Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Cell ; 157(7): 1552-64, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24949968

ABSTRACT

The hippocampus, as part of the cerebral cortex, is essential for memory formation and spatial navigation. Although it has been extensively studied, especially as a model system for neurophysiology, the cellular processes involved in constructing and organizing the hippocampus remain largely unclear. Here, we show that clonally related excitatory neurons in the developing hippocampus are progressively organized into discrete horizontal, but not vertical, clusters in the stratum pyramidale, as revealed by both cell-type-specific retroviral labeling and mosaic analysis with double markers (MADM). Moreover, distinct from those in the neocortex, sister excitatory neurons in the cornu ammonis 1 region of the hippocampus rarely develop electrical or chemical synapses with each other. Instead, they preferentially receive common synaptic input from nearby fast-spiking (FS), but not non-FS, interneurons and exhibit synchronous synaptic activity. These results suggest that shared inhibitory input may specify horizontally clustered sister excitatory neurons as functional units in the hippocampus.


Subject(s)
Hippocampus/cytology , Hippocampus/physiology , Animals , Embryo, Mammalian/cytology , Genetic Techniques , Interneurons , Mice , Neurons/physiology , Staining and Labeling/methods , Synapses
2.
Cell ; 159(4): 775-88, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25417155

ABSTRACT

Radial glial progenitors (RGPs) are responsible for producing nearly all neocortical neurons. To gain insight into the patterns of RGP division and neuron production, we quantitatively analyzed excitatory neuron genesis in the mouse neocortex using Mosaic Analysis with Double Markers, which provides single-cell resolution of progenitor division patterns and potential in vivo. We found that RGPs progress through a coherent program in which their proliferative potential diminishes in a predictable manner. Upon entry into the neurogenic phase, individual RGPs produce ?8-9 neurons distributed in both deep and superficial layers, indicating a unitary output in neuronal production. Removal of OTX1, a transcription factor transiently expressed in RGPs, results in both deep- and superficial-layer neuron loss and a reduction in neuronal unit size. Moreover, ?1/6 of neurogenic RGPs proceed to produce glia. These results suggest that progenitor behavior and histogenesis in the mammalian neocortex conform to a remarkably orderly and deterministic program.


Subject(s)
Neocortex/cytology , Neurogenesis , Animals , Mice , Neuroglia/metabolism , Neurons/metabolism , Otx Transcription Factors/metabolism , Staining and Labeling/methods , Stem Cells/metabolism
3.
Nature ; 612(7940): 503-511, 2022 12.
Article in English | MEDLINE | ID: mdl-36477535

ABSTRACT

The neocortex consists of a vast number of diverse neurons that form distinct layers and intricate circuits at the single-cell resolution to support complex brain functions1. Diverse cell-surface molecules are thought to be key for defining neuronal identity, and they mediate interneuronal interactions for structural and functional organization2-6. However, the precise mechanisms that control the fine neuronal organization of the neocortex remain largely unclear. Here, by integrating in-depth single-cell RNA-sequencing analysis, progenitor lineage labelling and mosaic functional analysis, we report that the diverse yet patterned expression of clustered protocadherins (cPCDHs)-the largest subgroup of the cadherin superfamily of cell-adhesion molecules7-regulates the precise spatial arrangement and synaptic connectivity of excitatory neurons in the mouse neocortex. The expression of cPcdh genes in individual neocortical excitatory neurons is diverse yet exhibits distinct composition patterns linked to their developmental origin and spatial positioning. A reduction in functional cPCDH expression causes a lateral clustering of clonally related excitatory neurons originating from the same neural progenitor and a significant increase in synaptic connectivity. By contrast, overexpression of a single cPCDH isoform leads to a lateral dispersion of clonally related excitatory neurons and a considerable decrease in synaptic connectivity. These results suggest that patterned cPCDH expression biases fine spatial and functional organization of individual neocortical excitatory neurons in the mammalian brain.


Subject(s)
Gene Expression Regulation , Neocortex , Protocadherins , Animals , Mice , Interneurons/metabolism , Neocortex/anatomy & histology , Neocortex/cytology , Neocortex/metabolism , Neurons/metabolism , Protocadherins/genetics , Protocadherins/metabolism , Synapses/metabolism , Synaptic Transmission
4.
Proc Natl Acad Sci U S A ; 121(30): e2404164121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012823

ABSTRACT

The development of advanced neural modulation techniques is crucial to neuroscience research and neuroengineering applications. Recently, optical-based, nongenetic modulation approaches have been actively investigated to remotely interrogate the nervous system with high precision. Here, we show that a thin-film, silicon (Si)-based diode device is capable to bidirectionally regulate in vitro and in vivo neural activities upon adjusted illumination. When exposed to high-power and short-pulsed light, the Si diode generates photothermal effects, evoking neuron depolarization and enhancing intracellular calcium dynamics. Conversely, low-power and long-pulsed light on the Si diode hyperpolarizes neurons and reduces calcium activities. Furthermore, the Si diode film mounted on the brain of living mice can activate or suppress cortical activities under varied irradiation conditions. The presented material and device strategies reveal an innovated optoelectronic interface for precise neural modulations.


Subject(s)
Neurons , Optogenetics , Silicon , Animals , Silicon/chemistry , Neurons/physiology , Mice , Optogenetics/methods , Calcium/metabolism , Light , Brain/physiology
5.
Nature ; 580(7801): 106-112, 2020 04.
Article in English | MEDLINE | ID: mdl-32238932

ABSTRACT

Radial glial progenitor cells (RGPs) are the major neural progenitor cells that generate neurons and glia in the developing mammalian cerebral cortex1-4. In RGPs, the centrosome is positioned away from the nucleus at the apical surface of the ventricular zone of the cerebral cortex5-8. However, the molecular basis and precise function of this distinctive subcellular organization of the centrosome are largely unknown. Here we show in mice that anchoring of the centrosome to the apical membrane controls the mechanical properties of cortical RGPs, and consequently their mitotic behaviour and the size and formation of the cortex. The mother centriole in RGPs develops distal appendages that anchor it to the apical membrane. Selective removal of centrosomal protein 83 (CEP83) eliminates these distal appendages and disrupts the anchorage of the centrosome to the apical membrane, resulting in the disorganization of microtubules and stretching and stiffening of the apical membrane. The elimination of CEP83 also activates the mechanically sensitive yes-associated protein (YAP) and promotes the excessive proliferation of RGPs, together with a subsequent overproduction of intermediate progenitor cells, which leads to the formation of an enlarged cortex with abnormal folding. Simultaneous elimination of YAP suppresses the cortical enlargement and folding that is induced by the removal of CEP83. Together, these results indicate a previously unknown role of the centrosome in regulating the mechanical features of neural progenitor cells and the size and configuration of the mammalian cerebral cortex.


Subject(s)
Centrosome/metabolism , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Ependymoglial Cells/cytology , Neural Stem Cells/cytology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins/metabolism , Cell Membrane/metabolism , Cell Membrane/pathology , Cell Proliferation , Centrioles/metabolism , Cerebral Cortex/pathology , Female , Male , Mice , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Microtubules/pathology , Neurogenesis , YAP-Signaling Proteins
6.
Genes Dev ; 32(11-12): 763-780, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29899142

ABSTRACT

Proper organization and orderly mitosis of radial glial progenitors (RGPs) drive the formation of a laminated mammalian cortex in the correct size. However, the molecular underpinnings of the intricate process remain largely unclear. Here we show that RGP behavior and cortical development are controlled by temporally distinct actions of partitioning-defective 3 (PARD3) in concert with dynamic HIPPO signaling. RGPs lacking PARD3 exhibit developmental stage-dependent abnormal switches in division mode, resulting in an initial overproduction of RGPs located largely outside the ventricular zone at the expense of deep-layer neurons. Ectopically localized RGPs subsequently undergo accelerated and excessive neurogenesis, leading to the formation of an enlarged cortex with massive heterotopia and increased seizure susceptibility. Simultaneous removal of HIPPO pathway effectors Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) suppresses cortical enlargement and heterotopia formation. These results define a dynamic regulatory program of mammalian cortical development and highlight a progenitor origin of megalencephaly with ribbon heterotopia and epilepsy.


Subject(s)
Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cerebral Cortex/physiopathology , Seizures/genetics , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Cycle Proteins , Cerebral Cortex/physiology , Ependymoglial Cells/physiology , Gene Deletion , Gene Expression Regulation, Developmental , Genetic Predisposition to Disease , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Size/genetics , Phosphoproteins/genetics , Phosphoproteins/metabolism , Seizures/physiopathology , Signal Transduction/genetics , Stem Cells/physiology , Trans-Activators , YAP-Signaling Proteins
7.
Nature ; 567(7746): 113-117, 2019 03.
Article in English | MEDLINE | ID: mdl-30787442

ABSTRACT

The expansion of brain size is accompanied by a relative enlargement of the subventricular zone during development. Epithelial-like neural stem cells divide in the ventricular zone at the ventricles of the embryonic brain, self-renew and generate basal progenitors1 that delaminate and settle in the subventricular zone in enlarged brain regions2. The length of time that cells stay in the subventricular zone is essential for controlling further amplification and fate determination. Here we show that the interphase centrosome protein AKNA has a key role in this process. AKNA localizes at the subdistal appendages of the mother centriole in specific subtypes of neural stem cells, and in almost all basal progenitors. This protein is necessary and sufficient to organize centrosomal microtubules, and promote their nucleation and growth. These features of AKNA are important for mediating the delamination process in the formation of the subventricular zone. Moreover, AKNA regulates the exit from the subventricular zone, which reveals the pivotal role of centrosomal microtubule organization in enabling cells to both enter and remain in the subventricular zone. The epithelial-to-mesenchymal transition is also regulated by AKNA in other epithelial cells, demonstrating its general importance for the control of cell delamination.


Subject(s)
Centrosome/metabolism , DNA-Binding Proteins/metabolism , Lateral Ventricles/cytology , Lateral Ventricles/embryology , Microtubules/metabolism , Neurogenesis , Nuclear Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Movement , Cells, Cultured , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition , Humans , Intercellular Junctions/metabolism , Interphase , Lateral Ventricles/anatomy & histology , Mammary Glands, Animal/cytology , Mice , Organ Size , Organoids/cytology
8.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Article in English | MEDLINE | ID: mdl-35165149

ABSTRACT

The embryonic mouse brain undergoes drastic changes in establishing basic anatomical compartments and laying out major axonal connections of the developing brain. Correlating anatomical changes with gene-expression patterns is an essential step toward understanding the mechanisms regulating brain development. Traditionally, this is done in a cross-sectional manner, but the dynamic nature of development calls for probing gene-neuroanatomy interactions in a combined spatiotemporal domain. Here, we present a four-dimensional (4D) spatiotemporal continuum of the embryonic mouse brain from E10.5 to E15.5 reconstructed from diffusion magnetic resonance microscopy (dMRM) data. This study achieved unprecedented high-definition dMRM at 30- to 35-µm isotropic resolution, and together with computational neuroanatomy techniques, we revealed both morphological and microscopic changes in the developing brain. We transformed selected gene-expression data to this continuum and correlated them with the dMRM-based neuroanatomical changes in embryonic brains. Within the continuum, we identified distinct developmental modes comprising regional clusters that shared developmental trajectories and similar gene-expression profiles. Our results demonstrate how this 4D continuum can be used to examine spatiotemporal gene-neuroanatomical interactions by connecting upstream genetic events with anatomical changes that emerge later in development. This approach would be useful for large-scale analysis of the cooperative roles of key genes in shaping the developing brain.


Subject(s)
Brain/embryology , Embryo, Mammalian/metabolism , Embryonic Development/physiology , Gene Expression Regulation, Developmental/physiology , Magnetic Resonance Imaging/methods , Animals , Brain/metabolism , Computer Simulation , Mice , Models, Biological
9.
Development ; 147(5)2020 03 11.
Article in English | MEDLINE | ID: mdl-32041791

ABSTRACT

Orderly division of radial glial progenitors (RGPs) in the developing mammalian cerebral cortex generates deep and superficial layer neurons progressively. However, the mechanisms that control RGP behavior and precise neuronal output remain elusive. Here, we show that the oxidative stress level progressively increases in the developing mouse cortex and regulates RGP behavior and neurogenesis. As development proceeds, numerous gene pathways linked to reactive oxygen species (ROS) and oxidative stress exhibit drastic changes in RGPs. Selective removal of PRDM16, a transcriptional regulator highly expressed in RGPs, elevates ROS level and induces expression of oxidative stress-responsive genes. Coinciding with an enhanced level of oxidative stress, RGP behavior was altered, leading to abnormal deep and superficial layer neuron generation. Simultaneous expression of mitochondrially targeted catalase to reduce cellular ROS levels significantly suppresses cortical defects caused by PRDM16 removal. Together, these findings suggest that oxidative stress actively regulates RGP behavior to ensure proper neurogenesis in the mammalian cortex.


Subject(s)
Cerebral Cortex/growth & development , DNA-Binding Proteins/genetics , Neural Stem Cells/cytology , Neurogenesis/physiology , Oxidative Stress/physiology , Transcription Factors/genetics , Animals , Cells, Cultured , Cerebral Cortex/cytology , Mice , Mice, Knockout , Neural Stem Cells/metabolism , Reactive Oxygen Species/metabolism
10.
J Biol Chem ; 296: 100730, 2021.
Article in English | MEDLINE | ID: mdl-33933448

ABSTRACT

Proper dendrite morphogenesis and synapse formation are essential for neuronal development and function. Dasm1, a member of the immunoglobulin superfamily, is known to promote dendrite outgrowth and excitatory synapse maturation in vitro. However, the in vivo function of Dasm1 in neuronal development and the underlying mechanisms are not well understood. To learn more, Dasm1 knockout mice were constructed and employed to confirm that Dasm1 regulates dendrite arborization and spine formation in vivo. We performed a yeast two-hybrid screen using Dasm1, revealing MRCKß as a putative partner; additional lines of evidence confirmed this interaction and identified cytoplasmic proline-rich region (823-947 aa) of Dasm1 and MRCKß self-activated kinase domain (CC1, 410-744 aa) as necessary and sufficient for binding. Using co-immunoprecipitation assay, autophosphorylation assay, and BS3 cross-linking assay, we show that Dasm1 binding triggers a change in MRCKß's conformation and subsequent dimerization, resulting in autophosphorylation and activation. Activated MRCKß in turn phosphorylates a class 2 regulatory myosin light chain, which leads to enhanced actin rearrangement, causing the dendrite outgrowth and spine formation observed before. Removal of Dasm1 in mice leads to behavioral abnormalities. Together, these results reveal a crucial molecular pathway mediating cell surface and intracellular signaling communication to regulate actin dynamics and neuronal development in the mammalian brain.


Subject(s)
Actins/metabolism , Dendrites/metabolism , Immunoglobulins/metabolism , Nerve Tissue Proteins/metabolism , Animals , Dendritic Spines/metabolism , Immunoglobulins/chemistry , Mice , Nerve Tissue Proteins/chemistry , Protein Binding , Protein Domains
11.
Nature ; 486(7401): 118-21, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22678292

ABSTRACT

A fundamental feature of the mammalian neocortex is its columnar organization. In the visual cortex, functional columns consisting of neurons with similar orientation preferences have been characterized extensively, but how these columns are constructed during development remains unclear. The radial unit hypothesis posits that the ontogenetic columns formed by clonally related neurons migrating along the same radial glial fibre during corticogenesis provide the basis for functional columns in adult neocortex. However, a direct correspondence between the ontogenetic and functional columns has not been demonstrated. Here we show that, despite the lack of a discernible orientation map in mouse visual cortex, sister neurons in the same radial clone exhibit similar orientation preferences. Using a retroviral vector encoding green fluorescent protein to label radial clones of excitatory neurons, and in vivo two-photon calcium imaging to measure neuronal response properties, we found that sister neurons preferred similar orientations whereas nearby non-sister neurons showed no such relationship. Interestingly, disruption of gap junction coupling by viral expression of a dominant-negative mutant of Cx26 (also known as Gjb2) or by daily administration of a gap junction blocker, carbenoxolone, during the first postnatal week greatly diminished the functional similarity between sister neurons, suggesting that the maturation of ontogenetic into functional columns requires intercellular communication through gap junctions. Together with the recent finding of preferential excitatory connections among sister neurons, our results support the radial unit hypothesis and unify the ontogenetic and functional columns in the visual cortex.


Subject(s)
Cell Communication , Neurons/physiology , Visual Cortex/cytology , Animals , Animals, Newborn , Carbenoxolone/pharmacology , Clone Cells/cytology , Connexin 26 , Connexins/genetics , Connexins/metabolism , Female , Gap Junctions/drug effects , Gap Junctions/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Neurological
12.
Nature ; 486(7401): 113-7, 2012 May 02.
Article in English | MEDLINE | ID: mdl-22678291

ABSTRACT

Radial glial cells are the primary neural progenitor cells in the developing neocortex. Consecutive asymmetric divisions of individual radial glial progenitor cells produce a number of sister excitatory neurons that migrate along the elongated radial glial fibre, resulting in the formation of ontogenetic columns. Moreover, sister excitatory neurons in ontogenetic columns preferentially develop specific chemical synapses with each other rather than with nearby non-siblings. Although these findings provide crucial insight into the emergence of functional columns in the neocortex, little is known about the basis of this lineage-dependent assembly of excitatory neuron microcircuits at single-cell resolution. Here we show that transient electrical coupling between radially aligned sister excitatory neurons regulates the subsequent formation of specific chemical synapses in the neocortex. Multiple-electrode whole-cell recordings showed that sister excitatory neurons preferentially form strong electrical coupling with each other rather than with adjacent non-sister excitatory neurons during early postnatal stages. This preferential coupling allows selective electrical communication between sister excitatory neurons, promoting their action potential generation and synchronous firing. Interestingly, although this electrical communication largely disappears before the appearance of chemical synapses, blockade of the electrical communication impairs the subsequent formation of specific chemical synapses between sister excitatory neurons in ontogenetic columns. These results suggest a strong link between lineage-dependent transient electrical coupling and the assembly of precise excitatory neuron microcircuits in the neocortex.


Subject(s)
Cell Lineage , Electric Conductivity , Electrical Synapses/physiology , Gap Junctions/metabolism , Neocortex/cytology , Neurons/cytology , Neurons/physiology , Action Potentials/drug effects , Animals , Animals, Newborn , Electrical Synapses/metabolism , Gap Junctions/drug effects , Meclofenamic Acid/pharmacology , Mice , Models, Neurological , Neurons/drug effects , Synaptic Transmission
13.
Development ; 140(13): 2645-55, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23757410

ABSTRACT

The neocortex plays a key role in higher-order brain functions, such as perception, language and decision-making. Since the groundbreaking work of Ramón y Cajal over a century ago, defining the neural circuits underlying brain functions has been a field of intense study. Here, we review recent findings on the formation of neocortical circuits, which have taken advantage of improvements to mouse genetics and circuit-mapping tools. These findings are beginning to reveal how individual components of circuits are generated and assembled during development, and how early developmental processes, such as neurogenesis and neuronal migration, guide precise circuit assembly.


Subject(s)
Neocortex/cytology , Animals , Cell Movement/genetics , Cell Movement/physiology , Humans , Neocortex/metabolism , Neurogenesis/genetics , Neurogenesis/physiology , Neurons/cytology , Neurons/metabolism
14.
Development ; 140(9): 1892-902, 2013 May.
Article in English | MEDLINE | ID: mdl-23571214

ABSTRACT

The activity of the Notch pathway revolves around a CSL-class transcription factor, which recruits distinct complexes that activate or repress target gene expression. The co-activator complex is deeply conserved and includes the cleaved Notch intracellular domain (NICD) and Mastermind. By contrast, numerous CSL co-repressor proteins have been identified, and these are mostly different between invertebrate and vertebrate systems. In this study, we demonstrate that mammalian BEND6 is a neural BEN-solo factor that shares many functional attributes with Drosophila Insensitive, a co-repressor for the Drosophila CSL factor. BEND6 binds the mammalian CSL protein CBF1 and antagonizes Notch-dependent target activation. In addition, its association with Notch- and CBF1-regulated enhancers is promoted by CBF1 and antagonized by activated Notch. In utero electroporation experiments showed that ectopic BEND6 inhibited Notch-mediated self-renewal of neocortical neural stem cells and promoted neurogenesis. Conversely, knockdown of BEND6 increased NSC self-renewal in wild-type neocortex, and exhibited genetic interactions with gain and loss of Notch pathway activity. We recapitulated all of these findings in cultured neurospheres, in which overexpression and depletion of BEND6 caused reciprocal effects on neural stem cell renewal and neurogenesis. These data reveal a novel mammalian CSL co-repressor in the nervous system, and show that the Notch-inhibitory activity of certain BEN-solo proteins is conserved between flies and mammals.


Subject(s)
Neural Stem Cells/metabolism , Receptors, Notch/metabolism , Signal Transduction , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cloning, Molecular , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Electroporation , Female , HEK293 Cells , HeLa Cells , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Mice , Neocortex/cytology , Neocortex/metabolism , Neural Stem Cells/cytology , Neurogenesis , Neurons/cytology , Neurons/metabolism , Pregnancy , Protein Binding , Protein Interaction Mapping , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Notch/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transfection
15.
PLoS Biol ; 10(3): e1001276, 2012.
Article in English | MEDLINE | ID: mdl-22412348

ABSTRACT

Establishment of left-right (LR) asymmetry occurs after gastrulation commences and utilizes a conserved cascade of events. In the mouse, LR symmetry is broken at a midline structure, the node, and involves signal relay to the lateral plate, where it results in asymmetric organ morphogenesis. How information transmits from the node to the distantly situated lateral plate remains unclear. Noting that embryos lacking Sox17 exhibit defects in both gut endoderm formation and LR patterning, we investigated a potential connection between these two processes. We observed an endoderm-specific absence of the critical gap junction component, Connexin43 (Cx43), in Sox17 mutants. Iontophoretic dye injection experiments revealed planar gap junction coupling across the gut endoderm in wild-type but not Sox17 mutant embryos. They also revealed uncoupling of left and right sides of the gut endoderm in an isolated domain of gap junction intercellular communication at the midline, which in principle could function as a barrier to communication between the left and right sides of the embryo. The role for gap junction communication in LR patterning was confirmed by pharmacological inhibition, which molecularly recapitulated the mutant phenotype. Collectively, our data demonstrate that Cx43-mediated communication across gap junctions within the gut endoderm serves as a mechanism for information relay between node and lateral plate in a process that is critical for the establishment of LR asymmetry in mice.


Subject(s)
Body Patterning , Endoderm/physiology , Gap Junctions/physiology , Gastrointestinal Tract/physiology , Gene Expression Regulation, Developmental , Animals , Biotin/administration & dosage , Biotin/analogs & derivatives , Biotin/pharmacology , Connexin 43/genetics , Connexin 43/metabolism , Embryo, Mammalian/metabolism , Embryo, Mammalian/pathology , Embryonic Development , Endoderm/metabolism , Gap Junctions/genetics , Gap Junctions/metabolism , Gastrointestinal Tract/embryology , Gene Expression Profiling , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HMGB Proteins/genetics , HMGB Proteins/metabolism , Image Processing, Computer-Assisted/methods , Iontophoresis/methods , Mice , Mice, Inbred ICR , Phenotype , SOXF Transcription Factors/genetics , SOXF Transcription Factors/metabolism , Signal Transduction , Transgenes
16.
Nature ; 458(7237): 501-4, 2009 Mar 26.
Article in English | MEDLINE | ID: mdl-19204731

ABSTRACT

Neurons in the mammalian neocortex are organized into functional columns. Within a column, highly specific synaptic connections are formed to ensure that similar physiological properties are shared by neuron ensembles spanning from the pia to the white matter. Recent studies indicate that synaptic connectivity in the neocortex is sparse and highly specific to allow even adjacent neurons to convey information independently. How this fine-scale microcircuit is constructed to create a functional columnar architecture at the level of individual neurons largely remains a mystery. Here we investigate whether radial clones of excitatory neurons arising from the same mother cell in the developing neocortex serve as a substrate for the formation of this highly specific microcircuit. We labelled ontogenetic radial clones of excitatory neurons in the mouse neocortex by in utero intraventricular injection of enhanced green fluorescent protein (EGFP)-expressing retroviruses around the onset of the peak phase of neocortical neurogenesis. Multiple-electrode whole-cell recordings were performed to probe synapse formation among these EGFP-labelled sister excitatory neurons in radial clones and the adjacent non-siblings during postnatal stages. We found that radially aligned sister excitatory neurons have a propensity for developing unidirectional chemical synapses with each other rather than with neighbouring non-siblings. Moreover, these synaptic connections display the same interlaminar directional preference as those observed in the mature neocortex. These results indicate that specific microcircuits develop preferentially within ontogenetic radial clones of excitatory neurons in the developing neocortex and contribute to the emergence of functional columnar microarchitectures in the mature neocortex.


Subject(s)
Neocortex/cytology , Neurons/cytology , Neurons/metabolism , Synapses/metabolism , Animals , Cell Lineage , Clone Cells/cytology , Mice , Neocortex/anatomy & histology
17.
Nature ; 461(7266): 947-55, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19829375

ABSTRACT

Asymmetric divisions of radial glia progenitors produce self-renewing radial glia and differentiating cells simultaneously in the ventricular zone (VZ) of the developing neocortex. Whereas differentiating cells leave the VZ to constitute the future neocortex, renewing radial glia progenitors stay in the VZ for subsequent divisions. The differential behaviour of progenitors and their differentiating progeny is essential for neocortical development; however, the mechanisms that ensure these behavioural differences are unclear. Here we show that asymmetric centrosome inheritance regulates the differential behaviour of renewing progenitors and their differentiating progeny in the embryonic mouse neocortex. Centrosome duplication in dividing radial glia progenitors generates a pair of centrosomes with differently aged mother centrioles. During peak phases of neurogenesis, the centrosome retaining the old mother centriole stays in the VZ and is preferentially inherited by radial glia progenitors, whereas the centrosome containing the new mother centriole mostly leaves the VZ and is largely associated with differentiating cells. Removal of ninein, a mature centriole-specific protein, disrupts the asymmetric segregation and inheritance of the centrosome and causes premature depletion of progenitors from the VZ. These results indicate that preferential inheritance of the centrosome with the mature older mother centriole is required for maintaining radial glia progenitors in the developing mammalian neocortex.


Subject(s)
Cell Division , Cell Lineage , Centrosome/physiology , Neocortex/cytology , Neurons/cytology , Stem Cells/cytology , Animals , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Differentiation , Cellular Senescence/physiology , Centrioles/physiology , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cytoskeletal Proteins/deficiency , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/physiology , Humans , Mice , Neocortex/embryology , Neurogenesis/physiology , Neuroglia/cytology , Nuclear Proteins/deficiency , Nuclear Proteins/genetics , Nuclear Proteins/physiology
18.
Natl Sci Rev ; 11(1): nwad247, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38274004

ABSTRACT

The neocortex contains a vast collection of diverse neurons organized into distinct layers. While nearly all neocortical neurons are generated by radial glial progenitors (RGPs), it remains largely unclear how a complex yet organized neocortex is constructed reliably and robustly. Here, we show that the division behavior and neuronal output of RGPs are highly constrained with patterned variabilities to support the reliable and robust construction of the mouse neocortex. The neurogenic process of RGPs can be well-approximated by a consistent Poisson-like process unfolding over time, producing deep to superficial layer neurons progressively. The exact neuronal outputs regarding layer occupation are variable; yet, this variability is constrained systematically to support all layer formation, largely reflecting the variable intermediate progenitor generation and RGP neurogenic entry and exit timing differences. Together, these results define the fundamental features of neocortical neurogenesis with a balanced reliability and variability for the construction of the complex neocortex.

19.
Nat Commun ; 15(1): 4228, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762498

ABSTRACT

Cross-modal analysis of the same whole brain is an ideal strategy to uncover brain function and dysfunction. However, it remains challenging due to the slow speed and destructiveness of traditional whole-brain optical imaging techniques. Here we develop a new platform, termed Photoacoustic Tomography with Temporal Encoding Reconstruction (PATTERN), for non-destructive, high-speed, 3D imaging of ex vivo rodent, ferret, and non-human primate brains. Using an optimally designed image acquisition scheme and an accompanying machine-learning algorithm, PATTERN extracts signals of genetically-encoded probes from photobleaching-based temporal modulation and enables reliable visualization of neural projection in the whole central nervous system with 3D isotropic resolution. Without structural and biological perturbation to the sample, PATTERN can be combined with other whole-brain imaging modalities to acquire the whole-brain image with both high resolution and morphological fidelity. Furthermore, cross-modal transcriptome analysis of an individual brain is achieved by PATTERN imaging. Together, PATTERN provides a compatible and versatile strategy for brain-wide cross-modal analysis at the individual level.


Subject(s)
Brain , Ferrets , Imaging, Three-Dimensional , Photoacoustic Techniques , Animals , Brain/diagnostic imaging , Photoacoustic Techniques/methods , Imaging, Three-Dimensional/methods , Mice , Algorithms , Machine Learning , Tomography/methods , Image Processing, Computer-Assisted/methods , Rats , Male
20.
J Neurosci ; 32(44): 15377-87, 2012 Oct 31.
Article in English | MEDLINE | ID: mdl-23115176

ABSTRACT

The axons of spinal projection neurons transmit sensory information to the brain by ascending within highly organized longitudinal tracts. However, the molecular mechanisms that control the sorting of these axons within the spinal cord and their directed growth to poorly defined targets are not understood. Here, we show that an interplay between Robo and the cell adhesion molecule, N-cadherin, sorts spinal commissural axons into appropriate longitudinal tracts within the spinal cord, and thereby facilitates their brain targeting. Specifically, we show that d1 and d2 spinal commissural axons join the lateral funiculus within the spinal cord and target the cerebellum in chick embryos, and that these axons contribute to the spinocerebellar projection in transgenic reporter mice. Disabling Robo signaling or overexpressing N-cadherin on these axons prevents the formation of the lateral funiculus and the spinocerebellar tract, and simultaneously perturbing Robo and N-cadherin function rescues both phenotypes in chick embryos. Consistent with these observations, disabling Robo function in conditional N-cadherin knock-out mice results in a wild-type-like lateral funiculus. Together, these findings suggest that spinal projection axons must be sorted into distinct longitudinal tracts within the spinal cord proper to project to their brain targets.


Subject(s)
Axons/physiology , Cadherins/physiology , Nerve Tissue Proteins/physiology , Receptors, Immunologic/physiology , Spinal Cord/physiology , Spinocerebellar Tracts/growth & development , Spinocerebellar Tracts/physiology , Animals , Cadherins/genetics , Cell Adhesion , Cerebellum/cytology , Cerebellum/growth & development , Cerebellum/physiology , Chick Embryo , Electroporation , Functional Laterality/physiology , Mice , Mice, Knockout , Mutation/genetics , Mutation/physiology , Phenotype , Plasmids/genetics , Receptors, Dopamine D1/physiology , Receptors, Dopamine D2/physiology , Rhombencephalon/physiology , Spinal Cord/cytology , Roundabout Proteins
SELECTION OF CITATIONS
SEARCH DETAIL