Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
J Virol ; : e0049724, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39345142

ABSTRACT

Duck circovirus (DuCV) is widely recognized as a prominent virus in China's duck farming industry, known for its ability to cause persistent infections and significant immunosuppression, which can lead to an increased susceptibility to secondary infections, posing a significant threat to the duck industry. Moreover, clinical evidence also indicates the potential vertical transmission of the virus through duck embryos to subsequent generations of ducklings. However, the limited availability of suitable cell lines for in vitro cultivation of DuCV has hindered further investigation into the molecular mechanisms underlying its infection and pathogenicity. In this study, we observed that oral DuCV infection in female breeding ducks can lead to oviduct, ovarian, and follicular infections. Subsequently, the infection can be transmitted to the fertilized eggs, resulting in the emergence of virus-carrying ducklings upon hatching. In contrast, the reproductive organs of male breeding ducks were unaffected by the virus, thus confirming that vertical transmission of DuCV primarily occurs through infection in female breeding ducks. By analyzing transcriptome sequencing data from the oviduct, we focused on claudin-2, a gene encoding the tight junction protein CLDN2 located on the cell membrane, which showed significantly increased expression in DuCV-infected oviducts of female breeding ducks. Notably, CLDN2 was confirmed to interact with the unique structural protein of DuCV, namely capsid protein (Cap), through a series of experimental approaches including co-immunoprecipitation (co-IP), GST pull-down, immunofluorescence, and adhesion-blocking assays. Furthermore, we demonstrated that the Cap protein binds to the extracellular loop structural domains EL1 and EL2 of CLDN2. Subsequently, by constructing a series of truncated bodies of the CLDN2 promoter region, we identified the transcription factor SP5 for CLDN2. Moreover, we found that DuCV infection triggers the activation of the MAPK-ERK signaling pathway in DEF cells and ducks, leading to an upregulation of SP5 and CLDN2 expression. This process ultimately leads to the transportation of mature CLDN2 to the cell surface, thereby facilitating increased virus adherence to the target organs. In conclusion, we discovered that DuCV utilizes host CLDN2 proteins to enhance adhesion and infection in oviducts and other target organs. Furthermore, we elucidated the signaling pathways involved in the interaction between DuCV Cap proteins and CLDN2, which provides valuable insights into the molecular mechanism underlying DuCV's infection and vertical transmission. IMPORTANCE: Although duck circovirus (DuCV) poses a widespread infection and a serious hazard to the duck industry, the molecular mechanisms underlying DuCV infection and transmission remain elusive. We initially demonstrated vertical transmission of DuCV through female breeding ducks by simulating natural infection. Furthermore, a differentially expressed membrane protein CLDN2 was identified on the DuCV-infected oviduct of female ducks, and its extracellular loop structural domains EL1 and EL2 were identified as the interaction sites of DuCV Cap proteins. Moreover, the binding of DuCV Cap to CLDN2 triggered the intracellular MAPK-ERK pathway and activated the downstream transcription factor SP5. Importantly, we demonstrated that intracellular Cap also interacts with SP5, leading to upregulation of CLDN2 transcription and facilitating enhanced adherence of DuCV to target tissue, thereby promoting viral infection and transmission. Our study sheds light on the molecular mechanisms underlying vertical transmission of DuCV, highlighting CLDN2 as a promising target for drug development against DuCV infection.

2.
J Sci Food Agric ; 104(7): 3992-4003, 2024 May.
Article in English | MEDLINE | ID: mdl-38323719

ABSTRACT

BACKGROUND: Resveratrol (Res) is promising food functional factor with favorable antioxidant and anti-inflammatory properties, although its poor water solubility and low bioavailability limit extensive application. Therefore, in combination with another promising polysaccharide (Mesona chinensis polysaccharides, MCP), Res-loaded food nanocarriers (ResNPs) were developed to increase its water solubility, bioactivity and targeting properties. ResNPs were then applied to alleviate dextran sulfate sodium (DSS)-induced ulcerative colitis. RESULTS: Resveratrol can be well encapsulated in MCP-based nanoparticles in an amorphous state, improving its water solubility. ResNPs showed pH-response controlled release behavior in the gastrointestinal tract and increased the enrichment of Res in the colon. In vivo experiments of ResNPs against DSS-induced ulcerative colitis (UC) revealed that ResNPs significantly improved UC symptoms, modulated intestinal inflammation and down-regulated oxidative stress levels compared to free Res. ResNPs also play an positive role with respect to inhibiting the mitogen-activated protein kinase pathway and promoting the expression of tight junction proteins. In addition, ResNPs improved the species composition and relative abundance of intestinal flora in UC mice, which effectively regulated the balance of intestinal flora and promoted the production of short-chain fatty acids. CONCLUSION: These results suggest that MCP-based nanoparticles can effectively improve the solubility of resveratrol and enhance its in vivo bioactivity. Moreover, the present study also provides a new strategy for the prevention and treatment of UC with food polyphenol. © 2024 Society of Chemical Industry.


Subject(s)
Colitis, Ulcerative , Colitis , Nanoparticles , Zein , Mice , Animals , Resveratrol/pharmacology , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Nanoparticles/chemistry , Hydrogen-Ion Concentration , Water/pharmacology , Dextran Sulfate/adverse effects , Disease Models, Animal , Mice, Inbred C57BL , Colitis/chemically induced , Colitis/drug therapy , Colon
3.
AAPS PharmSciTech ; 25(7): 226, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327374

ABSTRACT

Drug-resin complexes usually form in the aqueous phase. For poorly water-soluble drugs, low drug loading limits the use of resin in drug formulation. In this study, we used a new method to prepare azithromycin resinates, improving the drug loading rate, shortening the preparation time and simplifying the process. We used hydro-alcoholic solution as the drug loading solvent and the ion exchange resin as the carrier, and this method enabled the resin to adsorb both the retardant and the drug. The sustained release effect of retardant Eudragit RL, RS100 was analyzed. Drug loading efficiency, release profiles, morphology, physicochemical characterization and pharmacokinetic study were assessed. Preparation of drug resinate by batch method resulted in 14% higher drug loading of azithromycin and 3.5 h shorter loading time as compared to pure water for hydroalcoholic solution as drug loading solvent. Raman mappings demonstrated that the retardant with higher molecular weight was more likely to adsorb to the outer layer of the resin compared to the drug. The in vitro release and in vivo pharmacokinetic study of azithromycin resinates showed a sustained release profile with few gastrointestinal adverse effects. Therefore, the addition of ethanol not only improved the efficiency of drug loading but also showed sustained-release effect with one-pot preparation of azithromycin resinates.


Subject(s)
Azithromycin , Delayed-Action Preparations , Solubility , Azithromycin/pharmacokinetics , Azithromycin/administration & dosage , Azithromycin/chemistry , Delayed-Action Preparations/pharmacokinetics , Animals , Drug Liberation , Solvents/chemistry , Drug Carriers/chemistry , Ion Exchange , Chemistry, Pharmaceutical/methods , Male , Drug Compounding/methods , Ion Exchange Resins/chemistry , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/chemistry , Acrylic Resins/chemistry
4.
Indian J Microbiol ; 64(2): 520-528, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39010985

ABSTRACT

Inulin-type fructan (ITF) defined as a polydisperse carbohydrate consisting mainly of ß-(2-1) fructosyl-fructose links exerts potential prebiotics properties by selectively stimulating the growth of Bifidobacterium and Lactobacillus. This study reported the modulation of human gut microbiota in vitro by ITF from Codonopsis pilosula roots using 16S ribosomal RNA gene sequencing. The microbiota community structure analysis at genus levels showed that 50 mg/mL ITF significantly stimulated the growth of Prevotella and Faecalibacterium. LEfSe analysis showed that ITF at 25 and 50 mg/mL primarily increased the relative abundance of genera Parabacteroides and Alistipes (LDA Score > 4), and genera Prevotella and Faecalibacterium (LDA Score > 4) as well as Acidaminococcus, Megasphaera, Bifidobacterium and Megamonas (LDA Score > 3.5), respectively. Meanwhile, ITF at 25 and 50 mg/mL exhibited the effects of lowering pH values of samples after 24 h fermentation (p < 0.05). The results indicated that ITF likely has potential in stimulating the growth of Prevotella and Faecalibacterium as well as Bifidobacterium of human gut microbiota.

5.
Microb Pathog ; 182: 106235, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37419219

ABSTRACT

Duck circovirus (DuCV) is one of the most prevalent viruses in the duck breeding industry, and causes persistent infection and severe immunosuppression. Currently, there is a serious lack of prevention and control measures and no commercial vaccine against DuCV. Therefore, effective antiviral drugs are important for treating DuCV infection. Interferon (IFN) is an important component of antiviral innate immunity, but it remains unclear whether duck IFN-α has a clinical effect against DuCV. Antibody therapy is an important way to treat viral infections. The DuCV structural protein (cap) is immunogenic, and it remains to be determined whether an anti-cap protein antibody can effectively block DuCV infection. In this study, the duck IFN-α gene and the DuCV structural protein cap gene were cloned, expressed and purified in Escherichia coli to prepare duck recombinant IFN-α and the cap protein. Then, rabbits were immunized with the recombinant cap protein to prepare a rabbit polyclonal antibody. This study investigated the antiviral effect of duck recombinant IFN-α and the anti-cap protein antibody and their combined effect on Cherry Valley ducks infected with DuCV. The results showed that the treatment significantly alleviated the clinical symptoms of immune organ atrophy and immunosuppression compared with the control. The histopathological damage of the target organs was alleviated, and replication of DuCV in the immune organs was significantly inhibited. The treatment also reduced the damage caused by DuCV to the liver and immune function, and increased the level of the DuCV antibody in the blood, thereby improving antiviral activity. Notably, the combination of duck IFN-α and the polyclonal antibody completely blocked DuCV infection after 13 days under the experimental conditions, showing a better inhibitory effect on DuCV infection than single treatments. These results showed that duck recombinant IFN-α and the anti-cap protein antibody can be used as antiviral drugs to clinically treat and control DuCV infection, particularly the vertical transmission of the virus in breeding ducks.


Subject(s)
Circoviridae Infections , Circovirus , Poultry Diseases , Animals , Rabbits , Interferon-alpha/genetics , Circovirus/genetics , Recombinant Proteins/genetics , Escherichia coli/genetics , Circoviridae Infections/prevention & control , Circoviridae Infections/veterinary , Antiviral Agents/pharmacology , Antibodies , Poultry Diseases/drug therapy , Poultry Diseases/prevention & control
6.
J Sci Food Agric ; 103(12): 5687-5696, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37071437

ABSTRACT

BACKGROUND: Heat stress (HS) is known to exert negative effects on the poultry and breeding industry, resulting in severe economic losses. Bile acids (BAs), an important component of bile, play a crucial role in improving the production performance of livestock and poultry, alleviating stress injury, and ensuring the health of livestock and poultry. At present, porcine BAs are widely used because of their therapeutic effects on HS; however, it remains unclear whether the same effects are exerted by sheep BAs, which are different from porcine BAs and have different compositions. In this study, we compared the anti-HS effects of porcine BAs and sheep BAs in the diet by establishing an HS model of chicks and investigating the chicken performance, HS-related genes' expression, oxidative stress markers, jejunal histoarchitecture, inflammatory cytokines' expression, jejunal secreted immunoglobulin A concentration, and cecal bacterial flora. RESULTS: The results showed that the addition of sheep BAs to the diet increased the average daily weight gain and the feed conversion ratio of chicks. Under HS, sheep BAs were more effective than porcine BAs in improving the activities of lactate dehydrogenase and glutamic pyruvic transaminase in serum and the content/activity of malondialdehyde, superoxide dismutase, and reduced glutathione in serum and tissue, in reducing the messenger RNA (mRNA) expression of heat shock proteins (HSP60, HSP70, and HSP90) in the liver and jejunum, and in improving the histological structure and the expression of tight junction proteins (occludin and zonula occludens-1) and enriching intestinal bacterial flora. However, porcine BAs were significantly inferior to sheep BAs in reducing the mRNA expression of inflammatory factors (interleukin-6, interleukin-1ß, and tumor necrosis factor-α). CONCLUSION: The effect of sheep BAs was more significant than porcine BAs was in alleviating HS injury in chicks, suggesting that sheep BAs have great potential as new feed nutrition and health additive to improve poultry production performance and prevent HS. © 2023 Society of Chemical Industry.


Subject(s)
Bile Acids and Salts , Chickens , Animals , Animal Feed/analysis , Chickens/genetics , Chickens/metabolism , Diet/veterinary , Dietary Supplements , Heat-Shock Response , RNA, Messenger/metabolism , Sheep , Swine/genetics
7.
Crit Rev Food Sci Nutr ; : 1-16, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36382653

ABSTRACT

Polysaccharides are biomacromolecular widely applied in the food industry, as gelling agents, thickeners and health supplements. As hydrophobic groups, acetyls provide amphiphilicity to polysaccharides with numerous hydroxyl groups, which greatly expand the presence of polysaccharides in organic organisms and various chemical environments. Acetylation could result in diverseness and promotion of the structure of polysaccharides, which improve the physicochemical properties and biological activities. High efficient and environmentally friendly access to acetylated derivatives of different polysaccharides is being explored. This review discusses and summarizes acetylated polysaccharides in terms of synthetic methods, physicochemical properties and biological activities and emphasizes the structure-effect relationships introduced by acetyl groups to reveal the potential mechanism of acetylated polysaccharides. Acetyls with different contents and substitution sites could change the molecular weight, monosaccharide composition and spatial architecture of polysaccharides, resulting in differences among properties such as water solubility, emulsification and crystallinity. Coupled with acetyls, polysaccharides have increased antioxidant, immunomodulatory, antitumor, and pro-prebiotic capacities. In addition, their possible applications have also been discussed in green food materials, bioactive ingredient carriers and functional food products, indicating that acetylated polysaccharides hold a clear vision in food health and industrial development.

8.
Int J Mol Sci ; 19(2)2018 Feb 08.
Article in English | MEDLINE | ID: mdl-29419740

ABSTRACT

The imbalance between cell proliferation and apoptosis can lead to tumor progression, causing oncogenic transformation, abnormal cell proliferation and cell apoptosis suppression. Tea polysaccharide (TPS) is the major bioactive component in green tea, it has showed antioxidant, antitumor and anti-inflammatory bioactivities. In this study, the chemoprophylaxis effects of TPS on colitis-associated colon carcinogenesis, especially the cell apoptosis activation and inhibition effects on cell proliferation and invasion were analyzed. The azoxymethane/dextran sulfate sodium (AOM/DSS) was used to induce the colorectal carcinogenesis in mice. Results showed that the tumor incidence was reduced in TPS-treated AOM/DSS mice compared to AOM/DSS mice. TUNEL staining and Ki-67 immunohistochemistry staining showed that the TPS treatment increased significantly the cell apoptosis and decreased cell proliferation among AOM/DSS mice. Furthermore, TPS reduced the expression levels of the cell cycle protein cyclin D1, matrix metalloproteinase (MMP)-2, and MMP-9. In addition, in vitro studies showed that TPS, suppressed the proliferation and invasion of the mouse colon cancer cells. Overall, our findings demonstrated that TPS could be a potential agent in the treatment and/or prevention of colon tumor, which promoted the apoptosis and suppressed the proliferation and invasion of the mouse colon cancer cells via arresting cell cycle progression.


Subject(s)
Cell Transformation, Neoplastic/drug effects , Colitis/complications , Colonic Neoplasms/etiology , Colonic Neoplasms/prevention & control , Plant Extracts/pharmacology , Polysaccharides/pharmacology , Tea/chemistry , Animals , Apoptosis/drug effects , Biomarkers , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Colitis/genetics , Colitis/metabolism , Colitis/pathology , Colonic Neoplasms/pathology , Cyclin D1/genetics , Cyclin D1/metabolism , Disease Models, Animal , Disease Progression , Gene Expression , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Mice
9.
Int J Mol Sci ; 18(12)2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29182587

ABSTRACT

Momordica charantia L. (M. charantia), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia.


Subject(s)
Momordica charantia/chemistry , Polysaccharides/chemistry , Animals , Antioxidants/chemistry , Humans , Phytochemicals/chemistry , Plant Extracts/chemistry
10.
Foods ; 13(7)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38611417

ABSTRACT

Natural macromolecular substances are prevalent in the organs of plants and animals, such as polysaccharides, resins, proteins, etc [...].

11.
Foods ; 13(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38254562

ABSTRACT

2-Monochloropropane-1, 3-diol (2-MCPD) esters and 3-monochloropropane-1,2-diol (3-MCPD) esters, a class of substances potentially harmful to human health, are usually formed during the refining of vegetable oils under high temperature. The effects of endogenous antioxidants in vegetable oils on the formation of 2- and 3-MCPD esters is still unknown. In this study, the effects of endogenous antioxidants (α-tocopherol, stigmasterol and squalene) on the formation of 2- and 3-MCPD esters in model thermal processing of camellia oil were investigated. The possible formation mechanism of 2- and 3-MCPD esters was also studied through the monitoring of acyloxonium ions, the intermediate ions of 2- and 3-MCPD esters formation, and free radicals by employing infrared spectra and electron paramagnetic resonance (EPR), respectively. The results indicated that the addition of α-tocopherol had either promoting or inhibiting effects on the formation of 2- and 3-MCPD esters, depending on the amount added. Stigmasterol inhibited the formation of 3-MCPD ester and 2-MCPD ester at low concentrations, while promoting their formation at high concentrations. Squalene exhibited a promotional effect on the formation of 3-MCPD ester and 2-MCPD ester, with an increased promotion effect as the amount of squalene added increased. The EPR results suggested that CCl3•, Lipid alkoxyl, N3• and SO3• formed during the processing of camellia oil, which may further mediate the formation of chlorpropanol esters. This study also inferred that squalene promotes the participation of the free radical in chlorpropanol ester formation.

12.
Int J Biol Macromol ; : 136267, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39366626

ABSTRACT

Highland barley, a nutritious whole grain, faces limited market utilization due to the poor heating stability of its starch. The aim of this study was to investigate the effects of three differently charged ionic polysaccharides-guar gum (GG), xanthan gum (XG), and carboxymethyl chitosan (CMC)-on the gel properties of highland barley starch (HBS). GG and XG notably increased pasting viscosity, viscoelasticity, hardness, and strength of HBS gels. Conversely, CMC resulted in decreased gel properties. All three polysaccharides enhanced OH tensile vibration (3000-3800 cm-1), with GG and XG promoting denser honeycomb network structures and lower spin-spin relaxation time (T2), indicating improved structural integrity. In contrast, low concentrations of CMC led to disorder and loose structure. Hydrogen bonding and electrostatic interactions were the main forces by which polysaccharides influenced the properties of starch gels. This research contributes to enhancing the properties of HBS gel during heating and expanding its commercial applications. It also provides some insights to understand the interaction between different charged polysaccharides and starch.

13.
J Food Sci ; 89(10): 6720-6732, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39269279

ABSTRACT

Our previous study has demonstrated that sulfated Chinese yam polysaccharide (SCYP) can improve immunomodulatory activity in Raw 264.7 cells. However, its anti-inflammatory is little known. In this study, the anti-inflammatory effects of SCYP were systematically investigated via the Lipopolysaccharides (LPS)-induced Raw264.7 cell model, Caco-2/Raw264.7 co-culture system, and acute inflammation mice model. The results suggested SCYP promoted the cell proliferation and have no toxicity in Raw264.7 and Caco-2 cells at the concentration of 200 µg/mL. Moreover, when treated with SCYP, the production of pro-inflammatory cytokines (interleukin [IL]-1ß, IL-6, and tumor necrosis factor-α) reduced significantly in Raw264.7 via the MAPK/NF-κB pathway. In the Caco-2/Raw264.7 co-cultured system, SCYP could regulate inflammation reaction by improving intestinal barrier, which might prevent systemic inflammation. Further, systemic inflammation was alleviated by SCYP in LPS-induced acute inflammation mice through MAPK/NF-κB pathway. PRACTICAL APPLICATION: These results supported that SCYP may be used as an anti-inflammation agent in the functional food field.


Subject(s)
Anti-Inflammatory Agents , Coculture Techniques , Dioscorea , Disease Models, Animal , Inflammation , Lipopolysaccharides , NF-kappa B , Polysaccharides , Signal Transduction , Animals , Mice , Polysaccharides/pharmacology , NF-kappa B/metabolism , Anti-Inflammatory Agents/pharmacology , RAW 264.7 Cells , Lipopolysaccharides/adverse effects , Humans , Caco-2 Cells , Dioscorea/chemistry , Inflammation/drug therapy , Signal Transduction/drug effects , Male , Cytokines/metabolism , MAP Kinase Signaling System/drug effects
14.
Int J Biol Macromol ; 254(Pt 3): 128053, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37963504

ABSTRACT

The sol-gel behavior of tapioca starch (TS) plays a crucial role in the processing and quality control of flour-based products. However, natural tapioca starch has low gel strength and poor viscosity, which tremendously limits its application. To solve this problem, this study investigated the effects of κ-carrageenan (KC), konjac gum (KGM), and Mesona chinensis Benth polysaccharide (MCP) on the pasting behavior, rheological, and structural properties of tapioca starch. KC, KGM, and MCP significantly increased the viscosity of TS. With the exception of high-concentration KGM (0.5 %), all other blending systems showed decrease in setback. This may be attributed to the stronger effect of the high-concentration KC (0.5 %) and MCP (0.5 %) functional groups interacting with starch. KC, KGM, and MCP effectively improved the dynamic modulus (G' and G") of TS gel and were effective in increasing the gel strength and hardness of TS. The FT-IR analysis indicated that the short-range order of TS was mainly influenced by polysaccharides through non-covalent bonding interactions. Furthermore, it was confirmed that three polysaccharides could form dense structures by hydrogen bonding with TS. Similarly, more stable structure and pore size were observed in the microstructure diagram.


Subject(s)
Lamiaceae , Manihot , Spectroscopy, Fourier Transform Infrared , Polysaccharides/chemistry , Starch/chemistry , Carrageenan/chemistry , Rheology , Lamiaceae/chemistry , Viscosity , Gels/chemistry
15.
Food Chem ; 447: 138986, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38489875

ABSTRACT

Germination treatment of highland barley enhances its nutritional value while weakening the starch gel properties. This study aims to enhance the characteristics of germinated highland barley starch (GBS) by exploring the synergistic effects of two alkalis (Na2CO3 and NaHCO3) and guar gum (GG) on GBS gel properties. The combined action of alkalis and GG significantly improved the peak viscosity, setback viscosity, and hardness compared with GG alone. The highest G' and G" reached 998 and 204 Pa at 0.4% Na2CO3 addition, which were increased by nearly 44% and 50%, respectively. Fourier-transform infrared spectral analysis revealed that the alkalis strengthened interaction forces, particularly with intensified absorption peaks at 3200-3700 cm-1 and 1550-1750 cm-1. The Na2CO3 and NaHCO3 reduced the spin-spin relaxation time (T2), resulting in a dense starch gel network. This study contributes to enhancing the market application of GBS and offers innovative insights for modifying other starches.


Subject(s)
Hordeum , Mannans , Plant Gums , Starch , Starch/chemistry , Galactans/chemistry , Viscosity , Gels/chemistry , Rheology
16.
Int J Biol Macromol ; 279(Pt 3): 135378, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39244125

ABSTRACT

This work aimed to explore the changes of rice protein (RP) in solubility, emulsifying properties, and antioxidant activity after the enzyme hydrolysis-assisted fibrillation dual modification. Results showed that enzyme hydrolysis by papain and fibrillation treatments significantly affected the secondary and tertiary structures of RP. The modified proteins, including RP hydrolysate (RPH), RP nanofibrils (RPN), and RPH nanofibrils (RPHN), demonstrated enhanced solubility and antioxidant activity compared to RP, with RPHN exhibiting the superior performance. The emulsifying capacity of RPH, RPN, and RPHN increased by 9.55 %, 22.86 %, and 26.57 %, respectively, compared to that of RP. Furthermore, RPHN displayed the highest emulsion stability index. Nanoemulsion stabilized by RPHN showed enhanced centrifugal, storage, and oxidative stabilities. Neither RPHN nor RPN exhibited cytotoxicity to human cell lines, and could provide nutrients for cells. Overall, the functional properties and antioxidant activity of RP were significantly improved by enzyme hydrolysis-assisted fibrillation dual modification. This study may provide reference for the development and utilization of nanofibrils from plant proteins.

17.
Food Chem ; 460(Pt 3): 140745, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39126945

ABSTRACT

An antioxidant amyloid fibril was prepared as an emulsifier by fibrillating limited enzymatic hydrolysis-modified rice protein (HRP). The purpose of this study was to investigate the feasibility of using fibrillated HRP to stabilize oil-in-water emulsion. A free radical scavenging assay revealed that the antioxidant activity of fibrillated HRP was 2.09 times higher than that of native rice protein. Fibrillated HRP demonstrated a marked reduction in interfacial tension, increased surface hydrophobicity and contact angle (> 80°), and rapid adsorption to the interface, with 35.34 ± 2.43% interfacial adsorbed protein content. The fibrillated HRP barriers resisted environment stresses such as NaCl, pH variations, long-term storage, while reducing lipid oxidation degree. Additionally, fibrillated HRP-based emulsion was more effective in protecting ß-carotene from degradation compared to other samples. These findings provide theoretical support for the development of rice protein-based antioxidant emulsifiers and modification of emulsifying properties of plant proteins.


Subject(s)
Antioxidants , Emulsions , Hydrophobic and Hydrophilic Interactions , Oryza , Plant Proteins , Protein Hydrolysates , Oryza/chemistry , Antioxidants/chemistry , Emulsions/chemistry , Plant Proteins/chemistry , Protein Hydrolysates/chemistry , Amyloid/chemistry , Emulsifying Agents/chemistry
18.
Food Chem ; 456: 139965, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38852460

ABSTRACT

Pasteurisation and spray drying are critical steps to ensure the safety and shelf-life of formulae, but these treatments also induce formation of some potentially harmful Maillard reaction products. In this study, the occurrence of potentially harmful Maillard reaction products and proximate compositions in different commercial formulae were analysed. Our results showed that infant formulae had significantly higher concentrations of furosine, Nε-(carboxymethyl)lysine (CML) and Nε-(carboxyethyl)lysine (CEL) than follow-on/toddler formula. Specialty formulae had higher concentrations of glyoxal and CML than other types of formulae. Correlation analysis indicated that concentrations of 5-hydroxymethylfurfural, 3-deoxyglucosone, CML and CEL were closely related to fat contents. These results provided insight into concentrations of potentially harmful Maillard reaction products in different types of formulae and provide a theoretical basis for further optimisation of processing.


Subject(s)
Infant Formula , Lysine , Maillard Reaction , Infant Formula/chemistry , Infant Formula/analysis , Lysine/chemistry , Lysine/analogs & derivatives , Lysine/analysis , Humans , Furaldehyde/analogs & derivatives , Furaldehyde/analysis , Furaldehyde/chemistry , Glyoxal/chemistry , Glyoxal/analysis , Infant , Deoxyglucose/analogs & derivatives , Deoxyglucose/chemistry , Deoxyglucose/analysis
19.
Int J Biol Macromol ; 270(Pt 1): 132352, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754676

ABSTRACT

Polysaccharides are used in starch-based product formulations to enhance the final quality of food products. This study examined the interaction mechanisms in Ficus pumila polysaccharide (FPP) and wheat starch (WS) gel systems with varying FPP concentrations using linear and nonlinear rheological analysis. Physicochemical structural analyses showed non-covalent FPP-WS interactions, strengthening hydrogen bonding between molecules and promoting water binding and ordered structure generation during WS gel aging. Small amplitude oscillatory shear analyses revealed that elevated FPP concentrations led to increased storage modulus (G'), loss modulus (G"), critical strains (From 29.02 % to 53.32 %) and yield stresses (From 0.94 Pa to 30.97 Pa) in the WS gel system, along with improved resistance to deformation and short-term regeneration. In the nonlinear viscoelastic region, FPP-WS gels shifted from elastic to viscous behavior. Higher FPP concentrations displayed increased energy dissipation, strain hardening (S>0, e3/e1 > 0) and shear thinning (T<0, v3/v1<0). FPP contributes more nonlinearity in the dynamic flow field as showed by the high harmonic ratio, with a larger I3/I1 values overall. This study highlights FPP's potential in starch gel food processing, and offers a theoretical basis for understanding hydrocolloid-starch interactions.


Subject(s)
Ficus , Gels , Polysaccharides , Rheology , Starch , Triticum , Starch/chemistry , Polysaccharides/chemistry , Ficus/chemistry , Gels/chemistry , Triticum/chemistry , Viscosity , Shear Strength
20.
Food Res Int ; 175: 113722, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129038

ABSTRACT

Rice by-products are a potential source of various bioactive substances with great processing potential, which are receiving increasing attention. Among them, rice bran is a by-product of rice milling, with high nutritional value and health benefits. Colored rice bran contains a large amount of anthocyanins responsible for color and bioactivities. And anthocyanins are often added to foods as a natural pigment, serving to enhance both the visual appeal and nutritional value. Recent advances in the composition and bioactivities of four common colored rice bran anthocyanins (black, purple, red, and purple red rice) are reviewed in this paper. Rice bran anthocyanins have been confirmed to exhibit biological potential for human health, with their main biological activities being antioxidant, anti-atherosclerosis, anti-cancer, neuroprotective, retinoprotective, immunomodulatory, anti-aging and anti-obesity effects. The structure of anthocyanins determines their biological activities. The anthocyanins composition of rice bran with different colors varied greatly, while that of rice bran with the same color is also slightly different, which is attributed to the rice varieties, growing environment and cropping conditions. However, it remains necessary to conduct further clinical studies to support the health activities of anthocyanins. The present review provides information value for the further development and comprehensive utilization of rice bran anthocyanins.


Subject(s)
Anthocyanins , Oryza , Humans , Anthocyanins/analysis , Oryza/chemistry , Antioxidants/analysis , Plant Extracts/chemistry , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL