Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Proc Natl Acad Sci U S A ; 116(5): 1714-1722, 2019 01 29.
Article in English | MEDLINE | ID: mdl-30651311

ABSTRACT

Ocular corticosteroids are commonly used clinically. Unfortunately, their administration frequently leads to ocular hypertension, i.e., elevated intraocular pressure (IOP), which, in turn, can progress to a form of glaucoma known as steroid-induced glaucoma. The pathophysiology of this condition is poorly understood yet shares similarities with the most common form of glaucoma. Using nanotechnology, we created a mouse model of corticosteroid-induced ocular hypertension. This model functionally and morphologically resembles human ocular hypertension, having titratable, robust, and sustained IOPs caused by increased resistance to aqueous humor outflow. Using this model, we then interrogated the biomechanical properties of the trabecular meshwork (TM), including the inner wall of Schlemm's canal (SC), tissues known to strongly influence IOP and to be altered in other forms of glaucoma. Specifically, using spectral domain optical coherence tomography, we observed that SC in corticosteroid-treated mice was more resistant to collapse at elevated IOPs, reflecting increased TM stiffness determined by inverse finite element modeling. Our noninvasive approach to monitoring TM stiffness in vivo is applicable to other forms of glaucoma and has significant potential to monitor TM function and thus positively affect the clinical care of glaucoma, the leading cause of irreversible blindness worldwide.


Subject(s)
Adrenal Cortex Hormones/pharmacology , Aqueous Humor/physiology , Hypertension/chemically induced , Hypertension/physiopathology , Intraocular Pressure/physiology , Trabecular Meshwork/physiopathology , Animals , Blindness/physiopathology , Disease Models, Animal , Glaucoma/physiopathology , Mice , Mice, Inbred C57BL , Tomography, Optical Coherence/methods
2.
Am J Physiol Cell Physiol ; 320(4): C652-C665, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33439773

ABSTRACT

Intraocular pressure (IOP) is not static, but rather oscillates by 2-3 mmHg because of cardiac pulsations in ocular blood volume known as the ocular pulse. The ocular pulse induces pulsatile shear stress in Schlemm's canal (SC). We hypothesize that the ocular pulse modulates outflow facility by stimulating shear-induced nitric oxide (NO) production by SC cells. We confirmed that living mice exhibit an ocular pulse with a peak-to-peak (pk-pk) amplitude of 0.5 mmHg under anesthesia. Using iPerfusion, we measured outflow facility (flow/pressure) during alternating periods of steady or pulsatile IOP in both eyes of 16 cadaveric C57BL/6J mice (13-14 weeks). Eyes were retained in situ, with an applied mean pressure of 8 mmHg and 1.0 mmHg pk-pk pressure amplitude at 10 Hz to mimic the murine heart rate. One eye of each cadaver was perfused with 100 µM L-NAME to inhibit NO synthase, whereas the contralateral eye was perfused with vehicle. During the pulsatile period in the vehicle-treated eye, outflow facility increased by 16 [12, 20] % (P < 0.001) relative to the facility measured during the preceding and subsequent steady periods. This effect was partly inhibited by L-NAME, where pressure pulsations increased outflow facility by 8% [4, 12] (P < 0.001). Thus, the ocular pulse causes an immediate increase in outflow facility in mice, with roughly one-half of the facility increase attributable to NO production. These studies reveal a dynamic component to outflow function that responds instantly to the ocular pulse and may be important for outflow regulation and IOP homeostasis.


Subject(s)
Aqueous Humor/metabolism , Intraocular Pressure , Mechanotransduction, Cellular , Nitric Oxide/metabolism , Animals , Male , Mice, Inbred C57BL , Models, Biological , Perfusion , Stress, Mechanical , Time Factors
3.
FASEB J ; 34(8): 10762-10777, 2020 08.
Article in English | MEDLINE | ID: mdl-32623782

ABSTRACT

Lysyl oxidase-like-1 (LOXL1), a vital crosslinking enzyme in elastin fiber maintenance, is essential for the stability and strength of elastic vessels and tissues. Variants in the LOXL1 locus associate with a dramatic increase in risk of exfoliation syndrome (XFS), a systemic fibrillopathy, which often presents with ocular hypertension and exfoliation glaucoma (XFG). We examined the role of LOXL1 in conventional outflow function, the prime regulator of intraocular pressure (IOP). Using Loxl1-/- , Loxl1+/- , and Loxl1+/+ mice, we observed an inverse relationship between LOXL1 expression and IOP, which worsened with age. Elevated IOP in Loxl1-/- mice was associated with a larger globe, decreased ocular compliance, increased outflow facility, extracellular matrix (ECM) abnormalities, and dilated intrascleral veins, yet, no dilation of arteries or capillaries. Interestingly, in living Loxl1-/- mouse eyes, Schlemm's canal (SC) was less susceptible to collapse when challenged with acute elevations in IOP, suggesting elevated episcleral venous pressure (EVP). Thus, LOXL1 expression is required for normal IOP control, while ablation results in altered ECM repair/homeostasis and conventional outflow physiology. Dilation of SC and distal veins, but not arteries, is consistent with key structural and functional roles for elastin in low-pressure vessels subjected to cyclical mechanical stress.


Subject(s)
Amino Acid Oxidoreductases/metabolism , Animals , Exfoliation Syndrome/metabolism , Extracellular Matrix/metabolism , Glaucoma/metabolism , Homeostasis/physiology , Intraocular Pressure/physiology , Mice , Mice, Inbred C57BL , Ocular Hypertension/metabolism
4.
Hum Mol Genet ; 26(7): 1230-1246, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28158775

ABSTRACT

Intraocular pressure (IOP) is maintained as a result of the balance between production of aqueous humour (AH) by the ciliary processes and hydrodynamic resistance to its outflow through the conventional outflow pathway comprising the trabecular meshwork (TM) and Schlemm's canal (SC). Elevated IOP, which can be caused by increased resistance to AH outflow, is a major risk factor for open-angle glaucoma. Matrix metalloproteinases (MMPs) contribute to conventional aqueous outflow homeostasis in their capacity to remodel extracellular matrices, which has a direct impact on aqueous outflow resistance and IOP. We observed decreased MMP-3 activity in human glaucomatous AH compared to age-matched normotensive control AH. Treatment with glaucomatous AH resulted in significantly increased transendothelial resistance of SC endothelial and TM cell monolayers and reduced monolayer permeability when compared to control AH, or supplemented treatment with exogenous MMP-3.Intracameral inoculation of AAV-2/9 containing a CMV-driven MMP-3 gene (AAV-MMP-3) into wild type mice resulted in efficient transduction of corneal endothelium and an increase in aqueous concentration and activity of MMP-3. Most importantly, AAV-mediated expression of MMP-3 increased outflow facility and decreased IOP, and controlled expression using an inducible promoter activated by topical administration of doxycycline achieved the same effect. Ultrastructural analysis of MMP-3 treated matrices by transmission electron microscopy revealed remodelling and degradation of core extracellular matrix components. These results indicate that periodic induction, via use of an eye drop, of AAV-mediated secretion of MMP-3 into AH could have therapeutic potential for those cases of glaucoma that are sub-optimally responsive to conventional pressure-reducing medications.


Subject(s)
Dependovirus/genetics , Glaucoma/therapy , Intraocular Pressure/genetics , Matrix Metalloproteinase 3/genetics , Animals , Aqueous Humor/metabolism , Disease Models, Animal , Endothelium, Corneal/metabolism , Endothelium, Corneal/pathology , Glaucoma/genetics , Glaucoma/pathology , Humans , Matrix Metalloproteinase 3/therapeutic use , Mice , Ophthalmic Solutions/therapeutic use
5.
Exp Eye Res ; 186: 107745, 2019 09.
Article in English | MEDLINE | ID: mdl-31351057

ABSTRACT

Mice are routinely used to study aqueous humour dynamics. However, physical factors such as temperature and hydration affect outflow facility in enucleated eyes. This retrospective study examined whether differences in temperature and relative humidity experienced by living mice within their housing environment in vivo coincide with differences in outflow facility measured ex vivo. Facility data and environmental records were collected for one enucleated eye from 116 mice (C57BL/6J males, 9-15 weeks old) at two institutions. Outflow facility was reduced when relative humidity was below the lower limit of 45% recommended by the UK Code of Practice, but there was no detectable effect of temperature on outflow facility. Even when accounting for effects of humidity, there were differences in outflow facility measured between institutions and between individual researchers at the same institution. These data indicate that humidity, as well as additional environmental factors experienced by living mice within their housing environment, may significantly affect outflow facility measured ex vivo.


Subject(s)
Aqueous Humor/physiology , Humidity , Intraocular Pressure/physiology , Trabecular Meshwork/metabolism , Animals , Environmental Health , Male , Mice , Mice, Inbred C57BL , Retrospective Studies , Temperature
6.
Exp Eye Res ; 162: 129-138, 2017 09.
Article in English | MEDLINE | ID: mdl-28720436

ABSTRACT

Reduction of intraocular pressure is the sole therapeutic target for glaucoma. Intraocular pressure is determined by the dynamics of aqueous humour secretion and outflow, which comprise several pressure-dependent and pressure-independent mechanisms. Accurately quantifying the components of aqueous humour dynamics is essential in understanding the pathology of glaucoma and the development of new treatments. To better characterise aqueous humour dynamics, we propose a method to directly measure pressure-independent aqueous humour flow. Using the iPerfusion system, we directly measure the flow into the eye when the pressure drop across the pressure-dependent pathways is eliminated. Using this approach we address i) the magnitude of pressure-independent flow in ex vivo eyes, ii) whether we can accurately measure an artificially imposed pressure-independent flow, and iii) whether the presence of a pressure-independent flow affects our ability to measure outflow facility. These studies are conducted in mice, which are a common animal model for aqueous humour dynamics. In eyes perfused with a single cannula, the average pressure-independent flow was 1 [-3, 5] nl/min (mean [95% confidence interval]) (N = 6). Paired ex vivo eyes were then cannulated with two needles, connecting the eye to both iPerfusion and a syringe pump, which was used to impose a known pressure-independent flow of 120 nl/min into the experimental eye only. The measured pressure-independent flow was then 121 [117, 125] nl/min (N = 7), indicating that the method could measure pressure-independent flow with high accuracy. Finally, we showed that the artificially imposed pressure-independent flow did not affect our ability to measure facility, provided that the pressure-dependence of facility and the true pressure-independent flow were accounted for. The present study provides a robust method for measurement of pressure-independent flow, and demonstrates the importance of accurately quantifying this parameter when investigating pressure-dependent flow or outflow facility.


Subject(s)
Aqueous Humor/physiology , Glaucoma/diagnosis , Intraocular Pressure/physiology , Perfusion/methods , Animals , Disease Models, Animal , Glaucoma/physiopathology , Male , Mice , Mice, Inbred C57BL
7.
Proc Natl Acad Sci U S A ; 111(38): 13876-81, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25201985

ABSTRACT

Increased flow resistance is responsible for the elevated intraocular pressure characteristic of glaucoma, but the cause of this resistance increase is not known. We tested the hypothesis that altered biomechanical behavior of Schlemm's canal (SC) cells contributes to this dysfunction. We used atomic force microscopy, optical magnetic twisting cytometry, and a unique cell perfusion apparatus to examine cultured endothelial cells isolated from the inner wall of SC of healthy and glaucomatous human eyes. Here we establish the existence of a reduced tendency for pore formation in the glaucomatous SC cell--likely accounting for increased outflow resistance--that positively correlates with elevated subcortical cell stiffness, along with an enhanced sensitivity to the mechanical microenvironment including altered expression of several key genes, particularly connective tissue growth factor. Rather than being seen as a simple mechanical barrier to filtration, the endothelium of SC is seen instead as a dynamic material whose response to mechanical strain leads to pore formation and thereby modulates the resistance to aqueous humor outflow. In the glaucomatous eye, this process becomes impaired. Together, these observations support the idea of SC cell stiffness--and its biomechanical effects on pore formation--as a therapeutic target in glaucoma.


Subject(s)
Cytoskeleton , Endothelial Cells , Eye , Glaucoma , Microscopy, Atomic Force , Cells, Cultured , Cytoskeleton/metabolism , Cytoskeleton/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Eye/metabolism , Eye/pathology , Glaucoma/metabolism , Glaucoma/pathology , Humans
9.
Biomed Eng Online ; 14: 34, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25881252

ABSTRACT

BACKGROUND: The management and prognosis of aortic dissection (AD) is often challenging and the use of personalised computational models is being explored as a tool to improve clinical outcome. Including vessel wall motion in such simulations can provide more realistic and potentially accurate results, but requires significant additional computational resources, as well as expertise. With clinical translation as the final aim, trade-offs between complexity, speed and accuracy are inevitable. The present study explores whether modelling wall motion is worth the additional expense in the case of AD, by carrying out fluid-structure interaction (FSI) simulations based on a sample patient case. METHODS: Patient-specific anatomical details were extracted from computed tomography images to provide the fluid domain, from which the vessel wall was extrapolated. Two-way fluid-structure interaction simulations were performed, with coupled Windkessel boundary conditions and hyperelastic wall properties. The blood was modelled using the Carreau-Yasuda viscosity model and turbulence was accounted for via a shear stress transport model. A simulation without wall motion (rigid wall) was carried out for comparison purposes. RESULTS: The displacement of the vessel wall was comparable to reports from imaging studies in terms of intimal flap motion and contraction of the true lumen. Analysis of the haemodynamics around the proximal and distal false lumen in the FSI model showed complex flow structures caused by the expansion and contraction of the vessel wall. These flow patterns led to significantly different predictions of wall shear stress, particularly its oscillatory component, which were not captured by the rigid wall model. CONCLUSIONS: Through comparison with imaging data, the results of the present study indicate that the fluid-structure interaction methodology employed herein is appropriate for simulations of aortic dissection. Regions of high wall shear stress were not significantly altered by the wall motion, however, certain collocated regions of low and oscillatory wall shear stress which may be critical for disease progression were only identified in the FSI simulation. We conclude that, if patient-tailored simulations of aortic dissection are to be used as an interventional planning tool, then the additional complexity, expertise and computational expense required to model wall motion is indeed justified.


Subject(s)
Aorta, Thoracic/physiopathology , Aorta/physiopathology , Aortic Aneurysm, Thoracic/physiopathology , Aortic Dissection/physiopathology , Computer Simulation , Models, Cardiovascular , Aorta/ultrastructure , Aorta, Thoracic/ultrastructure , Aortic Rupture/pathology , Aortic Rupture/physiopathology , Aortography , Female , Hemorheology , Humans , Middle Aged , Motion , Precision Medicine , Shear Strength , Tomography, X-Ray Computed , Tunica Intima/physiopathology , Viscosity
10.
Br J Ophthalmol ; 105(11): 1610-1616, 2021 11.
Article in English | MEDLINE | ID: mdl-33239414

ABSTRACT

BACKGROUND: A single application of JV-GL1 substantially lowers non-human primate intraocular pressure (IOP) for about a week, independent of dose. This highly protracted effect does not correlate with its ocular biodisposition or correlate with the once-daily dosing regimen for other prostanoid EP2 receptor agonists such as trapenepag or omidenepag. The underlying pharmacological mechanism for the multiday extended activity of JV-GL1 is highly intriguing. The present studies were intended to determine EP2 receptor involvement in mediating the long-term ocular hypotensive activity of JV-GL1 by using mice genetically deficient in EP2 receptors. METHODS: The protracted IOP reduction produced by JV-GL1 was investigated in C57BL/6J and EP2 receptor knock-out mice (B6.129-Ptger2tm1Brey /J; EP2KO). Both ocular normotensive and steroid-induced ocular hypertensive (SI-OHT) mice were studied. IOP was measured tonometrically under general anaesthesia. Aqueous humour outflow facility was measured ex vivo using iPerfusion in normotensive C57BL/6J mouse eyes perfused with 100 nM de-esterified JV-GL1 and in SI-OHT C57BL/6J mouse eyes that had received topical JV-GL1 (0.01%) 3 days prior. RESULTS: Both the initial 1-day and the protracted multiday effects of JV-GL1 in the SI-OHT model for glaucoma were abolished by deletion of the gene encoding the EP2 receptor. Thus, JV-GL1 did not lower IOP in SI-OHT EP2KO mice, but in littermate SI-OHT EP2WT control mice, JV-GL1 statistically significantly lowered IOP for 4-6 days. CONCLUSIONS: Both the 1-day and the long-term effects of JV-GL1 on IOP are entirely EP2 receptor dependent.


Subject(s)
Intraocular Pressure , Ocular Hypertension , Ocular Hypotension , Animals , Antihypertensive Agents/therapeutic use , Intraocular Pressure/drug effects , Mice , Mice, Inbred C57BL , Ocular Hypertension/drug therapy , Ocular Hypotension/drug therapy , Ophthalmic Solutions/administration & dosage , Tonometry, Ocular
11.
Materials (Basel) ; 14(2)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477444

ABSTRACT

The mechanics of breathing is a fascinating and vital process. The lung has complexities and subtle heterogeneities in structure across length scales that influence mechanics and function. This study establishes an experimental pipeline for capturing alveolar deformations during a respiratory cycle using synchrotron radiation micro-computed tomography (SR-micro-CT). Rodent lungs were mechanically ventilated and imaged at various time points during the respiratory cycle. Pressure-Volume (P-V) characteristics were recorded to capture any changes in overall lung mechanical behaviour during the experiment. A sequence of tomograms was collected from the lungs within the intact thoracic cavity. Digital volume correlation (DVC) was used to compute the three-dimensional strain field at the alveolar level from the time sequence of reconstructed tomograms. Regional differences in ventilation were highlighted during the respiratory cycle, relating the local strains within the lung tissue to the global ventilation measurements. Strains locally reached approximately 150% compared to the averaged regional deformations of approximately 80-100%. Redistribution of air within the lungs was observed during cycling. Regions which were relatively poorly ventilated (low deformations compared to its neighbouring region) were deforming more uniformly at later stages of the experiment (consistent with its neighbouring region). Such heterogenous phenomena are common in everyday breathing. In pathological lungs, some of these non-uniformities in deformation behaviour can become exaggerated, leading to poor function or further damage. The technique presented can help characterize the multiscale biomechanical nature of a given pathology to improve patient management strategies, considering both the local and global lung mechanics.

12.
Article in English | MEDLINE | ID: mdl-33418484

ABSTRACT

Prostamide/prostaglandin F synthase (PM/PGFS) is an enzyme with very narrow substrate specificity and is dedicated to the biosynthesis of prostamide F2α and prostaglandin F2α (PGF2α.). The importance of this enzyme, relative to the aldo-keto reductase (AKR) series, in providing functional tissue prostamide F2α levels was determined by creating a line of PM/PGFS gene deleted mice. Deletion of the gene encoding PM/PGFS (Fam213b / Prxl2b) was accomplished by a two exon disruption. Prostamide F2α levels in wild type (WT) and PM/PGFS knock-out (KO) mice were determined by LC/MS/MS. Deletion of Fam213b (Prxl2b) had no observed effect on behavior, appetite, or fertility. In contrast, tonometrically measured intraocular pressure was significantly elevated by approximately 4 mmHg in PM/PGFS KO mice compared to littermate WT mice. Outflow facility was measured in enucleated mouse eyes using the iPerfusion system. No effect on pressure dependent outflow facility occurred, which is consistent with the effects of prostamide F2α and PGF2α increasing outflow through the unconventional pathway. The elevation of intraocular pressure caused by deletion of the gene encoding the PM/PGFS enzyme likely results from a diversion of the endoperoxide precursor pathway to provide increased levels of those prostanoids known to raise intraocular pressure, namely prostaglandin D2 (PGD2) and thromboxane A2 (TxA2). It follows that PM/PGFS may serve an important regulatory role in the eye by providing PGF2α and prostamide F2α to constrain the influence of those prostanoids that raise intraocular pressure.


Subject(s)
Dinoprost/metabolism , Dinoprostone/analogs & derivatives , Gene Deletion , Hydroxyprostaglandin Dehydrogenases/metabolism , Animals , Chromatography, Liquid , Dinoprostone/metabolism , Disease Models, Animal , Gene Knockout Techniques , Hydroxyprostaglandin Dehydrogenases/genetics , Intraocular Pressure , Male , Mice , Tandem Mass Spectrometry , Tonometry, Ocular
13.
IEEE Trans Biomed Eng ; 68(4): 1229-1237, 2021 04.
Article in English | MEDLINE | ID: mdl-32931425

ABSTRACT

OBJECTIVE: Hydraulic permeability is a topic of deep interest in biological materials because of its important role in a range of drug delivery-based therapies. The strong dependence of permeability on the geometry and topology of pore structure and the lack of detailed knowledge of these parameters in the case of brain tissue makes the study more challenging. Although theoretical models have been developed for hydraulic permeability, there is limited consensus on the validity of existing experimental evidence to complement these models. In the present study, we measure the permeability of white matter (WM) of fresh ovine brain tissue considering the localised heterogeneities in the medium using an infusion-based experimental set up, iPerfusion. We measure the flow across different parts of the WM in response to applied pressures for a sample of specific dimensions and calculate the permeability from directly measured parameters. Furthermore, we directly probe the effect of anisotropy of the tissue on permeability by considering the directionality of tissue on the obtained values. Additionally, we investigate whether WM hydraulic permeability changes with post-mortem time. To our knowledge, this is the first report of experimental measurements of the localised WM permeability, also demonstrating the effect of axon directionality on permeability. This work provides a significant contribution to the successful development of intra-tumoural infusion-based technologies, such as convection-enhanced delivery (CED), which are based on the delivery of drugs directly by injection under positive pressure into the brain.


Subject(s)
White Matter , Animals , Anisotropy , Brain , Drug Delivery Systems , Permeability , Sheep , White Matter/diagnostic imaging
14.
Front Bioeng Biotechnol ; 9: 596154, 2021.
Article in English | MEDLINE | ID: mdl-33634081

ABSTRACT

The biomechanical properties of the cornea and sclera are important in the onset and progression of multiple ocular pathologies and vary substantially between individuals, yet the source of this variation remains unknown. Here we identify genes putatively regulating corneoscleral biomechanical tissue properties by conducting high-fidelity ocular compliance measurements across the BXD recombinant inbred mouse set and performing quantitative trait analysis. We find seven cis-eQTLs and non-synonymous SNPs associating with ocular compliance, and show by RT-qPCR and immunolabeling that only two of the candidate genes, Smarce1 and Tns4, showed significant expression in corneal and scleral tissues. Both have mechanistic potential to influence the development and/or regulation of tissue material properties. This work motivates further study of Smarce1 and Tns4 for their role(s) in ocular pathology involving the corneoscleral envelope as well as the development of novel mouse models of ocular pathophysiology, such as myopia and glaucoma.

15.
Mol Ther Methods Clin Dev ; 20: 86-94, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33376757

ABSTRACT

Systemic or localized application of glucocorticoids (GCs) can lead to iatrogenic ocular hypertension, which is a leading cause of secondary open-angle glaucoma and visual impairment. Previous work has shown that dexamethasone increases zonula occludens-1 (ZO-1) protein expression in trabecular meshwork (TM) cells, and that an antisense oligonucleotide inhibitor of ZO-1 can abolish the dexamethasone-induced increase in trans-endothelial flow resistance in cultured Schlemm's canal (SC) endothelial and TM cells. We have previously shown that intracameral inoculation of small interfering RNA (siRNA) targeting SC endothelial cell tight junction components, ZO-1 and tricellulin, increases aqueous humor outflow facility ex vivo in normotensive mice by reversibly opening SC endothelial paracellular pores. In this study, we show that targeted siRNA downregulation of these SC endothelial tight junctions reduces intraocular pressure (IOP) in vivo, with a concomitant increase in conventional outflow facility in a well-characterized chronic steroid-induced mouse model of ocular hypertension, thus representing a potential focused clinical application for this therapy in a sight-threatening scenario.

16.
iScience ; 24(2): 102042, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33532718

ABSTRACT

Controlling intraocular pressure (IOP) remains the mainstay of glaucoma therapy. The trabecular meshwork (TM), the key tissue responsible for aqueous humor (AH) outflow and IOP maintenance, is very sensitive to mechanical forces. However, it is not understood whether Piezo channels, very sensitive mechanosensors, functionally influence AH outflow. Here, we characterize the role of Piezo1 in conventional AH outflow. Immunostaining and western blot analysis showed that Piezo1 is widely expressed by TM. Patch-clamp recordings in TM cells confirmed the activation of Piezo1-derived mechanosensitive currents. Importantly, the antagonist GsMTx4 for mechanosensitive channels significantly decreased steady-state facility, yet activation of Piezo1 by the specific agonist Yoda1 did not lead to a facility change. Furthermore, GsMTx4, but not Yoda1, caused a significant increase in ocular compliance, a measure of the eye's transient response to IOP perturbation. Our findings demonstrate a potential role for Piezo1 in conventional outflow, likely under pathological and rapid transient conditions.

17.
Invest Ophthalmol Vis Sci ; 61(10): 45, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32845955

ABSTRACT

Purpose: Conventional wisdom posits that aqueous humor leaves the eye by passive bulk flow without involving energy-dependent processes. However, recent studies have shown that active processes, such as cell contractility, contribute to outflow regulation. Here, we examine whether inhibiting cellular metabolism affects outflow facility in mice. Methods: We measured outflow facility in paired enucleated eyes from C57BL/6J mice using iPerfusion. We had three Experimental Sets: ES1, perfused at 35°C versus 22°C; ES2, perfused with metabolic inhibitors versus vehicle at 35°C; and ES3, perfused at 35°C versus 22°C in the presence of metabolic inhibitors. Inhibitors targeted glycolysis and oxidative phosphorylation (2-deoxy-D-glucose, 3PO and sodium azide). We also measured adenosine triphosphate (ATP) levels in separate murine anterior segments treated like ES1 and ES2. Results: Reducing temperature decreased facility by 63% [38%, 78%] (mean [95% confidence interval (CI)], n = 10 pairs; P = 0.002) in ES1 after correcting for changes in viscosity. Metabolic inhibitors reduced facility by 21% [9%, 31%] (n = 9, P = 0.006) in ES2. In the presence of inhibitors, temperature reduction decreased facility by 44% [29%, 56%] (n = 8, P < 0.001) in ES3. Metabolic inhibitors reduced anterior segment adenosine triphosphate (ATP) levels by 90% [83%, 97%] (n = 5, P<<0.001), but reducing temperature did not affect ATP. Conclusions: Inhibiting cellular metabolism decreases outflow facility within minutes. This implies that outflow is not entirely passive, but depends partly on energy-dependent cellular processes, at least in mice. This study also suggests that there is a yet unidentified mechanism, which is strongly temperature-dependent but metabolism-independent, that is necessary for nearly half of normal outflow function in mice.


Subject(s)
Aqueous Humor/metabolism , Animals , Aqueous Humor/cytology , Aqueous Humor/drug effects , Aqueous Humor/physiology , Deoxyglucose/pharmacology , Glycolysis/drug effects , Male , Mice , Mice, Inbred C57BL , Oxidative Phosphorylation/drug effects , Perfusion , Pyridines , Sodium Azide/pharmacology
18.
Sci Rep ; 10(1): 5804, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32242066

ABSTRACT

Elevated intraocular pressure (IOP) narrows Schlemm's canal (SC), theoretically increasing luminal shear stress. Using engineered adenoviruses containing a functional fragment of the shear-responsive endothelial nitric oxide synthase (eNOS) promoter, we tested effects of shear stress and elevated flow rate on reporter expression in vitro and ex vivo. Cultured human umbilical vein endothelial cells (HUVECs) and SC cells were transduced with adenovirus containing eNOS promoter driving secreted alkaline phosphatase (SEAP) or green fluorescent protein (GFP) and subjected to shear stress. In parallel, human anterior segments were perfused under controlled flow. After delivering adenoviruses to the SC lumen by retroperfusion, the flow rate in one anterior segment of pair was increased to double pressure. In response to high shear stress, HUVECs and SC cells expressed more SEAP and GFP than control. Similarly, human anterior segments perfused at higher flow rates released significantly more nitrites and SEAP into perfusion effluent, and SC cells expressed increased GFP near collector channel ostia compared to control. These data establish that engineered adenoviruses have the capacity to quantify and localize shear stress experienced by endothelial cells. This is the first in situ demonstration of shear-mediated SC mechanobiology as a key IOP-sensing mechanism necessary for IOP homeostasis.


Subject(s)
Aqueous Humor/metabolism , Intraocular Pressure , Mechanotransduction, Cellular , Trabecular Meshwork/metabolism , Adenoviridae/genetics , Adenoviridae/metabolism , Aged , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Nitrites/metabolism , Promoter Regions, Genetic , Stress, Mechanical
19.
Invest Ophthalmol Vis Sci ; 61(5): 16, 2020 05 11.
Article in English | MEDLINE | ID: mdl-32407519

ABSTRACT

Purpose: Glaucoma is the second leading cause of blindness worldwide. Recent work suggests that estrogen and the timing of menopause play a role in modulating the risk of developing glaucoma. Menopause is known to cause modest changes in intraocular pressure; yet, whether this change is mediated through the outflow pathway remains unknown. Menopause also affects tissue biomechanical properties throughout the body; however, the impact of menopause on ocular biomechanical properties is not well characterized. Methods: Here, we simultaneously assessed the impact of menopause on aqueous outflow facility and ocular compliance, as a measure of corneoscleral shell biomechanics. We used young (3-4 months old) and middle-aged (9-10 months old) Brown Norway rats. Menopause was induced by ovariectomy (OVX), and control animals underwent sham surgery, resulting in the following groups: young sham (n = 5), young OVX (n = 6), middle-aged sham (n = 5), and middle-aged OVX (n = 5). Eight weeks postoperatively, we measured outflow facility and ocular compliance. Results: Menopause resulted in a 34% decrease in outflow facility and a 19% increase in ocular compliance (P = 0.011) in OVX animals compared with sham controls (P = 0.019). Conclusions: These observations reveal that menopause affects several key physiological factors known to be associated with glaucoma, suggesting that menopause may contribute to an increased risk of glaucoma in women.


Subject(s)
Aging/physiology , Aqueous Humor/metabolism , Intraocular Pressure/physiology , Menopause/physiology , Animals , Female , Models, Animal , Models, Statistical , Perfusion , Rats
20.
Invest Ophthalmol Vis Sci ; 61(3): 41, 2020 03 09.
Article in English | MEDLINE | ID: mdl-32203982

ABSTRACT

Purpose: The large-conductance calcium-activated potassium channel KCa1.1 (BKCa, maxi-K) influences aqueous humor outflow facility, but the contribution of auxiliary ß-subunits to KCa1.1 activity in the outflow pathway is unknown. Methods: Using quantitative polymerase chain reaction, we measured expression of ß-subunit genes in anterior segments of C57BL/6J mice (Kcnmb1-4) and in cultured human trabecular meshwork (TM) and Schlemm's canal (SC) cells (KCNMB1-4). We also measured expression of Kcnma1/KCNMA1 that encodes the pore-forming α-subunit. Using confocal immunofluorescence, we visualized the distribution of ß4 in the conventional outflow pathway of mice. Using iPerfusion, we measured outflow facility in enucleated mouse eyes in response to 100 or 500 nM iberiotoxin (IbTX; N = 9) or 100 nM martentoxin (MarTX; N = 12). MarTX selectively blocks ß4-containing KCa1.1 channels, whereas IbTX blocks KCa1.1 channels that lack ß4. Results: Kcnmb4 was the most highly expressed ß-subunit in mouse conventional outflow tissues, expressed at a level comparable to Kcnma1. ß4 was present within the juxtacanalicular TM, appearing to label cellular processes connecting to SC cells. Accordingly, KCNMB4 was the most highly expressed ß-subunit in human TM cells, and the sole ß-subunit in human SC cells. To dissect functional contribution, MarTX decreased outflow facility by 35% (27%, 42%; mean, 95% confidence interval) relative to vehicle-treated contralateral eyes, whereas IbTX reduced outflow facility by 16% (6%, 25%). Conclusions: The ß4-subunit regulates KCa1.1 activity in the conventional outflow pathway, significantly influencing outflow function. Targeting ß4-containing KCa1.1 channels may be a promising approach to lower intraocular pressure to treat glaucoma.


Subject(s)
Aqueous Humor/physiology , Gene Expression Regulation/physiology , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/genetics , Nerve Tissue Proteins/genetics , Trabecular Meshwork/metabolism , Adult , Animals , Cells, Cultured , Humans , Infant , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/antagonists & inhibitors , Large-Conductance Calcium-Activated Potassium Channel beta Subunits/antagonists & inhibitors , Limbus Corneae/metabolism , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Middle Aged , Porins/metabolism , Real-Time Polymerase Chain Reaction , Toxins, Biological/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL