward flavonol, flavone, and isoflavone aglycones. In particular, UGT72AD1, UGT72AH1, and UGT72Z2 are flavonol-specific UGTs with different kinetic properties. In addition, the overexpression of UGT72AD1 and UGT72Z2 led to increased accumulation of flavonol rhamnosides in L. japonicus and Arabidopsis thaliana. Moreover, the increase of kaempferol 3-O-rhamnoside-7-O-rhamnoside in transgenic A. thaliana inhibited root growth as compared with the wild-type control. These results highlight the significance of the UGT72 family in flavonol glycosylation and the role of flavonol rhamnosides in plant growth.


Subject(s)
Glucosyltransferases/genetics , Lotus/genetics , Plant Proteins/genetics , Arabidopsis/genetics , Flavonols/biosynthesis , Glucosides/biosynthesis , Glucosyltransferases/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Lotus/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics
10.
Plant Physiol ; 169(3): 1607-18, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26077765

ABSTRACT

The medicinal plant Salvia miltiorrhiza produces various tanshinone diterpenoids that have pharmacological activities such as vasorelaxation against ischemia reperfusion injury and antiarrhythmic effects. Their biosynthesis is initiated from the general diterpenoid precursor (E,E,E)-geranylgeranyl diphosphate by sequential reactions catalyzed by copalyl diphosphate synthase (CPS) and kaurene synthase-like cyclases. Here, we report characterization of these enzymatic families from S. miltiorrhiza, which has led to the identification of unique pathways, including roles for separate CPSs in tanshinone production in roots versus aerial tissues (SmCPS1 and SmCPS2, respectively) as well as the unique production of ent-13-epi-manoyl oxide by SmCPS4 and S. miltiorrhiza kaurene synthase-like2 in floral sepals. The conserved SmCPS5 is involved in gibberellin plant hormone biosynthesis. Down-regulation of SmCPS1 by RNA interference resulted in substantial reduction of tanshinones, and metabolomics analysis revealed 21 potential intermediates, indicating a complex network for tanshinone metabolism defined by certain key biosynthetic steps. Notably, the correlation between conservation pattern and stereochemical product outcome of the CPSs observed here suggests a degree of correlation that, especially when combined with the identity of certain key residues, may be predictive. Accordingly, this study provides molecular insights into the evolutionary diversification of functional diterpenoids in plants.


Subject(s)
Diterpenes/metabolism , Gene Expression Regulation, Plant/physiology , Salvia miltiorrhiza/metabolism , Diterpenes/chemistry , Molecular Structure , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , RNA Interference , Recombinant Proteins , Salvia miltiorrhiza/genetics , Transcriptome
11.
Radiol Case Rep ; 19(2): 825-830, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38111550

ABSTRACT

This study presents a rare case of an older woman with an intracranial mesenchymal tumor in the right frontal and parietal lobes. Despite prompt surgical intervention, her condition rapidly deteriorated because of tumor dissemination, leading to her demise. We highlight the tumor's marked invasiveness and heterogeneity, coupled with a propensity for distant systemic metastasis, which negatively impacted the patient's prognosis. This particular clinical behavior had not been previously reported, making this a novel observation. Thus, through a comprehensive review of relevant literature, we aim to provide valuable insights for further understanding, diagnosing, and treating such tumors.

12.
Planta ; 238(1): 139-54, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23592226

ABSTRACT

In the first reaction specific for proanthocyanidin (PA) biosynthesis in Arabidopsis thaliana and Medicago truncatula, anthocyanidin reductase (ANR) converts cyanidin to (-)-epicatechin. The glucosyltransferase UGT72L1 catalyzes formation of epicatechin 3'-O-glucoside (E3'OG), the preferred substrate for MATE transporters implicated in PA biosynthesis in both species. The mechanism of PA polymerization is still unclear, but may involve the laccase-like polyphenol oxidase TRANSPARENT TESTA 10 (TT10). We have employed a combination of cell biological, biochemical and genetic approaches to evaluate this PA pathway model. The promoter regions of UGT72L1 and MtANR share common cis-acting elements and direct overlapping, but partially distinct, expression patterns. UGT72L1 and MtANR are localized in the cytosol, whereas TT10 is localized to the vacuole. Over-expression of UGT72L1 in M. truncatula hairy roots results in increased accumulation of PA-like compounds, and loss of function of UGT72L1 partially reduces epicatechin, E3'OG and extractable PA levels in M. truncatula seeds. Expression of UGT72L1 in A. thaliana leads to a massive increase in E3'OG in immature seed, but reduced levels of extractable PAs. However, when UGT72L1 was expressed in the Arabidopsis tt10 mutant, extractable PA levels increased and seed coat browning was delayed. Our results suggest that glycosylation of epicatechin is important for both PA precursor transport and assembly, but that additional redundant pathways may exist.


Subject(s)
Glucosyltransferases/metabolism , Medicago truncatula/metabolism , Proanthocyanidins/biosynthesis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Catechin/metabolism , Cytosol/metabolism , Gene Expression Regulation, Plant , Glucosyltransferases/genetics , Laccase/genetics , Laccase/metabolism , Medicago truncatula/enzymology , Medicago truncatula/genetics , Mutation , NADH, NADPH Oxidoreductases/genetics , NADH, NADPH Oxidoreductases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified , Proanthocyanidins/genetics , Promoter Regions, Genetic , Seeds/genetics , Seeds/metabolism
13.
Plant Physiol ; 159(1): 70-80, 2012 May.
Article in English | MEDLINE | ID: mdl-22430842

ABSTRACT

Prenylated flavonoids and isoflavonoids possess antimicrobial activity against fungal pathogens of plants. However, only a few plant flavonoid and isoflavonoid prenyltransferase genes have been identified to date. In this study, an isoflavonoid prenyltransferase gene, designated as LaPT1, was identified from white lupin (Lupinus albus). The deduced protein sequence of LaPT1 shared high homologies with known flavonoid and isoflavonoid prenyltransferases. The LaPT1 gene was mainly expressed in roots, a major site for constitutive accumulation of prenylated isoflavones in white lupin. LaPT1 is predicted to be a membrane-bound protein with nine transmembrane regions and conserved functional domains similar to other flavonoid and isoflavonoid prenyltransferases; it has a predicted chloroplast transit peptide and is plastid localized. A microsomal fraction containing recombinant LaPT1 prenylated the isoflavone genistein at the B-ring 3' position to produce isowighteone. The enzyme is also active with 2'-hydroxygenistein but has no activity with other flavonoid substrates. The apparent K(m) of recombinant LaPT1 for the dimethylallyl diphosphate prenyl donor is in a similar range to that of other flavonoid prenyltransferases, but the apparent catalytic efficiency with genistein is considerably higher. Removal of the transit peptide increased the apparent overall activity but also increased the K(m). Medicago truncatula hairy roots expressing LaPT1 accumulated isowighteone, a compound that is not naturally produced in this species, indicating a strategy for metabolic engineering of novel antimicrobial compounds in legumes.


Subject(s)
Dimethylallyltranstransferase/metabolism , Lupinus/enzymology , Membrane Proteins/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Cloning, Molecular , Conserved Sequence , DNA, Complementary/genetics , DNA, Complementary/metabolism , Dimethylallyltranstransferase/genetics , Enzyme Activation , Gene Expression Profiling , Genes, Plant , Genistein/isolation & purification , Genistein/metabolism , Lupinus/genetics , Medicago truncatula/enzymology , Medicago truncatula/genetics , Membrane Proteins/genetics , Metabolic Engineering , Molecular Sequence Data , Phylogeny , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/metabolism , Plants, Genetically Modified/enzymology , Plants, Genetically Modified/genetics , Plastids/enzymology , Plastids/genetics , Prenylation , Protein Structure, Tertiary , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid
14.
Front Plant Sci ; 14: 1183481, 2023.
Article in English | MEDLINE | ID: mdl-37377796

ABSTRACT

Herba Epimedii (Epimedium) leaves are rich in prenylated flavonol glycosides (PFGs) with high medicinal value. However, the dynamics and regulatory network of PFG biosynthesis remain largely unclear. Here, we combined metabolite profiling (targeted to PFGs) and a high-temporal-resolution transcriptome to elucidate PFGs' regulatory network in Epimedium pubescens and identified key candidate structural genes and transcription factors (TFs) involved in PFG accumulation. Chemical profile analysis revealed that PFG content was quite different between buds and leaves and displayed a continuous decline with leaf development. The structural genes are the determinant reasons, and they are strictly regulated by TFs under temporal cues. We further constructed seven time-ordered gene co-expression networks (TO-GCNs) of PFG biosynthesis genes (including EpPAL2, EpC4H, EpCHS2, EpCHI2, EpF3H, EpFLS3, and EpPT8), and three flavonol biosynthesis routines were then predicted. The TFs involved in TO-GCNs were further confirmed by WGCNA analysis. Fourteen hub genes, comprising 5 MYBs, 1 bHLH, 1 WD40, 2 bZIPs, 1 BES1, 1 C2H2, 1 Trihelix, 1 HD-ZIP, and 1 GATA were identified as candidate key TFs. The results were further validated by TF binding site (TFBS) analysis and qRT-PCR. Overall, these findings provide valuable information for understanding the molecular regulatory mechanism of PFGs biosynthesis, enriching the gene resources, which will guide further research on PFG accumulation in Epimedium.

15.
Nat Plants ; 9(1): 179-190, 2023 01.
Article in English | MEDLINE | ID: mdl-36522449

ABSTRACT

Monoterpenoid indole alkaloids (MIAs) are among the most diverse specialized metabolites in plants and are of great pharmaceutical importance. We leveraged single-cell transcriptomics to explore the spatial organization of MIA metabolism in Catharanthus roseus leaves, and the transcripts of 20 MIA genes were first localized, updating the model of MIA biosynthesis. The MIA pathway was partitioned into three cell types, consistent with the results from RNA in situ hybridization experiments. Several candidate transporters were predicted to be essential players shuttling MIA intermediates between inter- and intracellular compartments, supplying potential targets to increase the overall yields of desirable MIAs in native plants or heterologous hosts through metabolic engineering and synthetic biology. This work provides not only a universal roadmap for elucidating the spatiotemporal distribution of biological processes at single-cell resolution, but also abundant cellular and genetic resources for further investigation of the higher-order organization of MIA biosynthesis, transport and storage.


Subject(s)
Secologanin Tryptamine Alkaloids , Secologanin Tryptamine Alkaloids/metabolism , Sequence Analysis, RNA , Gene Expression Regulation, Plant
16.
J Gen Virol ; 93(Pt 2): 408-418, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22049092

ABSTRACT

The proposed phylogenetic structure of the genus Tobamovirus supports the idea that these viruses have codiverged with their hosts since radiation of the hosts from a common ancestor. The determinations of genome sequence for two strains of Passion fruit mosaic virus (PafMV), a tobamovirus from plants of the family Passifloraceae (order Malpighiales) from which only one other tobamovirus (Maracuja mosaic virus; MarMV) has been characterized, combined with the development of Bayesian analysis methods for phylogenetic inference, provided an opportunity to reassess the co-divergence hypothesis. The sequence of one PafMV strain, PfaMV-TGP, was discovered during a survey of plants of the Tallgrass Prairie Preserve for their virus content. Its nucleotides are only 73 % identical to those of MarMV. A conserved ORF not found in other tobamovirus genomes, and encoding a cysteine-rich protein, was found in MarMV and both PafMV strains. Phylogenetic tree construction, using an alignment of the nucleotide sequences of PafMV-TGP and other tobamoviruses resulted in a major clade containing isolates exclusively from rosid plants. Asterid-derived viruses were exclusively found in a second major clade that also contained an orchid-derived tobamovirus and tobamoviruses infecting plants of the order Brassicales. With a few exceptions, calibrating the virus tree with dates of host divergence at two points resulted in predictions of divergence times of family specific tobamovirus clades that were consistent with the times of divergence of the host plant orders.


Subject(s)
Biological Evolution , Phylogeny , Plants/virology , Tobamovirus/genetics , Tobamovirus/isolation & purification , Cluster Analysis , Conserved Sequence , Genome, Viral , Genotype , Molecular Sequence Data , Open Reading Frames , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
17.
Mitochondrial DNA B Resour ; 7(3): 485-487, 2022.
Article in English | MEDLINE | ID: mdl-35311206

ABSTRACT

Epimedium L. is an important medicinal herbaceous genus that belongs to the family Berberidaceae. Epimedium campanulatum Ogisu is a plant species only inhabited in the northwestern part of Sichuan province, China. Here, we reported the complete chloroplast genome sequence, assembly, and characterization of E. campanulatum. The chloroplast genome of E. campanulatum was 157,343 bp in length, and a total of 112 unique genes were identified. Phylogenetic results revealed that E. campanulatum formed a sister relationship with the cluster of Epimedium ecalcaratum, Epimedium davidii, and Epimedium chlorandrum. Our findings provided valuable data for future taxonomic and phylogenetic research within the genus Epimedium.

18.
Mitochondrial DNA B Resour ; 7(6): 1069-1071, 2022.
Article in English | MEDLINE | ID: mdl-35783043

ABSTRACT

Epimedium L. is an important genus in the family Berberidaceae. Epimedium trifoliolatobinatum (Koidz.) Koidz. 1939 is inhabited on the west side of the Shikoku, Japan. In this study, the first complete chloroplast genome of E. trifoliolatobinatum was assembled with Illumina paired-end sequencing data, which was 157,272 bp in length with a total GC content of 38.70%. A total of 112 unique genes were annotated, comprising 78 protein-coding genes, 30 tRNA genes, and four rRNA genes. The phylogenetic analysis suggested that E. trifoliolatobinatum was sister to E. koreanum. The current results provided fundamental information for further conducting molecular systematics and phylogenetic research of Epimedium genus.

19.
Synth Syst Biotechnol ; 7(4): 1095-1107, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35990929

ABSTRACT

Epimedium pubescens Maxim. is a well-known traditional Chinese medicinal herb with flavonol glycosides as the major pharmaceutically active compounds. UDP-glycosyltransferases (UGTs) are a group of enzymes responsible for the glycosylation of flavonoid glycosides. In this study, a genome-wide analysis was performed to identify UGT family genes in E. pubescens. As a result, a total of 339 putative UGT genes were identified, which represents the largest UGT gene family known thus far, implying a significant expansion of the UGT gene family in E. pubescens. All EpUGTs were unevenly distributed across six chromosomes, and they were classified into 17 major groups. The expression profiles showed that UGT genes were differentially expressed in roots, leaves, flowers, shoots and fruits. In particular, several EpUGTs were highly induced by high light intensity, which was consistent with the accumulation level of bioactive flavonoids in E. pubescens. Six UGT79 genes that were preferentially expressed in roots or leaves were successfully expressed in E. coli, and only the recombinant EpGT60 protein was found to be active toward 8-prenylkaempferol and icaritin to produce the key bioactive compounds baohuoside II and baohuoside I. The optimal temperature, pH, k m and V max were determined for the recombinant EpGT60 protein. In addition, expression of recombinant EpGT60 in E. coli cell culture led to successful production of baohuoside II when fed 8-prenylkaempferol. Our study provides a foundation for further functional characterization of UGT genes in E. pubescens and provides key candidate genes for bioengineering bioactive flavonoids in E. pubescens.

20.
Front Plant Sci ; 13: 1034943, 2022.
Article in English | MEDLINE | ID: mdl-36452098

ABSTRACT

Epimedium pubescens is a species of the family Berberidaceae in the basal eudicot lineage, and a main plant source for the traditional Chinese medicine "Herba Epimedii". The current study achieved a chromosome-level genome assembly of E. pubescens with the genome size of 3.34 Gb, and the genome guided discovery of a key prenyltransferase (PT) in E. pubescens. Our comparative genomic analyses confirmed the absence of Whole Genome Triplication (WGT-γ) event shared in core eudicots and further revealed the occurrence of an ancient Whole Genome Duplication (WGD) event approximately between 66 and 81 Million Years Ago (MYA). In addition, whole genome search approach was successfully applied to identify 19 potential flavonoid PT genes and an important flavonoid PT (EpPT8) was proven to be an enzyme for the biosynthesis of medicinal compounds, icaritin and its derivatives in E. pubescens. Therefore, our results not only provide a good reference genome to conduct further molecular biological studies in Epimedium genus, but also give important clues for synthetic biology and industrial production of related prenylated flavonoids in future.

SELECTION OF CITATIONS
SEARCH DETAIL