Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Parasitology ; 151(4): 449-460, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38433581

ABSTRACT

We studied the relationships between functional alpha and beta diversities of fleas and their small mammalian hosts in 4 biogeographic realms (the Afrotropics, the Nearctic, the Neotropics and the Palearctic), considering 3 components of alpha diversity (functional richness, divergence and regularity). We asked whether (a) flea alpha and beta diversities are driven by host alpha and beta diversities; (b) the variation in the off-host environment affects variation in flea alpha and beta diversities; and (c) the pattern of the relationship between flea and host alpha or beta diversities differs between geographic realms. We analysed alpha diversity using modified phylogenetic generalized least squares and beta diversity using modified phylogenetic generalized dissimilarity modelling. In all realms, flea functional richness and regularity increased with an increase in host functional richness and regularity, respectively, whereas flea functional divergence correlated positively with host functional divergence in the Nearctic only. Environmental effects on the components of flea alpha diversity were found only in the Holarctic realms. Host functional beta diversity was invariantly the best predictor of flea functional beta diversity in all realms, whereas the effects of environmental variables on flea functional beta diversity were much weaker and differed between realms. We conclude that flea functional diversity is mostly driven by host functional diversity, whereas the environmental effects on flea functional diversity vary (a) geographically and (b) between components of functional alpha diversity.


Subject(s)
Flea Infestations , Host-Parasite Interactions , Siphonaptera , Animals , Siphonaptera/physiology , Siphonaptera/classification , Flea Infestations/parasitology , Flea Infestations/veterinary , Phylogeny , Mammals/parasitology , Biodiversity
2.
Parasitol Res ; 123(1): 111, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270673

ABSTRACT

We studied compositional, phylogenetic, and functional nestedness in the flea assemblages of 14 host species across regions. Our main questions were (a) are a host's flea assemblages compositionally, phylogenetically, or functionally nested? (b) Do similar processes drive these nestedness facets? (d) Are a host's biological traits associated with nestedness of its flea assemblages? Rows of host matrices were ordered by decreasing species richness/the sum of the branch lengths of a phylogenetic tree/functional dendrogram or by decreasing region area or by increasing distance from the centre of a host's geographic range. None of the matrices sorted by species richness/sum of branch lengths were nested from a compositional perspective, but they were significantly nested from phylogenetic and functional perspectives. Compositional, phylogenetic, and functional nestedness of matrices sorted by region area or by distance from the host's geographic range centre varied between hosts. In some hosts, flea assemblages were nested from all three perspectives independently of how matrix rows were sorted, whereas in other hosts, the occurrence of significant nestedness depended on the order of the matrix rows. The degree of phylogenetic and functional nestedness for matrices sorted by the sum of branch lengths was associated with a host species' morphoecological traits and the latitude of its geographic range. We conclude that consideration of nestedness based solely on species composition does not allow a comprehensive understanding of the patterns of parasite community structure. Nestedness should also be considered from phylogenetic and functional perspectives.


Subject(s)
Host Specificity , Siphonaptera , Animals , Phylogeny , Cell Movement , Mammals
3.
Parasitology ; 150(11): 1031-1039, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37705252

ABSTRACT

Combining the biogeography and phylogenetic patterns of parasite-host associations allows a better understanding of the history of parasite­host interactions, which can be achieved via biogeographic regionalization incorporating phylogenetic information. Recently, the concepts of evoregions (regions where a majority of species evolved from one or several ancestors inhabiting these regions) and evolutionary transition zones (regions of high phylogenetic turnover) have been proposed, coupled with a classification approach for these concepts. We applied this approach to 206 flea species and 265 host species of the Palearctic and aimed to identify evoregions and evolutionary transition zones for both fleas and hosts and to understand whether these evoregions and transition zones match each other. We identified 5 evoregions with 3 transition zones for either fleas or hosts, but neither the positions and boundaries of the flea and host evoregions nor the transition zones coincided. Indications of multiple geographic centres of diversification of the same flea lineages suggested that (a) the common evolutionary history of fleas and hosts was characterized by multiple events other than codiversification and that (b) dispersal played an important role in flea and host assemblies. Barriers to dispersal could be represented by landscape features (deserts and mountain ranges) and/or climate differences.


Subject(s)
Flea Infestations , Parasites , Siphonaptera , Animals , Phylogeny , Flea Infestations/veterinary , Mammals , Host-Parasite Interactions
4.
Parasitology ; 150(5): 455-467, 2023 04.
Article in English | MEDLINE | ID: mdl-36799019

ABSTRACT

We investigated phylogenetic patterns in flea assemblages from 80 regions in 6 biogeographic realms and asked whether (a) flea phylogenetic turnover is driven by host phylogenetic turnover, environmental dissimilarity or geographic distance; (b) the relative importance of these drivers differs between realms; and (c) the environmental drivers of flea phylogenetic turnover are similar to those of host phylogenetic turnover. We also asked whether the phylogenetic originality of a flea species correlates with the degree of its host specificity and whether the phylogenetic originality of a host species correlates with the diversity of its flea assemblages. We found that host phylogenetic turnover was the best predictor of flea phylogenetic turnover in all realms, whereas the effect of the environment was weaker. Environmental predictors of flea phylogenetic turnover differed between realms. The importance of spatial distances as a predictor of the phylogenetic dissimilarity between regional assemblages varied between realms. The responses of host turnover differed from those of fleas. In 4 of the 6 realms, geographic distances were substantially better predictors of host phylogenetic turnover than environmental gradients. We also found no general relationship between flea phylogenetic originality and its host specificity in terms of either host species richness or host phylogenetic diversity. We conclude that flea phylogenetic turnover is determined mainly by the phylogenetic turnover of their hosts rather than by environmental gradients. Phylogenetic patterns in fleas are manifested at the level of regional assemblages rather than at the level of individual species.


Subject(s)
Flea Infestations , Siphonaptera , Animals , Siphonaptera/physiology , Phylogeny , Mammals , Host Specificity , Flea Infestations/veterinary , Host-Parasite Interactions
5.
Parasitol Res ; 122(10): 2317-2324, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37522953

ABSTRACT

We studied the relationship between fleas' metabolic rate and their ecological traits, using data on standard metabolic rate (SMR), mean abundance, host specificity, and geographic range size in males and females of seven desert flea species. SMR was measured via mass-specific CO2 emission, whereas host specificity was measured as (a) the mean number of host species used by a flea per region in regions where this flea was recorded; (b) the total number of host species a flea exploited across its geographic range; and (c) the phylogenetic diversity of the flea's hosts. To control for confounding effects of phylogeny when analysing data on multiple species, we applied the Phylogenetic Generalised Least Squares (PGLS) model. We found that the only ecological trait significantly correlating with flea SMR was the phylogenetic diversity of hosts utilized by a flea across its geographic range. The strength of the association between SMR and host phylogenetic diversity was higher in male than in female fleas. We explain the relationship between flea SMR and their host specificity by the necessity of host-opportunistic species to compensate for the high energetic cost of neutralizing multiple defences from multiple hosts by increased SMR.


Subject(s)
Flea Infestations , Siphonaptera , Animals , Male , Female , Phylogeny , Host-Parasite Interactions , Flea Infestations/veterinary , Host Specificity
6.
Parasitology ; 149(11): 1450-1459, 2022 09.
Article in English | MEDLINE | ID: mdl-35787741

ABSTRACT

We used data on the species composition of regional assemblages of fleas and their small mammalian hosts from 6 biogeographic realms and applied a novel method of step-down factor analyses (SDFA) and cluster analyses to identify biogeographic (across the entire globe) and ecological (within a realm across the main terrestrial biomes) clusters of these assemblages. We found that, at the global scale, the clusters of regional assemblage loadings on SDFA axes reflected well the assemblage distribution, according to the biogeographic realms to which they belong. At the global scale, the cluster topology, corresponding to the biogeographic realms, was similar between flea and host assemblages, but the topology of subtrees within realm-specific clusters substantially differed between fleas and hosts. At the scale of biogeographic realms, the distribution of regional flea and host assemblages did not correspond to the predominant biome types. Assemblages with similar loadings on SDFA axes were often situated in different biomes and vice versa. The across-biome, within-realm distributions of flea vs host assemblages suggested weak congruence between these distributions. Our results indicate that dispersal is a predominant mechanism of flea and host community assembly across large regions.


Subject(s)
Flea Infestations , Siphonaptera , Animals , Ecosystem , Flea Infestations/veterinary , Host-Parasite Interactions , Mammals
7.
Parasitol Res ; 121(3): 851-866, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35137286

ABSTRACT

We applied the concept of dark diversity (species that may potentially inhabit a locality but are absent) to the host spectrum of a parasite and defined it as dark host specificity (DHS). We studied the trait-associated and geographic patterns of dark host specificity in fleas and gamasid mites parasitic on small mammals, asking the following questions: (a) Is dark host specificity repeatable across populations of the same species? (b) Is it associated with morphological and/or ecological species traits? (c) What are the factors associated with geographical variation in the DHS among populations of the same species? The DHS was repeatable within species with a large proportion of variance among samples, accounted for by differences between species. The average DHS of fleas, but not mites, was affected by parasite traits, with the DHS being higher in fleas with larger geographic ranges, higher characteristic abundance levels, and summer reproduction peaks. In the majority of ectoparasites, the regional DHS decreased with an increase in either structural or phylogenetic host specificity. The associations between the DHS and the environmental or host-associated characteristics of a region were revealed in a few species (eight of 22 fleas and three of 12 mites). The DHS decreased with (a) an increase in air temperature in two fleas, (b) a decrease in precipitation in two fleas, and (c) an increase in regional host species richness (in three fleas and three mites). Overall, our results suggest that dark host specificity in arthropod ectoparasites is a species-specific character associated, to a large extent, with the breadth of their host-related niches, while the influences of parasite traits and local environmental conditions are minor.


Subject(s)
Mites , Parasites , Siphonaptera , Animals , Host Specificity , Host-Parasite Interactions , Phylogeny
8.
Oecologia ; 197(2): 471-484, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34477961

ABSTRACT

Biological communities may be assembled by both niche-based and dispersal-based (= historic) processes with the relative importance of these processes in community assembly being scale- and context-dependent. To infer whether (a) niche-based or dispersal-based processes play the main role in the assembly of flea communities parasitic on small mammals and whether (b) the main processes of flea community assembly are scale-dependent, we applied a novel permutation-based algorithm (PER-SIMPER) and the dispersal-niche continuum index (DNCI), to data on the species incidence of fleas and their hosts at two spatial scales. At the larger (continental) scale, we analysed flea communities in four biogeographic realms across adjacent continental sections. At the smaller (local) scale, we considered flea communities across two main regions (lowlands and mountains) and seven habitat types within Slovakia. Our analyses demonstrated that species composition of fleas and their small mammalian hosts depended predominantly on historical processes (dispersal) at both scale. This was true for the majority of biogeographic realms at continental scale (except the Nearctic) and both regions at local scale. Nevertheless, strong niche-based assembly mechanism was found in the Nearctic assemblages. At local scale, the intensity of dispersal processes was weaker and niche-driven processes were stronger between habitats within a region than between mountain and lowland regions. We provide historical and ecological explanations for these patterns. We conclude that the assembly of compound flea communities is governed, to a great extent, by the dispersal processes acting on their hosts and, to a lesser extent, by the niche-based processes.


Subject(s)
Flea Infestations , Parasites , Siphonaptera , Animals , Ecosystem , Flea Infestations/veterinary , Host-Parasite Interactions , Mammals
9.
Parasitology ; 148(6): 685-695, 2021 05.
Article in English | MEDLINE | ID: mdl-33583440

ABSTRACT

We studied patterns of compositional, functional, and phylogenetic α- and ß-diversity in flea and gamasid mite infracommunities of small Siberian mammals, taking into account host-associated (species) and environmental (biome or sampling period) factors. We asked: (a) How do these factors and their interactions affect infracommunity diversity? (b) Does infracommunity composition, in terms of species, traits, and phylogenetic lineages, deviate from random? (c) Are species, traits, and phylogenetic lineages in infracommunities clustered or overdispersed?, and (d) Do patterns of diversity differ between the three diversity facets and/or the two ectoparasite taxa? We found that the α-diversity of infracommunities was strongly affected by host species, biome, and sampling period. The highest proportion of infracommunity diversity in both taxa was associated with the interaction between either host species and biome or host species and sampling period. Infracommunities of both taxa within, as well as between, host species, biomes, and sampling periods were characterized by the clustering of species, traits and lineages. The patterns of the effects of host species, biome, and sampling period on infracommunity diversity were congruent among the three diversity facets in both fleas and mites. We conclude that the assembly patterns in ectoparasite infracommunities mirror those characteristics of component and compound communities.


Subject(s)
Biodiversity , Ectoparasitic Infestations/veterinary , Mites/classification , Rodent Diseases/parasitology , Shrews/parasitology , Siphonaptera/classification , Animals , Ecosystem , Ectoparasitic Infestations/parasitology , Host-Parasite Interactions , Mites/anatomy & histology , Mites/genetics , Mites/physiology , Phylogeny , Rodentia , Siphonaptera/anatomy & histology , Siphonaptera/genetics , Siphonaptera/physiology , Spatial Analysis , Time Factors
10.
J Anim Ecol ; 89(12): 2888-2895, 2020 12.
Article in English | MEDLINE | ID: mdl-32936457

ABSTRACT

Harrison's rule states that parasite body size and the body size of their hosts tend to be positively correlated. After it was proposed a century ago, a number of studies have investigated this trend, but the support level has varied greatly between parasite/host associations. Moreover, while the rule has been tested at the individual species level, we still lack knowledge on whether Harrison's rule holds at the scale of parasite and host communities. Here, we mapped flea (parasites) and rodent (hosts) body sizes across Mongolia and asked whether Harrison's rule holds for parasite/host assemblages (i.e. whether a parasite's average body size in a locality is positively correlated with its host's average body size). In addition, we attempted to disentangle complex relationships between flea size, host size and environmental factors by testing alternative hypotheses for the determinants of fleas' body size variation. We gathered occurrence data for fleas and rodents from 2,370 sites across Mongolia, constructed incidence matrices for both taxa and calculated the average body sizes of fleas and their hosts over half-degree cells. Then, we applied a path analysis, accounting for spatial autocorrelation, trying to disentangle the drivers of the correlation between parasite and host body sizes. We found a strong positive correlation between average flea and host size across assemblages. Surprisingly though, we found that environmental factors simultaneously affected the body sizes of both fleas and hosts in the same direction, leading to a most likely deceptive correlation between parasite and host size across assemblages. We suggest that environmental factors may, to a great extent, reflect the environmental conditions inside the hosts' burrows where fleas develop and attain their adult body size, thus influencing their larval growth. Similarly, rodent body size is strongly influenced by air temperature, in the direction predicted by Bergmann's rule. If our findings are valid in other host-parasite associations, this may explain the dissenting results of both support and lack thereof for Harrison's rule.


Subject(s)
Parasites , Siphonaptera , Animals , Body Size , Host-Parasite Interactions
11.
Parasitology ; 146(5): 653-661, 2019 04.
Article in English | MEDLINE | ID: mdl-30430954

ABSTRACT

The ß-diversity of fleas parasitic on small mammals in 45 regions of the Palearctic was partitioned into species [species contributions to ß-diversity (SCBD)] and site ( = assemblage) contributions [local contributions to ß-diversity (LCBD)]. We asked what are the factors affecting SCBD and LCBD and tested whether (a) variation in ecological, morphological, life history and geographic traits of fleas can predict SCBD and (b) variation in flea and host community metrics, off-host environmental factors, host species composition of flea assemblages can predict LCBD. We used spatial variables to describe geographic distribution of flea assemblages with various LCBD values. SCBD significantly increased with an increase in abundance and a decrease in phylogenetic host specificity of a flea as well as with size and latitude of its geographic range, but was not associated with any morphological/life history trait. LCBD of flea assemblages did not depend on either flea or host species richness or environmental predictors, but was significantly affected by compositional uniqueness ( = LCBD) of regional host assemblages and variables describing their species composition. In addition, variation in LCBD was also explained by broad-to-moderate-scale spatial variables. We conclude that SCBD of fleas could be predicted via their ecological and geographic traits, whereas LCBD of their assemblages could be predicted via host composition.


Subject(s)
Biodiversity , Eulipotyphla , Flea Infestations/veterinary , Lagomorpha , Rodentia , Siphonaptera/physiology , Africa, Northern/epidemiology , Animal Distribution , Animals , Asia/epidemiology , Europe/epidemiology , Flea Infestations/epidemiology , Flea Infestations/parasitology , Host-Parasite Interactions
12.
Parasitol Res ; 118(7): 2107-2120, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31187223

ABSTRACT

We studied the effects of variation in environmental, host-associated and spatial factors on variation in compositional, phylogenetic/taxonomic and functional facets of beta-diversity in fleas and gamasid mites parasitic on small mammals and asked whether (a) the importance of these factors as drivers of beta-diversity differs among its multiple facets and (b) the effects of variation in environment, hosts and space on beta-diversity variation differ between the two ectoparasite taxa. To understand the relative effects of each group of predictors, we used a distance-based redundancy analysis and variation partitioning. The greatest portions of variation in the compositional beta-diversity of fleas were equally explained by host-associated and spatial predictors, whereas variation in host species composition contributed the most to variation in the compositional beta-diversity of mites. Variation in the phylogenetic (i.e. based on phylogenetic tree) beta-diversity of fleas was mainly due to variation in the phylogenetic composition of host communities, while the taxonomic (i.e. based on Linnean taxonomy) beta-diversity of mites was influenced by environmental variation. Unique contributions of spatial and environmental variation explained most of the variation in functional beta-diversity and its species replacement (= turnover) component (i.e. beta-diversity explained by replacement of species alone) in fleas and mites, respectively. Variation in the richness difference component (i.e. beta-diversity explained by species loss/gain alone) of functional beta-diversity was mainly affected by either variation in the functional composition of host assemblages (fleas) or its joint action with environmental variables (mites). We conclude that the pattern of the relative effects of environmental, host-associated and spatial factors on beta-diversity is context-dependent and may differ among different facets of beta-diversity, among different beta-diversity components and also among taxa dependent on biological affinities.


Subject(s)
Arthropods/classification , Arthropods/genetics , Flea Infestations/veterinary , Mite Infestations/parasitology , Mite Infestations/veterinary , Mites/genetics , Siphonaptera/genetics , Animals , Biodiversity , Environment , Female , Flea Infestations/parasitology , Host Specificity , Male , Mammals , Mites/classification , Phylogeny , Siphonaptera/classification
13.
Parasitol Res ; 118(4): 1113-1125, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30778750

ABSTRACT

We tested whether biogeographic patterns characteristic of species diversity and composition may also apply to community assembly by investigating geographic variation in the pattern (PSA) (aggregation versus segregation) and strength of species associations (SSA) in flea and mite communities harbored by small mammalian hosts in Western Siberia. We asked whether (a) there is a relationship between latitude and PSA or SSA and (b) similarities in PSA or SSA follow a distance decay pattern or if they are better explained by variation in environmental factors (altitude, amount of vegetation, precipitation, and air temperature). We used a sign of a co-occurrence metric (the C-score) as an indicator of PSA and its absolute standardized value as a measure of SSA. We analyzed data using logistic and linear models, generalized dissimilarity modeling (GDM), and a logistic version of the multiple regression on distance matrices (MRM). The majority of the C-scores of the observed presence/absence matrices indicated a tendency to species aggregation rather than segregation. No effect of latitude on PSA or SSA was found. The dissimilarity in PSA was affected by environmental dissimilarity in mite compound communities only. A relatively large proportion of the deviance of spatial variation in SSA was explained by the GDMs in infracommunities, but not component communities, and in only three (of seven) and two (of eight) host species of fleas and mites, respectively. The best predictors of dissimilarity in SSA in fleas differed between host species, whereas the same factor (precipitation) was the best predictor of dissimilarity in SSA in mites. We conclude that PSA and SSA in parasite communities rarely conform to biogeographic rules. However, when a biogeographic pattern is detected, its manifestation differs among hosts and between ectoparasite taxa.


Subject(s)
Environment , Geography , Mammals/parasitology , Mites/growth & development , Parasites/growth & development , Siphonaptera/growth & development , Animals , Flea Infestations , Host-Parasite Interactions , Siberia
14.
Parasitology ; 145(12): 1623-1632, 2018 10.
Article in English | MEDLINE | ID: mdl-29642959

ABSTRACT

To understand existence, patterns and mechanisms behind phylogenetic heritability in the geographic range size (GRS) of parasites, we measured phylogenetic signal (PS) in the sizes of both regional (within a region) and continental (within a continent) geographic ranges of fleas in five regions. We asked whether (a) GRS is phylogenetically heritable and (b) the manifestation of PS varies between regions. We also asked whether geographic variation in PS reflects the effects of the environment's spatiotemporal stability (e.g. glaciation disrupting geographic ranges) or is associated with time since divergence (accumulation differences among species over time). Support for the former hypothesis would be indicated by stronger PS in southern than in northern regions, whereas support for the latter hypothesis would be shown by stronger PS in regions with a large proportion of species belonging to the derived lineages than in regions with a large proportion of species belonging to the basal lineages. We detected significant PS in both regional and continental GRSs of fleas from Canada and in continental GRS of fleas from Mongolia. No PS was found in the GRS of fleas from Australia and Southern Africa. Venezuelan fleas demonstrated significant PS in regional GRS only. Local Indicators of Phylogenetic Association detected significant local positive autocorrelations of GRS in some clades even in regions in which PS has not been detected across the entire phylogeny. This was mainly characteristic of younger taxa.


Subject(s)
Flea Infestations/parasitology , Siphonaptera/classification , Africa, Southern , Animals , Australia , Canada , Geography , Humans , Mongolia , Phylogeny , Siphonaptera/genetics
15.
Parasitol Res ; 114(5): 1677-86, 2015 May.
Article in English | MEDLINE | ID: mdl-25648445

ABSTRACT

We investigated the phylogenetic structure of flea assemblages collected from small mammals on opposite sides of and increasing distance from the former Bering Land Bridge (BLB) using crossed double principal coordinate analysis (crossed-DPCoA). Phylogenetic composition of flea assemblages differed substantially between continents, but phylogenetic similarity between the Nearctic and Palearctic assemblages was the highest in the regions closer to the BLB. Within continents, phylogenetic similarity of flea assemblages was lower between regions closer to the BLB and those farther from the BLB than among regions within each of these groups. The Palearctic assemblages were represented mainly by basal families, while the Nearctic assemblages were dominated by a derived family (Ceratophyllidae), suggesting predominantly eastward pre-glaciation movements. In contrast, within the youngest flea family (Ceratophyllidae), the basal clades were characteristic for the Nearctic, while some species of a few derived clades were characteristic for the Palearctic, suggesting that, at least, during glaciation, westward movements occurred as well. In addition, multiple within-family clades of fleas were represented on opposite sides of the BLB suggesting multiple colonization events. This study is the first attempt to apply modern analytical methods of community ecology to reveal patterns in historical biogeography.


Subject(s)
Siphonaptera/classification , Animals , Arctic Regions , Asia, Northern , Biota , Flea Infestations/parasitology , Flea Infestations/veterinary , Mammals , North America , Phylogeny , Phylogeography
16.
Parasitol Res ; 114(10): 3767-74, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26141434

ABSTRACT

We investigated intraspecific variation in body size of an ectoparasitic gamasid mite, Laelaps clethrionomydis, across 12 localities in the Palearctic. We asked whether mites collected from the same host species in different localities or from different host species in the same locality vary in body size. Within host species, mites collected in different localities differed significantly in body size, tending to be larger in northern than in southern localities. In addition, mite body size correlated negatively with mean annual temperature in a locality. Mites collected from different hosts in the same locality differed significantly in body size when hosts belonged to different genera but did not differ when collected from congeneric hosts. We conclude that intraspecific variation in mite body size is caused by interplay of environmental and host-related factors.


Subject(s)
Body Size , Host Specificity , Mites/anatomy & histology , Animal Distribution , Animals , Mammals/parasitology , Mite Infestations/parasitology , Mite Infestations/veterinary , Mites/physiology , Species Specificity
17.
Parasitology ; 141(2): 181-91, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24001220

ABSTRACT

We investigated spatial variation in the phylogenetic structure of host spectra in fleas parasitic on small mammals. Measures of phylogenetic host specificity ((phylogenetic species clustering (PSC) and phylogenetic species variability (PSV)) varied significantly more between than within flea species, but the proportion of variation which accounted for among-species differences was low. In 13 of 18 common flea species, at least one of the indices of the phylogenetic structure of regional host spectra revealed a significantly positive association with the phylogenetic structure of regional host assemblage, while relationships between PSC or PSV of the regional host spectrum and the distance from either the region of a flea's maximal abundance or latitude were not supported. Overall, results of this study demonstrated that although the degree of phylogenetic host specificity in fleas can be considered as a true attribute of a flea species, it is highly spatially variable, with phylogenetic structure of the surrounding host pool being the main reason behind this variation.


Subject(s)
Flea Infestations/veterinary , Siphonaptera/genetics , Animals , Demography , Environment , Eulipotyphla , Flea Infestations/epidemiology , Flea Infestations/parasitology , Host Specificity , Host-Parasite Interactions , Lagomorpha , Models, Biological , Phylogeny , Rodentia , Siphonaptera/classification , Siphonaptera/physiology , Spatial Analysis
18.
Parasitol Res ; 113(8): 2777-88, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24820040

ABSTRACT

We studied the effect of host gender and body mass on species richness of flea infracommunities in nine rodent host species from three biomes (temperate zone of central Europe, desert of the Middle East and the tropics of East Africa). Using season- and species-specific generalized linear mixed models and controlling for year-to-year variation, spatial clustering of rodent sampling and over-dispersion of the data, we found inconsistent associations between host characteristics and flea species richness. We found strong support for male-biased flea parasitism, especially during the reproductive period (higher species richness in male hosts than in females) in all considered European rodents (Apodemus agrarius, Myodes glareolus and Microtus arvalis) and in one rodent species from the Middle East (Dipodillus dasyurus). In contrast, two of three African rodent species (Lophuromys kilonzoi and Praomys delectorum) demonstrated a trend of female-biased flea species richness. Positive associations between body mass and the number of flea species were detected mainly in males (five of nine species: A. agrarius, M. glareolus, M. arvalis, D. dasyurus and Mastomys natalensis) and not in females (except for M. natalensis). The results of this study support earlier reports that gender-biased, in general, and male-biased, in particular, infestation by ectoparasites is not a universal rule. This suggests that mechanisms of parasite acquisition by an individual host are species-specific and have evolved independently in different rodent host-flea systems.


Subject(s)
Rodentia/parasitology , Siphonaptera/classification , Africa, Eastern , Animals , Body Weight , Ectoparasitic Infestations/parasitology , Europe , Female , Linear Models , Male , Middle East , Reproduction , Seasons , Species Specificity
19.
Integr Zool ; 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263720

ABSTRACT

We studied spatial variation in the effects of environment and network size on species positions and roles in multiple flea-mammal networks from four biogeographic realms. We asked whether species positions (measured as species strength [SS], the degree of interaction specialization [d'], and the eigenvector centrality [C]) or the roles of fleas and their hosts in the interaction networks: (a) are repeatable/conserved within a flea or a host species; (b) vary in dependence on environmental variables and/or network size; and (c) the effects of environment and network size on species positions or roles in the networks depend on species traits. The repeatability analysis of species position indices for 441 flea and 429 host species, occurring in at least two networks, demonstrated that the repeatability of SS, d', and C within a species was significant, although not especially high, suggesting that the indices' values were affected by local factors. The majority of flea and host species in the majority of networks demonstrated a peripheral role. A value of at least one index of species position was significantly affected by environmental variables or network size in 41 and 36, respectively, of the 52 flea and 52 host species that occurred in multiple networks. In both fleas and hosts, the occurrence of the significant effect of environment or network size on at least one index of species position, but not on a species' role in a network, was associated with some species traits.

20.
Microb Ecol ; 66(4): 940-9, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23857378

ABSTRACT

Rodents affect soil microbial communities by burrow architecture, diet composition, and foraging behavior. We examined the effect of desert rodents on nitrogen-fixing bacteria (NFB) communities by identifying bacteria colony-forming units (CFU) and measuring nitrogen fixation rates (ARA), denitrification (DA), and CO2 emission in soil from burrows of three gerbil species differing in diets. Psammomys obesus is folivorous, Meriones crassus is omnivorous, consuming green vegetation and seeds, and Dipodillus dasyurus is predominantly granivorous. We also identified NFB in the digestive tract of each rodent species and in Atriplex halimus and Anabasis articulata, dominant plants at the study site. ARA rates of soil from burrows of the rodent species were similar, and substantially lower than control soil, but rates of DA and CO2 emission differed significantly among burrows. Highest rates of DA and CO2 emission were measured in D. dasyurus burrows and lowest in P. obesus. CFU differed among bacteria isolates, which reflected dietary selection. Strains of cellulolytic representatives of the family Myxococcaceae and the genus Cytophaga dominated burrows of P. obesus, while enteric Bacteroides dominated burrows of D. dasyurus. Burrows of M. crassus contained both cellulolytic and enteric bacteria. Using discriminant function analysis, differences were revealed among burrow soils of all rodent species and control soil, and the two axes accounted for 91 % of the variance in bacterial occurrences. Differences in digestive tract bacterial occurrences were found among these rodent species. Bacterial colonies in P. obesus and M. crassus burrows were related to bacteria of A. articulata, the main plant consumed by both species. In contrast, bacteria colonies in the burrow soil of D. dasyurus were related to bacteria in its digestive tract. We concluded that gerbils play an important role as ecosystem engineers within their burrow environment and affect the microbial complex of the nitrogen-fixing organisms in soils.


Subject(s)
Bacteria/isolation & purification , Gerbillinae/physiology , Soil Microbiology , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Denitrification , Ecosystem , Gastrointestinal Tract/microbiology , Gerbillinae/classification , Gerbillinae/microbiology , Nitrogen/metabolism , Nitrogen Fixation , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL