Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Environ Sci Technol ; 57(28): 10308-10318, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37419883

ABSTRACT

Nonroad agricultural machinery (NRAM) emissions constitute a significant source of air pollution in China. Full-volatility organics originating from 19 machines under 6 agricultural activities were measured synchronously. The diesel-based emission factors (EFs) for full-volatility organics were 4.71 ± 2.78 g/kg fuel (average ± standard deviation), including 91.58 ± 8.42% volatile organic compounds (VOCs), 7.94 ± 8.16% intermediate-volatility organic compounds (IVOCs), 0.28 ± 0.20% semivolatile organic compounds (SVOCs), and 0.20 ± 0.16% low-volatility organic compounds (LVOCs). Full-volatility organic EFs were significantly reduced by stricter emission standards and were the highest under pesticide spraying activity. Our results also demonstrated that combustion efficiency was a potential factor influencing full-volatility organic emissions. Gas-particle partitioning in full-volatility organics could be affected by multiple factors. Furthermore, the estimated secondary organic aerosol formation potential based on measured full-volatility organics was 143.79 ± 216.80 mg/kg fuel and could be primarily attributed to higher-volatility-interval IVOCs (bin12-bin16 contributed 52.81 ± 11.58%). Finally, the estimated emissions of full-volatility organics from NRAM in China (2021) were 94.23 Gg. This study provides first-hand data on full-volatility organic EFs originating from NRAM to facilitate the improvement of emission inventories and atmospheric chemistry models.


Subject(s)
Air Pollutants , Pesticides , Volatile Organic Compounds , Air Pollutants/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/chemistry , Aerosols/analysis
2.
J Environ Manage ; 340: 117978, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37116415

ABSTRACT

Heterogeneous iron/persulfate system suffers from the problems of high ion leaching, severe catalyst surface corrosion and low performance stability. Herein, a series of iron compound incorporated N doped biochar composite catalysts were prepared from pyrolyzing wood powder and ferric ferrocyanide mixture, which were used for bisphenol A (BPA) degradation in water through peroxymonosulfate (PMS) activation. It was found that the reducing gases released from wood powder at different pyrolysis temperature significantly affected the crystalline phase of the iron compound in the catalyst, in which pure phase iron carbide (Fe3C) decorated N doped biochar was obtained at pyrolysis temperature of 600 °C or higher. Wood powder was introduced as both Fe3C formation inductive agent and biochar precursor. Fe3C/biochar exhibited optimal BPA degradation performance, in which 0.5 g/L of catalyst could completely degrade 0.05 mM BPA within 30 min. Radical, high valent iron-oxo, and non-radical species were all generated in the reaction system by both Fe3C and N doped biochar, respectively. Moreover, the multi-valence nature of Fe in Fe3C enabled the reaction system with remarkably reduced Fe ion leaching and negligible iron sludge production since Fe3C could activate PMS through a heterogeneous mechanism. Having multiple active species generated for BPA degradation, the prepared catalyst also showed promising adaptability and recyclability. This study can provide a new solution for the design of iron based catalyst/PMS system for organic pollutant degradations with low ion release.


Subject(s)
Iron Compounds , Wood , Powders , Iron Compounds/chemistry , Iron/chemistry , Peroxides/chemistry
3.
J Environ Manage ; 345: 118911, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37657294

ABSTRACT

Photocatalytic technology is regarded as a promising approach for fast degradation of refractory organic pollutant in water. However, the performance of the photocatalyst can be restricted by the variation of water matrix conditions. Herein, coconut shell fiber was pyrolyzed to biochar (CSB800) and incorporated with α-MnO2 to degrade bisphenol A (BPA) in water under visible light irradiation. The prepared α-MnO2/CSB800 composites demonstrated high efficacy in degrading BPA. Specifically, 0.01 mM of BPA could be completely degraded by 0.1 g/L of MnO2/CSB800 within 45 min. It was found that the incident light could effectively trigger the separation of electron and hole in α-MnO2. The electron and hole were afterwards converted to hydroxyl radical (●OH), superoxide radical (●O2-) and non-radical singlet oxygen (1O2), which subsequently initiated the photocatalytic degradation of BPA. Additionally, α-MnO2/CSB800 could simultaneously participate the oxidative degradation pathway of BPA with its high oxidation-reduction potential. The introduction of CSB800 led to higher BPA degradation efficiency since CSB800 could accelerate the charge carrier transferring rate during BPA degradation process via either pathway. The co-existence of both photocatalytic and oxidative degradation synergy enables α-MnO2/CSB800/visible light system with high catalytic performance stability towards various water matrices. This study proposes an effective strategy to prepare easy-available photocatalysts with high and stable performance towards for addressing organic pollution issues in water.


Subject(s)
Cocos , Manganese Compounds , Oxides , Oxidation-Reduction , Light
4.
J Environ Sci (China) ; 124: 846-859, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36182188

ABSTRACT

Emissions of carbonyl compounds from agricultural machines cannot be ignored. Carbonyl compounds can cause the formation of ozone (O3) and secondary organic aerosols, which can cause photochemical smog to form. In this study, 20 agricultural machines were tested using portable emission measurement system (PEMS) under real-world tillage processes. The exhaust gases were sampled using 2,4-dinitrophenylhydrazine cartridges, and 15 carbonyl compounds were analyzed by high-performance liquid chromatography. Carbonyl compound emission factors for agricultural machines were 51.14-3315.62 mg/(kg-fuel), and were 2.58 ± 2.05, 0.86 ± 1.07 and 0.29 ± 0.20 g/(kg-fuel) for China 0, China II and China III emission standards, respectively. Carbonyl compound emission factor for sowing seeds of China 0 agricultural machines was 3.32 ± 1.73 g/(kg-fuel). Formaldehyde, acetaldehyde and acrolein were the dominant carbonyl compounds emitted. Differences in emission standards and tillage processes impact ozone formation potential (OFP). The mean OFP was 20.15 ± 16.15 g O3/(kg-fuel) for the China 0 emission standard. The OFP values decreased by 66.9% from China 0 to China II, and 67.4% from China II to China III. The mean OFP for sowing seeds of China 0 agricultural machines was 25.92 ± 13.84 g O3/(kg-fuel). Between 1.75 and 24.22 times more ozone was found to be formed during sowing seeds than during other processes for China 0 and China II agricultural machines. Total carbonyl compound emissions from agricultural machines in China was 19.23 Gg in 2019. The results improve our understanding of carbonyl compound emissions from agricultural machines in China.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Acetaldehyde , Acrolein/analysis , Aerosols/analysis , Air Pollutants/analysis , China , Environmental Monitoring , Formaldehyde/analysis , Organic Chemicals/analysis , Ozone/analysis , Smog/analysis , Vehicle Emissions/analysis , Volatile Organic Compounds/analysis
5.
J Environ Sci (China) ; 130: 163-173, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37032033

ABSTRACT

Cooking process can produce abundant volatile organic compounds (VOCs), which are harmful to environment and human health. Therefore, we conducted a comprehensive analysis in which VOCs emissions from multiple cuisines have been sampled based on the simulation and acquisition platform, involving concentration characteristics, ozone formation potential (OFP) and purification efficiency assessments. VOCs emissions varied from 1828.5 to 14,355.1 µg/m3, with the maximum and minimum values from Barbecue and Family cuisine, respectively. Alkanes and alcohol had higher contributions to VOCs from Sichuan and Hunan cuisine (64.1%), Family cuisine (66.3%), Shandong cuisine (69.1%) and Cantonese cuisine (69.8%), with the dominant VOCs species of ethanol, isobutane and n-butane. In comparison, alcohols (79.5%) were abundant for Huaiyang cuisine, while alkanes (19.7%), alkenes (35.9%) and haloalkanes (22.9%) accounted for higher proportions from Barbecue. Specially, carbon tetrachloride, n-hexylene and 1-butene were the most abundant VOCs species for Barbecue, ranging from 8.8% to 14.6%. The highest OFP occurred in Barbecue. The sensitive species of OFP for Huaiyang cuisine were alcohols, while other cuisines were alkenes. Purification efficiency assessments shed light on the removal differences of individual and synergistic control technologies. VOCs emissions exhibited a strong dependence on the photocatalytic oxidation, with the removal efficiencies of 29.0%-54.4%. However, the high voltage electrostatic, wet purification and mechanical separation techniques played a mediocre or even counterproductive role in the VOCs reduction, meanwhile collaborative control technologies could not significantly improve the removal efficiency. Our results identified more effective control technologies, which were conductive to alleviating air pollution from cooking emissions.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Humans , Air Pollutants/analysis , Volatile Organic Compounds/analysis , Environmental Monitoring , Alkanes/analysis , Alkenes , Ozone/chemistry , Cooking , China
6.
Environ Monit Assess ; 194(4): 282, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35294667

ABSTRACT

Predicting spatial explicit information of soil nutrients is critical for sustainable soil management and food security under climate change and human disturbance in agricultural land. Digital soil mapping (DSM) techniques can utilize soil-landscape information from remote sensing data to predict the spatial pattern of soil nutrients, and it is important to explore the effects of remote sensing data types on DSM. This research utilized Landsat 8 (LT), Sentinel 2 (ST), and WorldView-2 (WV) remote sensing data and employed partial least squares regression (PLSR), random forest (RF), and support vector machine (SVM) algorithms to characterize the spatial pattern of soil total nitrogen (TN) in smallholder farm settings in Yellow River Basin, China. The overall relationships between TN and spectral indices from LT and ST were stronger than those from WV. Multiple red edge band-based spectral indices from ST and WV were relevant variables for TN, while there were no red band-based spectral indices from ST and WV identified as relevant variables for TN. Soil moisture and vegetation were major driving forces of soil TN spatial distribution in this area. The research also concluded that farmlands of crop rotation had relatively higher TN concentration compared with farmlands of monoculture. The soil prediction models based on WV achieved relatively lower model performance compared with those based on ST and LT. The effects of remote sensing data spectral resolution and spectral range on enhancing soil prediction model performance are higher than the effects of remote sensing data spatial resolution. Soil prediction models based on ST can provide location-specific soil maps, achieve fair model performance, and have low cost. This research suggests DSM research utilizing ST has relatively high prediction accuracy, and can produce soil maps that are fit for the spatial explicit soil management for smallholder farms.


Subject(s)
Nitrogen , Soil , China , Environmental Monitoring , Farms , Humans , Rivers
7.
J Environ Sci (China) ; 107: 138-149, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34412776

ABSTRACT

A rapid reaction occurs near the exhaust nozzle when vehicle emissions contact the air. Twenty diesel vehicles were studied using a new multipoint sampling system that is suitable for studying the exhaust plume near the exhaust nozzle. The variation characteristics of fine particle matter (PM2.5) and its components in diesel vehicle exhaust plumes were analyzed. The PM2.5 emissions gradually increased with increasing distance from the nozzle in the plume. Elemental carbon emissions remained basically unchanged, organic carbon and total carbon (TC) increased with increasing distance. The concentrations of SO42-, NO3- and NH4+ (SNA) directly emitted by the vehicles were very low but increased rapidly in the exhaust plume. The selective catalytic reduction (SCR) reduced 42.7% TC, 40% NO3- emissions, but increased 104% SO42- and 36% NH4+ emissions, respectively. In summary, the SCR reduced 29% primary PM2.5 emissions for the tested diesel vehicles. The NH4NO3 particle formation maybe more important in the plume, and there maybe other forms of formation of NH4+ (eg. NH4Cl). The generation of secondary organic carbon (SOC) plays a leading role in the generation of secondary PM2.5. The SCR enhanced the formation of SOC and SNA in the plume, but comprehensive analysis shows that the SCR more enhanced the SNA formation in the plume, which is mainly new particles formation process. The inconsistency between secondary organic aerosol (SOA) and primary organic aerosol definitions is one of the important reasons for the difference between SOA simulation and observation.


Subject(s)
Particulate Matter , Vehicle Emissions , Aerosols/analysis , Carbon , Computer Simulation , Vehicle Emissions/analysis
8.
J Environ Sci (China) ; 31: 209-20, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25968276

ABSTRACT

A database of real-world diesel vehicle emission factors, based on type and technology, has been developed following tests on more than 300 diesel vehicles in China using a portable emission measurement system. The database provides better understanding of diesel vehicle emissions under actual driving conditions. We found that although new regulations have reduced real-world emission levels of diesel trucks and buses significantly for most pollutants in China, NOx emissions have been inadequately controlled by the current standards, especially for diesel buses, because of bad driving conditions in the real world. We also compared the emission factors in the database with those calculated by emission factor models and used in inventory studies. The emission factors derived from COPERT (Computer Programmer to calculate Emissions from Road Transport) and MOBILE may both underestimate real emission factors, whereas the updated COPERT and PART5 (Highway Vehicle Particulate Emission Modeling Software) models may overestimate emission factors in China. Real-world measurement results and emission factors used in recent emission inventory studies are inconsistent, which has led to inaccurate estimates of emissions from diesel trucks and buses over recent years. This suggests that emission factors derived from European or US-based models will not truly represent real-world emissions in China. Therefore, it is useful and necessary to conduct systematic real-world measurements of vehicle emissions in China in order to obtain the optimum inputs for emission inventory models.


Subject(s)
Air Pollutants/chemistry , Databases, Factual , Motor Vehicles , Vehicle Emissions/analysis , Vehicle Emissions/toxicity , China
9.
Sci Total Environ ; 914: 169844, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38190915

ABSTRACT

The synergistic strategy for fine particulate matter (PM2.5) and O3 pollution prevention and control has emerged as a pivotal approach in combating air pollution. Volatile organic compounds (VOCs) serve as crucial precursors to both O3 and secondary organic aerosols (SOAs), with motor vehicles representing one of their significant sources. In this study, a standard for establishing a database of VOC species emission factors for motor vehicles was developed, and a database containing 134 VOC species was constructed through field tests and literature surveys. The VOC emissions of light-duty gasoline passenger vehicles (LDGPVs) comprised primarily alkanes and aromatics. The VOC emissions of light-duty diesel trucks (LDDTs) comprised mostly alkanes. Regarding low-speed trucks, 3-wheel vehicles, medium-duty diesel trucks (MDDTs) and heavy-duty diesel trucks (HDDTs), their VOC emissions comprised mainly oxygenated volatile organic compounds (OVOCs). The update of emission standards resulted in a reduction in VOC species emission factors while altering the composition of VOCs. Attention should be directed toward isopentane, benzene and dichloromethane emitted by LDGPVs, dodecane, undecane, ethene and propene emitted by LDDTs, and acetaldehyde emitted by HDDTs. VOC species originating from LDGPVs were more dispersed than those originating from LDDTs and HDDTs. In addition, variations in VOC species were observed among motor vehicles with different fuel types. Toluene, ethene, benzene, m,p-xylene, isopentane, hexanal, ethyne and 1,2,4-trimethylbenzene were the predominant VOC species emitted by gasoline vehicles. Diesel vehicles emitted mainly dodecane, formaldehyde, propene, undecane, acetaldehyde, ethene, decane and benzene. The results could enhance our comprehension of the emission characteristics of VOC species originating from motor vehicles and provide data support and a scientific foundation for achieving synergistic PM2.5 and O3 pollution prevention and control.

10.
J Air Waste Manag Assoc ; 63(1): 11-9, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23447860

ABSTRACT

UNLABELLED: To guarantee good traffic and air quality during the 16th Asian Games in Guangzhou, China, the government carried out two traffic control Drills before the Games and adopted traffic control measures during the Games. Vehicle activities before and during the first and second Drills, and during the Games, were surveyed. Based on the data under investigation, the impacts of control measures on traffic volumes and driving characteristics were analyzed during the first and second Drills, and the Games. The emission reduction of traffic control measures was also evaluated during the three stages using the MOBILE-China model. The results show that there were significant effects of implementing temporary traffic control measures on transportation activity and vehicular emissions. During the first and second Drills, and the Games, the average traffic volumes in monitored roads decreased, and the average speed of vehicles increased significantly The co-effects of traffic flow reduction, traffic congestion improvement, and the banning of high-emitting vehicles helped to greatly reduce the estimated emissions from motor vehicles in Guangzhou during the first and second Drills, and the Games. Estimated vehicular emissions were reduced by 38-52% during the first Drill and 28-36% for the second Drill. During the Asian Games, vehicular emissions of carbon monoxide (CO), hydrocarbon (HC), oxides of nitrogen (NO), and particulate matter with an aerodynamic diameter < 10 microm (PM10) reduced by an estimated 42%, 46%, 26%, and 30%, respectively, compared with those before the Games. Both the banning of high-emitting vehicles and the travel restrictions imposed by use of odd-even licenses had significant effects on the reduction of vehicular emissions of CO, HC, NOx, and PM10. IMPLICATIONS: Motor vehicles have become the most prevalent source of emissions and subsequently air pollution within Chinese cities. Understanding the impacts that different control measures have on vehicular emissions is very important in order to be able to control vehicle emissions. The results of this study will be very helpful for the further control of vehicle emissions in Guangzhou in the future. In addition, the effects of temporary transportation control measures will provide important awareness to other cities that will be hosting large-scale activities similar to the Asian Games.


Subject(s)
Air Pollution/prevention & control , Vehicle Emissions/prevention & control , Air Pollution/analysis , China , Cities , Government Regulation , Sports , Transportation/statistics & numerical data , Vehicle Emissions/analysis
11.
Sci Total Environ ; 858(Pt 2): 159970, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36347292

ABSTRACT

Detailed emission characterization of semivolatile/intermediate-volatility organic compounds (S/IVOCs) originating from nonroad construction machines (NRCMs) remains lacking in China. Twenty-one NRCMs were evaluated with a portable emission measurement system in the working process. Gas phase S/IVOCs were collected by Tenax TA tubes and analyzed via thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). Particle phase S/IVOCs were collected by quartz filters and analyzed via GC-MS. The average emission factors (EFs) for fuel-based total (gas + particle phase) IVOCs and SVOCs of the assessed NRCMs were 221.45 ± 194.60 and 11.68 ± 10.67 mg/kg fuel, respectively. Compared to excavators, the average IVOC and SVOC EFs of loaders were 1.32 and 1.55 times higher, respectively. Compared to the working mode, the average IVOC EFs under the moving mode (only moving forward or backward) were 1.28 times higher. The IVOC and SVOC EFs for excavators decreased by 69.06% and 38.37%, respectively, from China II to China III. These results demonstrate the effectiveness of emission control regulations. In regard to individual NRCMs, excavators and loaders were affected differently by emission standards. The volatility distribution demonstrated that IVOCs and SVOCs were dominated by gas- and particle-phase compounds, respectively. The mode of operation also affected S/IVOC gas-particle partitioning. Combined with previous studies, the mechanical type significantly affected the volatility distribution of IVOCs. IVOCs from higher volatile fuels are more distributed in the high-volatility interval. The total secondary organic aerosol (SOA) production potential was 104.36 ± 79.67 mg/kg fuel, which originated from VOCs (19.98%), IVOCs (73.87%), and SVOCs (6.15%). IVOCs were a larger SOA precursor than VOCs and SVOCs. In addition, normal (n-) alkanes were suitably correlated with IVOCs, which may represent a backup solution to quantify IVOC EFs. This work provides experimental data support for the refinement of the emission characteristics and emission inventories of S/IVOCs originating from NRCMs.


Subject(s)
Air Pollutants , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Vehicle Emissions/analysis , Aerosols/analysis , Gas Chromatography-Mass Spectrometry , Alkanes/analysis , Air Pollutants/analysis
12.
Sci Total Environ ; 894: 164993, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37343865

ABSTRACT

Volatile organic compound (VOC) emissions originating from nonroad mobile sources constitute an important but uncertain source of secondary organic aerosols (SOAs) and ozone (O3). In this study, we investigated the emission factors (EFs) of 120 individual VOC species for 40 machines via gas chromatography-mass spectrometry/flame ionization detection and high-performance liquid chromatography. The results showed that the diesel-based VOC EF for the tested machines was 4.18 ± 2.55 (average ± standard deviation) g/kg fuel, dominated by alkanes (38.20 % ± 18.08 %) and oxygenated VOCs (OVOCs; 30.94 % ± 15.71 %). The machine type, rated power, emission standards, and operating conditions affected the emissions of VOCs and their components, and this effect maybe mostly depends on the fuel combustion efficiency. The VOC species were primarily distributed in the C1-C2 and C4-C6 (based on the carbon number) and B4-B6 (based on the saturated vapor concentration) intervals. Furthermore, the estimated formation potential (FP) values of SOAs and O3 from VOCs were 21.02 ± 15.57 mg/kg fuel and 15.96 ± 11.87 g/kg fuel, respectively. VOC control based on the SOA formation potential (SOAFP) and ozone formation potential (OFP) could be more effective in the mitigation of fine particulate matter (PM2.5) and O3 pollution because the top 5 species ranked by percentage contribution accounted for 83.09 % ± 9.59 % and 51.78 % ± 14.38 % of the estimated SOAFP and OFP, respectively. Finally, the emission estimates showed that the VOC emissions originating from construction and agricultural machinery in China (2020) reached 64.05 and 95.24 Gg, respectively. We provide species-specific VOC EFs and detailed emission characteristics to facilitate a comprehensive understanding of gas emissions originating from nonroad mobile sources and an update of emission inventories and atmospheric chemistry models.

13.
Environ Pollut ; 308: 119672, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35764185

ABSTRACT

Urban green spaces (UGSs) are often positively associated with the health of urban residents. However, UGSs may also have adverse health effects by releasing biogenic volatile organic compounds (BVOCs) and increasing the ambient concentrations of ozone (O3) and secondary organic aerosols in urban areas. BVOC emissions from UGSs might be underestimated because of the lack of consideration of the UGS land-use type in urban areas. As such, in this study, we used a newly released satellite dataset, Sentinel-2, with a resolution of 10 m, to derive the classification distribution of UGSs and predict the UGS emissions of BVOCs in Beijing in 2019. The results showed that the annual emissions of BVOCs from UGSs were approximately 2.9 Gg C (95% confidence interval (CI): 2.4-3.3) in the six core districts, accounting for approximately 39% of the total UGS emissions in Beijing. Compared with the results based on Sentinel-2, the BVOC emissions might be underestimated by approximately 37% (95% CI: 11-63) using the commonly used satellite dataset. UGSs produced the highest BVOC emissions in summer (from June to August), accounting for 75.2% of the annual emissions. UGSs contributed the most to the O3 formation potential in summer, accounting for 41.5% of the total. We could attribute a considerable amount of the O3 concentration (27.0 µg m-3, 95% CI: 21.4-32.6) to the UGS BVOCs produced in the core districts of Beijing in July. The new BVOC emissions dataset based on Sentinel-2 vegetation information facilitates modeling studies on the formation of surface O3 in urban areas and assessments of the impact of UGSs on public health.


Subject(s)
Air Pollutants , Ozone , Volatile Organic Compounds , Air Pollutants/analysis , Beijing , Ozone/analysis , Parks, Recreational , Volatile Organic Compounds/analysis
14.
Chemosphere ; 295: 133963, 2022 May.
Article in English | MEDLINE | ID: mdl-35167836

ABSTRACT

Although ion exchange resins (IERs) have been extensively adopted in water treatment, there are no reports on the application thereof for synthesizing antibacterial materials against pathogenic bacteria. The present study is the first in which the ion exchange characteristic of IERs was utilized to introduce silver ions that possess efficient antibacterial properties. The resulting antibacterial materials were incorporated into polylactic acid (PLA) and/or polybutylene adipate terephthalate (PBAT) to prepare antibacterial membranes. XPS spectra revealed the occurrence of in-situ reduction of silver ions to metallic silver, which was preferable since the stability of silver in the materials was improved. EDS mapping analysis indicated that the distribution of silver was consistent with the distribution of sulfur in the membranes, verifying the ion exchange methodology proposed in the present study. To investigate the antibacterial performance of the prepared membranes, zone of inhibition tests and bacteria-killing tests were performed. The results revealed that neither bare polymeric membranes of PLA and PBAT nor IER-incorporated polymeric membranes exhibited noticeable antibacterial activities. In comparison, the antibacterial membranes demonstrated effective and sustainable antibacterial activities against pathogenic bacteria Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The prepared antibacterial membranes exhibited potential in food-related applications such as food packaging to delay food spoilage due to microbial growth.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Escherichia coli , Ion Exchange Resins , Staphylococcus aureus
15.
Environ Sci Pollut Res Int ; 29(7): 10605-10616, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34528201

ABSTRACT

In order to make clear the role of intercalated anions in layered double hydroxides (LDHs) for catalytic hydrolysis of carbonyl sulfide (COS), the adsorption and reaction characteristics of COS over the simple Mg2Al-Cl-LDH model catalyst were studied by both theoretical and experimental methods. Density functional theory (DFT) calculations by CASTEP found that the chloride ions in LDH function as the key Brønsted base sites to activate the adsorbed H2O with enlarged bond length and angle, facilitate the dissociative adsorption of intermediates including mono-thiocarbonic acid (MTA) and hydrogen thiocarbonic acid (HTA), and participate in the formation of transient states and subsequent hydrogen transfer process with decreased energy barriers during COS hydrolysis. COS hydrolysis will preferentially go through the dissociated intermediates of mono-thiocarbonates (MT) and hydrogen thiocarbonates (HT) with dramatically decreased energy barriers, and the rate-determining step of COS hydrolysis over Mg2Al-Cl-LDH will be the nucleophilic addition of C=O in COS by H2O (Ea = 1.10 eV). The experimental results further revealed that the apparent activation energy (0.89 eV) of COS hydrolysis over Mg2Al-Cl-LDH is close to theoretical value (1.10 eV), and the accumulated intermediates of MT, HT, or carbonate were also observed by FT-IR around 1363 cm-1 on the used Mg2Al-Cl-LDH, which are well in accordance with the theoretical prediction. The demonstrated participation of intercalated chlorine anions in the evolution of intermediates and transient states as Brønsted base sites during COS hydrolysis will give new insight into the basic sites in LDH materials.


Subject(s)
Chlorides , Chlorine , Hydrolysis , Hydroxides , Spectroscopy, Fourier Transform Infrared , Sulfur Oxides
16.
Chemosphere ; 291(Pt 3): 133106, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34848235

ABSTRACT

In order to reduce foodborne diseases caused by bacterial infections, antibacterial membranes have received increasing research interests in recent years. In this study, highly effective antibacterial membranes were prepared using biodegradable polymers, including polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), and carboxymethyl cellulose (CMC). The cation exchange property of CMC was utilized to introduce silver to prepare antibacterial materials. The presence of silver in the membranes was confirmed by EDS mapping, and the reduction of silver ions to metallic silver was confirmed by the Ag3d XPS spectrum which displayed peaks at 374.46 eV and 368.45 eV, revealing that the oxidation state of silver changed to zero. Two common pathogenic bacteria, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), were used to investigate the antibacterial performance of the prepared membranes. Zone of inhibition and bacteria-killing tests revealed that the antibacterial membranes were efficient in inhibiting the growth of bacteria (diameters of inhibition zone ranged from 16 mm to 19 mm for fresh membranes) and capable of killing 100% of bacteria under suitable conditions. Furthermore, after 6 cycles of continuous zone of inhibition tests, the membranes still showed noticeable antibacterial activities, which disclosed the sustainable antibacterial properties of the membranes.


Subject(s)
Metal Nanoparticles , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Escherichia coli , Microbial Sensitivity Tests , Polymers
17.
Chemosphere ; 307(Pt 3): 136059, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35977569

ABSTRACT

The rapid reproduction of foodborne bacteria in food packaging threatens the health of consumers, the massive use and waste of packaging also causes serious environmental pollution. In this study, novel biodegradable antibacterial membranes based on silver-modified carboxymethyl chitosan (Ag-CMCS) were prepared. Polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT) were used as the base membrane materials. Characterization of the prepared membranes was performed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), water contact angle, and so on. Especially, the silver on the surface of Ag-CMCS was proved to be metallic silver. For the first cycle of zone of inhibition test, the diameter of inhibition zone could reach up to 17 mm while the mass of silver released was negligible. The prepared antibacterial membranes could kill almost 100% of bacteria under certain conditions and inhibition zone still existed after more than 7 cycles of tests, indicating the prepared antibacterial membranes were effective. This study could provide new ideas for preparing efficient and environment-friendly antibacterial food packaging membranes.


Subject(s)
Chitosan , Metal Nanoparticles , Adipates , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Metal Nanoparticles/chemistry , Polyesters , Polymers/pharmacology , Silver/chemistry , Silver/pharmacology , Water
18.
Environ Pollut ; 314: 120280, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36167170

ABSTRACT

Black carbon (BC), as one of the short-lived climate pollutants, is becoming more prominent contribution from non-road mobile source, especially for agricultural machinery (AM) in China. However, the understanding of BC emissions from AM is still not clear, and the BC emission factors (EFs) are also limited. In this study, we conducted real-world measurements on twenty AM to investigate the instantaneous BC emission characteristics and quantify BC EFs under the whole tillage processes. We find the instantaneous BC emissions and fuel consumptions are obvious differences and present good synchronization under different tillage processes. Multi-type (CO2-, fuel-, distance-, time-, and area-based) EFs of BC are developed, which are significantly affected by different tillage processes and emission standards of the used AM. While AM conducting rotary tillage, ploughing, harvest corn and harvest wheat on the same area of land, total BC emissions by using the China III emission standard AM will be reduced by 56%, 36%, 88%, and 87% than those by using China II emission standard AM, respectively. Furthermore, for corn and wheat production under the whole tillage processes, BC EFs are 16.90 (6.03-39.12) g/hm2 and 18.18 (5.91-38.69) g/hm2, CO2 EFs are 112.64 (72.07-195.98) g/hm2 and 103.72 (71.47-167.02) g/hm2, respectively. We estimate the BC and CO2 emissions from wheat and corn productions based on the average area-based EFs. The large fluctuation ranges of BC and CO2 emissions in different tillage processes and the whole processes can reflect that the use of AM in China is uneven. It also indicates that there is a large space for BC and CO2 emission reduction and optimization. Therefore, more attention should be paid to the control of BC and CO2 emissions from AM. We believe that the recommended multi-type EFs are applicable for the quantification of BC emissions from AM in China and other countries.


Subject(s)
Air Pollutants , Environmental Pollutants , Air Pollutants/analysis , Carbon Dioxide/analysis , Soot/analysis , Triticum , Zea mays , Carbon , China
19.
Chemosphere ; 287(Pt 2): 132131, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34492413

ABSTRACT

Ion exchange membranes (IEMs) are widely used in water treatment applications such as electrodialysis. However, the exploration of IEMs as effective antibacterial food contact materials (e.g., food packaging membranes) against pathogenic bacteria to ensure food safety has not been reported. Here, we report a simple but effective method to prepare high performance antibacterial membranes via ion exchange coupled with in-situ reduction. The general membrane properties are characterized using SEM, EDS, FTIR, XPS, XRD, DSC, TGA, water uptake, etc. The distribution of silver and copper in the membranes are generally in line with the distribution of sulfur, indicating that the antibacterial ions are introduced into the membranes via ion exchange and are bonded with the sulfonate groups in the membranes. The antibacterial performance is investigated using zone of inhibition tests and continuous bacteria growth inhibition tests. All of the prepared membranes show obvious antibacterial activities compared to the bare cation exchange membranes. The diameters of inhibition zone against Staphylococcus aureus (S. aureus) are all larger than those of Escherichia coli (E. coli), indicating that the prepared membranes are more efficient in inhibiting S. aureus compared to E. coli. Furthermore, the silver-based membrane shows more sustainable antibacterial activities compared to the copper-based membrane. Especially, the results clearly reveal that the silver-based membrane is capable of killing bacteria instead of just inhibiting the growth of bacteria. We have shown for the first time that membranes derived from IEMs have the potential as food contact materials to inhibit the growth of pathogenic bacteria so as to eliminate the risk of bacterial infections and meanwhile delay food spoilage due to bacteria growth.


Subject(s)
Metal Nanoparticles , Silver , Anti-Bacterial Agents/pharmacology , Copper , Escherichia coli , Ion Exchange , Microbial Sensitivity Tests , Silver/pharmacology , Staphylococcus aureus
20.
Sci Total Environ ; 806(Pt 3): 151300, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34736751

ABSTRACT

Non-road construction equipment (NRCE) has become a vital contributor to urban air pollutants with the rapid urbanization in China. Black carbon (BC), as a key pollutant emitted from NRCE (mainly diesel-fueled), has attracted considerable concerns due to adverse impacts on climate change, visibility, and human health. However, the understanding of its emissions is still unclear based on limited research results. In this study, we conducted real-world measurements on BC emissions from 12 excavators and 9 loaders to characterize the variation and quantify fuel-based emission factors (EFs) by using a synchronous platform based on PEMS (SP-PEMS). We analyzed the impacts of key factors (operation mode, emission standard, and engine rated power) on BC emission comprehensively. High BC emission in working mode may be mainly owing to the increase of fuel consumption and the deterioration of air-fuel ratio. With more stringent emission standards, BC EFs of all tested NRCE present significant decreasing trends. Interestingly, NRCE with high rated power generally exhibits lower BC emissions. Through comparison, we find BC EFs in this study are generally higher than elemental carbon (EC) EFs reported in previous studies, which will lead BC emissions from NRCE to be underestimated while EC EFs are used instead of BC EFs. Furthermore, BC EFs of NRCE with Stage III are significantly higher (1-3 orders of magnitude) than those of on-road diesel trucks with the current mainstream emission standards of China IV and China V, which reinforces the urgency and importance of controlling BC emissions from NRCE in China. Finally, we recommend BC EFs of excavators and loaders under different emission standards and operation modes, and which preliminarily fills the gap in localized BC EFs of typical NRCE to relieve the urgent needs for emission inventory calculation.


Subject(s)
Air Pollutants , Vehicle Emissions , Air Pollutants/analysis , Carbon , China , Environmental Monitoring , Humans , Soot/analysis , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL