Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; 19(31): e2207868, 2023 08.
Article in English | MEDLINE | ID: mdl-36965080

ABSTRACT

Antibacterial photodynamic therapy (aPDT) is a promising antibiotics-alternative strategy for bacterial infectious diseases, which features broad-spectrum antibacterial activity with a low risk of inducing bacterial resistance. However, clinical applications of aPDT are still hindered by the hydrophobicity-caused inadequate photodynamic activity of conventional photosensitizers and the hypoxic microenvironment of bacterial infections. To address these problems, herein, a promising strategy is developed to achieve specific chemiluminescence (CL) imaging and enhanced PDT of bacterial infections using hemin-modified carbon dots (H-CDs). The H-CDs can be facilely prepared and exhibit favorable water solubility, augmented photodynamic activity, and unique peroxidase-mimicking capacity. Compared with the free CDs, the photodynamic efficacy of H-CDs is significantly augmented due to the increased electron-hole separation efficiency. Moreover, the peroxidase catalytic performance of H-CDs enables not only infection identification via bacterial infection microenvironment-responsive CL imaging but also oxygen self-supplied aPDT with hypoxia-relief-enhanced bacteria inactivation effects. Finally, the enhanced aPDT efficiencies of H-CDs are validated in both in vivo abscess and infected wound models. This work may provide an effective antibacterial platform for the selective imaging-guided treatment of bacterial infections.


Subject(s)
Bacterial Infections , Photochemotherapy , Humans , Photochemotherapy/methods , Carbon , Hemin , Luminescence , Bacterial Infections/drug therapy , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
2.
Adv Healthc Mater ; 13(7): e2302481, 2024 03.
Article in English | MEDLINE | ID: mdl-38242099

ABSTRACT

Antibacterial photodynamic therapy (APDT) has emerged as one of the intriguing strategies to combat bacterial resistance. However, the antibacterial efficacy of APDT is found to be severely impacted by the hydrogen sulfide (H2 S)-overproduced bacterial infection microenvironment. Herein, a multifunctional APDT platform is developed by assembling Cu2+ and chlorin e6 (Ce6), which exhibits unique H2 S-activatable fluorescence (FL) and antibacterial features. Noteworthily, the assembly conditions are crucial for achievement of Cu-Ce6 nanoassemblies (NAs) with the on-demand responsive properties. The quenched FL and photosensitization of Cu-Ce6 NAs can be selectively activated by the overexpressed H2 S in infected area, enabling specific recognition of bacterial infection and localized antibacterial therapy with minimized side effects. Significantly, amplified oxidative stress is achieved owning to the effective consumption of H2 S by Cu2+ in the NAs, leading to an enhanced APDT. The antibacterial mechanisms including broad-spectrum APDT activity of released Ce6, inherent sterilization effects of produced copper polysulfides and the accompanying disturbance of bacterial sulphide metabolism are further identified. This study may pave a new avenue for the rational design of intelligent APDT platform using minimalist biological building units and thus facilitating the clinical translation of nano-antibacterial agents.


Subject(s)
Bacterial Infections , Chlorophyllides , Photochemotherapy , Porphyrins , Humans , Copper , Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Photosensitizing Agents/therapeutic use , Porphyrins/therapeutic use
3.
Front Plant Sci ; 11: 220, 2020.
Article in English | MEDLINE | ID: mdl-32194600

ABSTRACT

DNA mismatch repair (MMR) system is important for maintaining DNA replication fidelity and genome stability by repairing erroneous deletions, insertions and mis-incorporation of bases. With the aim of deciphering the role of the MMR system in genome stability and recombination in rice, we investigated the function of OsMSH6 gene, an import component of the MMR system. To achieve this goal, homeologous recombination and endogenous microsatellite stability were evaluated by using rice mutants carrying a Tos17 insertion into the OsMSH6 gene. Totally 60 microsatellites were analyzed and 15 distributed on chromosome 3, 6, 8, and 10 showed instability in three OsMSH6 mutants, D6011, NF7784 and NF9010, compared with the wild type MSH6WT (the control). The disruption of OsMSH6 gene is associated with modest increases in homeologous recombination, ranging from 2.0% to 32.5% on chromosome 1, 3, 9, and 10 in the BCF2 populations of the mutant ND6011 and NF9010. Our results suggest that the OsMSH6 plays an important role in ensuring genome stability and genetic recombination, providing the first evidence for the MSH6 gene in maintaining microsatellite stability and restricting homeologous recombination in plants.

SELECTION OF CITATIONS
SEARCH DETAIL