ABSTRACT
Tendinopathy is a disorder of musculoskeletal system that primarily affects athletes and the elderly. Current treatment options are generally comprised of various exercise and loading programs, therapeutic modalities, and surgical interventions and are limited to pain management. This study is to understand the role of TRIM54 (tripartite motif containing 54) in tendonitis through in vitro modeling with tendon-derived stem cells (TDSCs) and in vivo using rat tendon injury model. Initially, we observed that TRIM54 overexpression in TDSCs model increased stemness and decreased apoptosis. Additionally, it rescued cells from tumor necrosis factor α-induced inflammation, migration, and tenogenic differentiation. Further, through immunoprecipitation studies, we identified that TRIM54 regulates inflammation in TDSCs by binding to and ubiquitinating YOD1. Further, overexpression of TRIM54 improved the histopathological score of tendon injury as well as the failure load, stiffness, and young modulus in vivo. These results indicated that TRIM54 played a critical role in reducing the effects of tendon injury. Consequently, these results shed light on potential therapeutic alternatives for treating tendinopathy.
Subject(s)
Endopeptidases , Muscle Proteins , Tendinopathy , Thiolester Hydrolases , Aged , Animals , Humans , Rats , Apoptosis , Cell Differentiation/physiology , Endopeptidases/metabolism , Stem Cells , Tendinopathy/metabolism , Tendon Injuries/therapy , Tendon Injuries/metabolism , Tendons/metabolism , Thiolester Hydrolases/metabolism , Muscle Proteins/metabolismABSTRACT
Anaplastic thyroid carcinoma (ATC) is a deadly disease with a poor prognosis. Thus, there is a pressing need to determine the mechanism of ATC progression. The homeobox D9 (HOXD9) transcription factor has been associated with numerous malignancies but its role in ATC is unclear. In the present study, the carcinogenic potential of HOXD9 in ATC was investigated. We assessed the differential expression of HOXD9 on cell proliferation, migration, invasion, apoptosis, and epithelial-mesenchymal transition (EMT) in ATC and explored the interactions between HOXD9, microRNA-451a (miR-451a), and proteasome 20S subunit beta 8 (PSMB8). In addition, subcutaneous tumorigenesis and lung metastasis in mouse models were established to investigate the role of HOXD9 in ATC progression and metastasis in vivo. HOXD9 expression was enhanced in ATC tissues and cells. Knockdown of HOXD9 inhibited cell proliferation, migration, invasion, and EMT but increased apoptosis in ATC cells. The UCSC Genome Browser and JASPAR database identified HOXD9 as an upstream regulator of miR-451a. The direct binding of miR-451a to the untranslated region (3'-UTR) of PSMB8 was established using a luciferase experiment. Blocking or activation of PI3K by LY294002 or 740Y-P could attenuate the effect of HOXD9 interference or overexpression on ATC progression. The PI3K/AKT signaling pathway was involved in HOXD9-stimulated ATC cell proliferation and EMT. Consistent with in vitro findings, the downregulation of HOXD9 in ATC cells impeded tumor growth and lung metastasis in vivo. Our research suggests that through PI3K/AKT signaling, the HOXD9/miR-451a/PSMB8 axis may have significance in the control of cell proliferation and metastasis in ATC. Thus, HOXD9 could serve as a potential target for the diagnosis of ATC.
Subject(s)
Lung Neoplasms , MicroRNAs , Thyroid Carcinoma, Anaplastic , Thyroid Neoplasms , Animals , Humans , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Epithelial-Mesenchymal Transition/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Lung Neoplasms/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasm Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Thyroid Carcinoma, Anaplastic/genetics , Thyroid Carcinoma, Anaplastic/metabolism , Thyroid Carcinoma, Anaplastic/pathology , Thyroid Neoplasms/pathologyABSTRACT
BACKGROUND: Glioblastomas are lethal brain tumors under the current combinatorial therapeutic strategy that includes surgery, chemo- and radio-therapies. Extensive changes in the tumor microenvironment is a key reason for resistance to chemo- or radio-therapy and frequent tumor recurrences. Understanding the tumor-nontumor cell interaction in TME is critical for developing new therapy. Glioblastomas are known to recruit normal cells in their environs to sustain growth and encroachment into other regions. Neural progenitor cells (NPCs) have been noted to migrate towards the site of glioblastomas, however, the detailed mechanisms underlying glioblastoma-mediated NPCs' alteration remain unkown. METHODS: We collected EVs in the culture medium of three classic glioblastoma cell lines, U87 and A172 (male cell lines), and LN229 (female cell line). U87, A172, and LN229 were co-cultured with their corresponding EVs, respectively. Mouse NPCs (mNPCs) were co-cultured with glioblastoma-derived EVs. The proliferation and migration of tumor cells and mNPCs after EVs treatment were examined. Proteomic analysis and western blotting were utilized to identify the underlying mechanisms of glioblastoma-derived EVs-induced alterations in mNPCs. RESULTS: We first show that glioblastoma cell lines U87-, A172-, and LN229-derived EVs were essential for glioblastoma cell prolifeartion and migration. We then demonstrated that glioblastoma-derived EVs dramatically promoted NPC proliferation and migration. Mechanistic studies identify that glioblastoma-derived EVs achieve their functions via activating PI3K-Akt-mTOR pathway in mNPCs. Inhibiting PI3K-Akt pathway reversed the elevated prolfieration and migration of glioblastoma-derived EVs-treated mNPCs. CONCLUSION: Our findings demonstrate that EVs play a key role in intercellular communication in tumor microenvironment. Inhibition of the tumorgenic EVs-mediated PI3K-Akt-mTOR pathway activation might be a novel strategy to shed light on glioblastoma therapy. Video Abstract.
Subject(s)
Extracellular Vesicles , Glioblastoma , Neural Stem Cells , Animals , Cell Line, Tumor , Cell Proliferation , Extracellular Vesicles/metabolism , Female , Glioblastoma/pathology , Male , Mice , Neoplasm Recurrence, Local/metabolism , Neural Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proteomics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tumor MicroenvironmentABSTRACT
APP misexpression plays a crucial role in triggering a complex pathological cascade, leading to Alzheimer's disease (AD). But how the expression of APP is regulated in pathological conditions remains poorly understood. In this study, we found that the exosomes isolated from AD mouse brain promoted APP expression in neuronal N2a cells. Moreover, exosomes derived from N2a cells with ectopic expression of APP (APP-EXO) also induced APP dysregulation in normal N2a cells. Surprisingly, the effects of APP-EXO on APP expression in recipient cells were not mediated by the direct transferring of APP gene products. Instead, the effects of APP-EXO were highly likely mediated by the reduction of the expression levels of exosomal miR-185-5p. We found that the 3'UTR of APP transcripts binds to miR-185-5p, therefore inhibiting the sorting of miR-185-5p to exosomes. N2a cell-derived exosomes with less amount of miR-185-5p exert similar roles in APP expression to APP-EXO. Lastly, we demonstrated a significant decline of serum exosomal miR-185-5p in AD patients and AD mice, versus the corresponding controls. Together, our results demonstrate a novel mechanism in the exosome-dependent regulation of APP, implying exosomes and exosomal miRNAs as potential therapeutic targets and biomarkers for AD treatment and diagnosis, respectively.
ABSTRACT
Recent studies suggest that astrocytes released a great quantity of extracellular vesicles (AEVs) to communicate with other brain cells. Under pathological conditions, AEVs are widely associated with the pathogenesis of neurobiological diseases by horizontally transferring pathogenic factors to neighboring cells or peripheral immune cells. Their beneficial role is also evident by the fact that they are involved in neuroprotection and neuroregeneration through alleviating apoptosis, maintaining neuronal function, and repairing neural injuries. The strong association of AEVswith neurological disorders makes AEVs a promising target for disease diagnosis, treatment, and prevention. The identification of disease-specific cargos in AEVs isolated from the patients' biofluids suggests AEVs as an attractive platform for biomarker development. Furthermore, the inhibition of inflammatory/toxic AEV release and the preservation of neuroprotective AEV release have been considered as potential therapeutic strategies in CNS disorder treatment and prevention, respectively. Here, we summarize the biological roles of AEVs as pathological contributors, protective/regenerative factors, and potential diagnostic biomarkers and therapeutic targets for neurological disorders, with a focus on recent progresses and emerging concepts.
Subject(s)
Central Nervous System Diseases , Extracellular Vesicles , Astrocytes , Brain , Humans , NeuronsABSTRACT
Cerebral ischemia induces a robust neuroinflammatory response that is largely mediated by the activation of CNS resident microglia. Activated microglia produce pro-inflammatory molecules to cause neuronal damage. Identifying regulators of microglial activation bears great potential in discovering promising candidates for neuroprotection post cerebral ischemia. Previous studies demonstrate abnormal elevation of glutaminase 1 (GLS1) in microglia in chronic CNS disorders including Alzheimer's disease and HIV-associated neurocognitive disorders. Ectopic expression of GLS1 induced microglia polarization into pro-inflammatory phenotype and exosome release in vitro. However, whether GLS1 is involved in neuroinflammation in acute brain injury remains unknown. Here, we observed activation of microglia, elevation of GLS1 expression, and accumulation of pro-inflammatory exosomes in rat brains 72 h post focal cerebral ischemia. Treatment with CB839, a glutaminase inhibitor, reversed ischemia-induced microglial activation, inflammatory response, and exosome release. Furthermore, we found that the application of exosome secretion inhibitor, GW4869, displayed similar anti-inflammatory effects to that of CB839, suggesting GLS1-mediated exosome release may play an important role in the formation of neuroinflammatory microenvironment. Therefore, GLS1 may serve as a key mediator and promising target of neuroinflammatory response in cerebral ischemia.
Subject(s)
Brain Ischemia/pathology , Exosomes/metabolism , Glutaminase/metabolism , Inflammation/pathology , Microglia/immunology , Animals , Brain Ischemia/enzymology , Brain Ischemia/immunology , Exosomes/immunology , Inflammation/enzymology , Inflammation/immunology , Microglia/enzymology , Rats , Rats, Sprague-DawleyABSTRACT
Microglial activation is a key pathogenic process at the onset of Alzheimer's disease (AD). Identifying regulators of microglial activation bears great potential in elucidating causes and mechanisms of AD and determining candidates for early intervention. Previous studies demonstrate abnormal elevation of glutaminase C (GAC) in HIV-infected or immune-activated microglia. However, whether GAC elevation causes microglial activation remains unknown. In this study, we found heightened expression levels of GAC in early AD mouse brain tissues compared with those in control littermates. Investigations on an in vitro neuroinflammation model revealed that GAC is increased in primary mouse microglia following pro-inflammatory stimulation. To model GAC elevation we overexpressed GAC by plasmid transfection and observed that GAC-overexpression shift the microglial phenotype to a pro-inflammatory state. Treatment with BPTES, a glutaminase inhibitor, reversed LPS-induced microglial activation and inflammation. Furthermore, we discovered that GAC overexpression in mouse microglia increased exosome release and changed exosome content, which includes specific packaging of pro-inflammatory miRNAs that activate microglia. Together, our results demonstrate a causal effect of GAC elevation on microglial activation and exosome release, both of which promote the establishment of a pro-inflammatory microenvironment. Therefore, GAC may have important relevance to the pathogenesis of AD.