ABSTRACT
Sodium-ion batteries (SIBs) are experiencing a large-scale renaissance to supplement or replace expensive lithium-ion batteries (LIBs) and low energy density lead-acid batteries in electrical energy storage systems and other applications. In this case, layered oxide materials have become one of the most popular cathode candidates for SIBs because of their low cost and comparatively facile synthesis method. However, the intrinsic shortcomings of layered oxide cathodes, which severely limit their commercialization process, urgently need to be addressed. In this review, inherent challenges associated with layered oxide cathodes for SIBs, such as their irreversible multiphase transition, poor air stability, and low energy density, are systematically summarized and discussed, together with strategies to overcome these dilemmas through bulk phase modulation, surface/interface modification, functional structure manipulation, and cationic and anionic redox optimization. Emphasis is placed on investigating variations in the chemical composition and structural configuration of layered oxide cathodes and how they affect the electrochemical behavior of the cathodes to illustrate how these issues can be addressed. The summary of failure mechanisms and corresponding modification strategies of layered oxide cathodes presented herein provides a valuable reference for scientific and practical issues related to the development of SIBs.
ABSTRACT
O3-type layered oxides have been extensively studied as cathode materials for sodium-ion batteries due to their high reversible capacity and high initial sodium content, but they suffer from complex phase transitions and an unstable structure during sodium intercalation/deintercalation. Herein, we synthesize a high-entropy O3-type layered transition metal oxide, NaNi0.3Cu0.05Fe0.1Mn0.3Mg0.05Ti0.2O2 (NCFMMT), by simultaneously doping Cu, Mg, and Ti into its transition metal layers, which greatly increase structural entropy, thereby reducing formation energy and enhancing structural stability. The high-entropy NCFMMT cathode exhibits significantly improved cycling stability (capacity retention of 81.4% at 1C after 250 cycles and 86.8% at 5C after 500 cycles) compared to pristine NaNi0.3Fe0.4Mn0.3O2 (71% after 100 cycles at 1C), as well as remarkable air stability. Finally, the NCFMMT//hard carbon full-cell batteries deliver a high initial capacity of 103 mAh g-1 at 1C, with 83.8 mAh g-1 maintained after 300 cycles (capacity retention of 81.4%).
ABSTRACT
Engineering of the catalysts' structural stability and electronic structure could enable high-throughput H2 production over electrocatalytic water splitting. Herein, a double-shell interlayer confinement strategy is proposed to modulate the spatial position of Ru nanoparticles in hollow carbon nanoreactors for achieving tunable sizes and electronic structures toward enhanced H2 evolution. Specifically, the Ru can be anchored in either the inner layer (Ru-DSC-I) or the external shell (Ru-DSC-E) of double-shell nanoreactors, and the size of Ru is reduced from 2.2 to 0.9 nm because of the double-shell confinement effect. The electronic structures are efficiently optimized thereby stabilizing active sites and lowering the reaction barrier. According to finite element analysis results, the mesoscale mass diffusion can be promoted in the double-shell configuration. The Ru-DSC-I nanoreactor exhibits a much lower overpotential (η10 = 73.5 mV) and much higher stability (100 mA cm-2). Our work might shed light on the precise design of multishell catalysts with efficient refining electrostructures toward electrosynthesis applications.
ABSTRACT
Bread wheat, one of the keystone crops for global food security, is challenged by climate change and resource shortage. The root system plays a vital role in water and nutrient absorption, making it essential for meeting the growing global demand. Here, using an association-mapping population composed of 406 accessions, we identified QTrl.Rs-5B modulating seminal root development with a genome-wide association study and validated its genetic effects with two F5 segregation populations. Transcriptome-wide association study prioritized TaFMO1-5B, a gene encoding the flavin-containing monooxygenases, as the causal gene for QTrl.Rs-5B, whose expression levels correlate negatively with the phenotyping variations among our population. The lines silenced for TaFMO1-5B consistently showed significantly larger seminal roots in different genetic backgrounds. Additionally, the agriculture traits measured in multiple environments showed that QTrl.Rs-5B also affects yield component traits and plant architecture-related traits, and its favorable haplotype modulates these traits toward that of modern cultivars, suggesting the application potential of QTrl.Rs-5B for wheat breeding. Consistently, the frequency of the favorable haplotype of QTrl.Rs-5B increased with habitat expansion and breeding improvement of bread wheat. In conclusion, our findings identified and demonstrated the effects of QTrl.Rs-5B on seminal root development and illustrated that it is a valuable genetic locus for wheat root improvement.
Subject(s)
Genome-Wide Association Study , Quantitative Trait Loci , Quantitative Trait Loci/genetics , Triticum/genetics , Transcriptome/genetics , Bread , Plant Breeding , Phenotype , Gene Expression Profiling , Polymorphism, Single Nucleotide/geneticsABSTRACT
Enhancing the mobility of lithium-ions (Li+) through surface engineering is one of major challenges facing fast-charging lithium-ion batteries (LIBs). In case of demanding charging conditions, the use of a conventional artificial graphite (AG) anode leads to an increase in operating temperature and the formation of lithium dendrites on the anode surface. In this study, a biphasic zeolitic imidazolate framework (ZIF)-AG anode, designed strategically and coated with a mesoporous material, is verified to improve the pathways of Li+ and electrons under a high charging current density. In particular, the graphite surface is treated with a coating of a ZIF-8-derived carbon nanoparticles, which addresses sufficient surface porosity, enabling this material to serve as an electrolyte reservoir and facilitate Li+ intercalation. Moreover, the augmentation in specific surface area proves advantageous in reducing the overpotential for interfacial charge transfer reactions. In practical terms, employing a full-cell with the biphasic ZIF-AG anode results in a shorter charging time and improved cycling performance, demonstrating no evidence of Li plating during 300 cycles under 3.0 C-charging and 1.0 C-discharging. The research endeavors to contribute to the progress of anode materials by enhancing their charging capability, aligning with the increasing requirements of the electric vehicle applications.
ABSTRACT
Developing low-cost and highly efficient bifunctional catalysts for both the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER) is a challenging problem in electrochemical overall water splitting. Here, iron, tungsten dual-doped nickel sulfide catalyst (Fe/W-Ni3S2) is synthesized on the nickel foam, and it exhibits excellent OER and HER performance. As a result, the water electrolyze based on Fe/W-Ni3S2 bifunctional catalyst illustrates 10 mA cm-2 at 1.69 V (without iR-compensation) and highly durable overall water splitting over 100 h tested under 500 mA cm-2. Experimental results and DFT calculations indicate that the synergistic interaction between Fe doping and Ni vacancy induced by W leaching during the in situ oxidation process can maximize exposed OER active sites on the reconstructed NiOOH species for accelerating OER kinetics, while the Fe/W dual-doping optimizes the electronic structure of Fe/W-Ni3S2 and the binding strength of intermediates for boosting HER. This study unlocks the different promoting mechanisms of incorporating Fe and W for boosting the OER and HER activity of Ni3S2 for water splitting, which provides significant guidance for designing high-performance bifunctional catalysts for overall water splitting.
ABSTRACT
Pollen germination is a process of polarity establishment, through which a single and unique growth axis is established. Although most of the intracellular activities associated with pollen germination are controlled by RHO OF PLANTs (ROPs) and increased ROP activation accompanies pollen germination, a critical role of ROPs in this process has not yet been demonstrated. Here, by genomic editing of all 4 Arabidopsis (Arabidopsis thaliana) ROPs that are preferentially expressed in pollen, we showed that ROPs are essential for polarity establishment during pollen germination. We further identified and characterized 2 ROP effectors in pollen germination (REGs) through genome-wide interactor screening, boundary of ROP domain (BDR) members BDR8 and BDR9, whose functional loss also resulted in no pollen germination. BDR8 and BDR9 were distributed in the cytosol and the vegetative nucleus of mature pollen grains but redistributed to the plasma membrane (PM) of the germination site and to the apical PM of growing pollen tubes. We demonstrated that the PM redistribution of BDR8 and BDR9 during pollen germination relies on ROPs but not vice versa. Furthermore, enhanced expression of BDR8 partially restored germination of rop1 pollen but had no effects on that of the quadruple rop pollen, supporting their genetic epistasis. Results presented here demonstrate an ROP signaling route essential for pollen germination, which supports evolutionarily conserved roles of Rho GTPases in polarity establishment.
Subject(s)
Arabidopsis Proteins , Arabidopsis , Pollen Tube , Arabidopsis/growth & development , Arabidopsis/physiology , Germination , Pollen Tube/growth & development , Arabidopsis Proteins/metabolism , Plant Infertility , Epistasis, Genetic , Monomeric GTP-Binding Proteins/metabolism , Pollen/cytology , Pollen/metabolismABSTRACT
The GSK3/SHAGGY-like kinase plays critical roles in plant development and response to stress, but its specific function remains largely unknown in wheat (Triticum aestivum L.). In this study, we investigated the function of TaGSK3, a GSK3/SHAGGY-like kinase, in wheat development and response to stress. Our findings demonstrated that TaGSK3 mutants had significant effects on wheat seedling development and brassinosteroid (BR) signalling. Quadruple and quintuple mutants showed amplified BR signalling, promoting seedling development, while a sextuple mutant displayed severe developmental defects but still responded to exogenous BR signals, indicating redundancy and non-BR-related functions of TaGSK3. A gain-of-function mutation in TaGSK3-3D disrupted BR signalling, resulting in compact and dwarf plant architecture. Notably, this mutation conferred significant drought and heat stress resistance of wheat, and enhanced heat tolerance independent of BR signalling, unlike knock-down mutants. Further research revealed that this mutation maintains a higher relative water content by regulating stomatal-mediated water loss and maintains a lower ROS level to reduces cell damage, enabling better growth under stress. Our study provides comprehensive insights into the role of TaGSK3 in wheat development, stress response, and BR signal transduction, offering potential for modifying TaGSK3 to improve agronomic traits and enhance stress resistance in wheat.
Subject(s)
Brassinosteroids , Gene Expression Regulation, Plant , Glycogen Synthase Kinase 3 , Plant Proteins , Signal Transduction , Stress, Physiological , Triticum , Adaptation, Physiological/genetics , Brassinosteroids/metabolism , Droughts , Mutation , Plant Proteins/metabolism , Plant Proteins/genetics , Reactive Oxygen Species/metabolism , Seedlings/growth & development , Seedlings/physiology , Seedlings/genetics , Triticum/genetics , Triticum/physiology , Triticum/growth & development , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3/metabolismABSTRACT
INTRODUCTION: The prognosis of acute lymphoblastic leukemia (ALL) in adolescents and adults is poor, and recurrence is an important cause of their death. Changes of genetic information play a vital role in the pathogenesis and recurrence of ALL; however, the impact of molecular genetic mutations on disease diagnosis and prognosis remains unexplored. This study aimed to explore the frequency spectrum of gene mutations and their prognostic significance, along with the minimal residual disease (MRD) level and hematopoietic stem cell transplantation (HSCT), in adolescent and adult patients aged ≥15 years with ALL. METHODS: The basic characteristics, cytogenetics, molecular genetics, MRD level, treatment regimen, and survival outcome of patients with untreated ALL (≥15 years) were collected, and the correlation and survival analysis were performed using the SPSS 25.0 and R software. RESULTS: This study included 404 patients, of which 147 were selected for next-generation sequencing (NGS). NGS results revealed that 91.2% of the patients had at least one mutation, and 67.35% had multiple (≥2) mutations. NOTCH1, PHF6, RUNX1, PTEN, JAK3, TET2, and JAK1 were the most common mutations in T-ALL, whereas FAT1, TET2, NARS, KMT2D, FLT3, and RELN were the most common mutations in B-ALL. Correlation analysis revealed the mutation patterns, which were significantly different between T-ALL and B-ALL. In the prognostic analysis of 107 patients with B-ALL, multivariate analysis showed that the number of mutations ≥5 was an independent risk factor for overall survival and the RELN mutation was an independent poor prognostic factor for event-free survival. DISCUSSION: The distribution of gene mutations and the co-occurrence and repulsion of mutant genes in patients with ALL were closely related to the immunophenotype of the patients. The number of mutations ≥5 and the RELN mutation were significantly associated with poor prognosis in adolescent and adult patients with ALL.
Subject(s)
Hematopoietic Stem Cell Transplantation , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Adult , Humans , Adolescent , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Prognosis , Mutation , Neoplasm, Residual/pathology , Molecular BiologyABSTRACT
Mouse embryonic stem cells (mESCs) can self-renew indefinitely and maintain pluripotency. Inhibition of mechanistic target of rapamycin (mTOR) by the kinase inhibitor INK128 is known to induce paused pluripotency in mESCs cultured with traditional serum/LIF medium (SL), but the underlying mechanisms remain unclear. In this study, we demonstrate that mTOR complex 1 (mTORC1) but not complex 2 (mTORC2) mediates mTOR inhibition-induced paused pluripotency in cells grown in both SL and 2iL medium (GSK3 and MEK inhibitors and LIF). We also show that mTORC1 regulates self-renewal in both conditions mainly through eIF4F-mediated translation initiation that targets mRNAs of both cytosolic and mitochondrial ribosome subunits. Moreover, inhibition of mitochondrial translation is sufficient to induce paused pluripotency. Interestingly, eIF4F also regulates maintenance of pluripotency in an mTORC1-independent but MEK/ERK-dependent manner in SL, indicating that translation of pluripotency genes is controlled differently in SL and 2iL. Our study reveals a detailed picture of how mTOR governs self-renewal in mESCs and uncovers a context-dependent function of eIF4F in pluripotency regulation.
Subject(s)
Eukaryotic Initiation Factor-4F , Mechanistic Target of Rapamycin Complex 1 , Mouse Embryonic Stem Cells/cytology , Pluripotent Stem Cells/cytology , Animals , Eukaryotic Initiation Factor-4F/genetics , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 2 , MiceABSTRACT
Atomically thin materials (ATMs) with thicknesses in the atomic scale (typically <5 nm) offer inherent advantages of large specific surface areas, proper crystal lattice distortion, abundant surface dangling bonds, and strong in-plane chemical bonds, making them ideal 2D platforms to construct high-performance electrode materials for rechargeable metal-ion batteries, metal-sulfur batteries, and metal-air batteries. This work reviews the synthesis and electronic property tuning of state-of-the-art ATMs, including graphene and graphene derivatives (GE/GO/rGO), graphitic carbon nitride (g-C3N4), phosphorene, covalent organic frameworks (COFs), layered transition metal dichalcogenides (TMDs), transition metal carbides, carbonitrides, and nitrides (MXenes), transition metal oxides (TMOs), and metal-organic frameworks (MOFs) for constructing next-generation high-energy-density and high-power-density rechargeable batteries to meet the needs of the rapid developments in portable electronics, electric vehicles, and smart electricity grids. We also present our viewpoints on future challenges and opportunities of constructing efficient ATMs for next-generation rechargeable batteries.
ABSTRACT
OBJECTIVE: To assess the clinical utility of ultrasound in predicting the risk of carotid vulnerable plaque rupture using pathological intraplaque hemorrhage as the gold standard. METHODS: A total of 118 patients who underwent endarterectomy due to symptomatic carotid artery stenosis were enrolled. Conventional ultrasound assessed the plaque thickness, area stenosis rate, echo, and surface morphology. Neovascularization were assessed by contrast-enhanced ultrasound (CEUS) and tracing intraplaque nonenhanced areas. According to neovascularization grade (0-4), plaques were classified as low-, intermediate-, and high risk. Fresh intraplaque hemorrhage within the pathology was adopted as the gold standard for diagnosing plaque rupture risk. Thus, we divided patients into ruptured risk and nonruptured risk groups to assess the value of crucial factors for plaque rupture risk using ultrasound. RESULTS: Of the 118 patients, hypertension accounted for 71.2%, hyperlipidemia 68.6%, diabetes 52.5%, and statin history 64.4%. In the rupture risk group, diabetes, smoking, and stenosis rate were significantly higher than the nonrupture risk group (P < .001); plaque thickness ≥4 mm (P > .05); and mainly hypoechoic with irregular surface morphology (P < .001), nonenhanced areas in the plaques (P < .001), and neovascularization >grade 2 (P < .001). Compared with the low-risk group, plaque rupture risk was 7.219 times higher in the medium-risk group and 18.333 times higher in the high-risk group. The kappa value of the interobserver consistency of crucial ultrasound parameters was >0.75, and the intraclass correlation coefficient was 0.919 (P < .01). CONCLUSIONS: Both conventional ultrasound and CEUS have significant clinical importance in the prediction of rupture risk in vulnerable carotid plaques, thereby enabling stroke risk stratification and the assessment of plaque rupture risk.
ABSTRACT
OBJECTIVE: Acute pericoronitis (AP) is a prevalent cause of odontogenic toothache which can significantly impact brain function. Previous research has predominantly concentrated on localized brain activity. However, the synergistic changes between brain hemispheres induced by toothache and resulting abnormal functional connectivity across the brain have not been comprehensively studied. METHODS: A total of 34 patients with AP and 34 healthy individuals, matched for age, sex, and education were recruited for this study. All participants underwent resting-state functional magnetic resonance imaging (rs-MRI) scans. The voxel mirror homotopic connectivity (VMHC) method was used to identify intergroup differences. Brain regions exhibiting statistically significant differences were selected as regions of interest for further functional connectivity analysis. The partial correlation method was utilized to assess the correlation between abnormal VMHC values in different regions and clinical parameters, with age and sex included as covariates. RESULTS: Patients with AP exhibited reduced VMHC values in the thalamus and elevated VMHC values in the inferior frontal gyrus compared with healthy controls. Subsequent functional connectivity analyses revealed extensive changes in functional networks, predominantly affecting the default, frontoparietal, cerebellar, and pain networks. CONCLUSION: Changes in functional patterns across these brain networks offer novel insights into the neurophysiological mechanisms underlying pain information processing.
Subject(s)
Magnetic Resonance Imaging , Pericoronitis , Humans , Female , Male , Magnetic Resonance Imaging/methods , Adult , Pericoronitis/physiopathology , Pericoronitis/diagnostic imaging , Case-Control Studies , Acute Disease , Brain/diagnostic imaging , Brain/physiopathology , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Young Adult , Middle AgedABSTRACT
The discontinuous interfacial contact of solid-state polymer metal batteries is due to the stress changes in the electrode structure during cycling, resulting in poor ion transport. Herein, a rigid-flexible coupled interface stress modulation strategy is developed to solve the above issues, which is to design a rigid cathode with enhanced solid-solution behavior to guide the uniform distribution of ions and electric field. Meanwhile, the polymer components are optimized to build an organic-inorganic blended flexible interfacial film to relieve the change of interfacial stress and ensure rapid ion transmission. The fabricated battery comprising a Co-modulated P2-type layered cathode (Na0.67Mn2/3Co1/3O2) and a high ion conductive polymer could deliver good cycling stability without distinct capacity fading (72.8 mAh g-1 over 350 cycles at 1 C), outperforming those without Co modulation or interfacial film construction. This work demonstrates a promising rigid-flexible coupled interfacial stress modulation strategy for polymer-metal batteries with excellent cycling stability.
ABSTRACT
Aqueous zinc (Zn) batteries have been regarded as an alternative to lithium-ion batteries due to their high abundance, low cost, and higher intrinsic safety. However, the low Zn plating/stripping reversibility, Zn dendrite growth, and continuous water consumption have hindered the practical application of aqueous Zn anodes. Herein, a hydrous organic Zn-ion electrolyte based on a dual organic solvent, namely hydrated Zn(BF4)2 zinc salt dissolved in dimethyl carbonate (DMC) and vinyl carbonate (EC) solvents [denoted as Zn(BF4)2/DMC/EC], can address these problems, which not only inhibits the side reactions but also promotes uniform Zn plating/stripping through the formation of a stable solid state interface layer and Zn2+-EC/2DMC pairs. This electrolyte enables the Zn electrode to stably undergo >700 cycles at a rate of 1 mA cm-2 with a Coulombic efficiency of 99.71%. Moreover, the full cell paired with V2O5 also demonstrates excellent cycling stability without capacity decay at 1 A g-1 after 1600 cycles.
ABSTRACT
OBJECTIVE: This study aimed to expound on the correlation between facial skin microbiome and sensitive skin (SS) using a novel sequencing technique. METHODS: We applied the 2bRAD sequencing for the microbiome, which enables accurate characterization of the low-biomass microbiome at species resolution to profile facial skin microbes in SS and non-SS groups. Further, the bacterial colonies were isolated and cultured from skin surfaces to study the pro-inflammatory effect on human keratinocytes by ELISA. RESULTS: We accordingly identified 1142 genera and 4436 strains. In the SS group, the proportions of Actinomyces and Microbotryomycetes were significantly increased, whereas that of Acidimicrobiia was decreased. Kruskal-Wallis analysis revealed significant differences in 11 genera and 35 species, among which the proportions of Dermabacter, Chryseobacterium, Rhodotorula and Peptoniphilus A were increased in the SS group. Analysis of the top 10 genera revealed increased proportions of Cutibacterium, Corynebacterium and Staphylococcus. Moreover, the proportion of Dermabacter hominis was significantly increased by 18.9-fold in the SS group, whereas those of many Streptococcus strains were significantly decreased. Focus on the isolated bacterial colonies from skin surfaces, more yellow colonies were found in SS group when cultured in Tryptic Soy Broth medium for 48 h, and more interleukin-8 was detected on keratinocytes after yellow colonies stimulation, such as S.capitis, M.luteus. CONCLUSIONS: This study suggests that more SS-associated microorganisms can be identified using the 2bRAD technique even with a small sample size. Dermabacter hominis and Chryseobacterium was firstly reported with a significantly increase in SS, and the S.capitis, as well as M.luteus, but not S.aureus, may be associated with skin inflammation.
OBJECTIF: Cette étude visait à expliquer la corrélation entre le microbiome de la peau du visage et la peau sensible (PS) à l'aide d'une nouvelle technique de séquençage. MÉTHODES: Nous avons appliqué le séquençage 2bRAD pour le microbiome, ce qui nous a permis de caractériser précisément le microbiome à faible biomasse à la résolution des espèces pour profiler les microbes de la peau du visage dans les groupes PS et nonPS. En outre, les colonies bactériennes ont été isolées et cultivées à partir de surfaces cutanées pour étudier l'effet proinflammatoire sur les kératinocytes humains par ELISA. RÉSULTATS: Nous avons donc identifié 1 142 genres et 4 436 souches. Dans le groupe PS, on a pu constater des proportions d'Actinomyces et de microbotryomycètes significativement accrues, pour de moindres proportions d'Acidimicrobiia. L'analyse de KruskalWallis a révélé des différences significatives dans 11 genres et 35 espèces, parmi lesquelles des proportions de Dermabacter, Chryseobacterium, Rhodotorula et Peptoniphilus A accrues dans le groupe PS. L'analyse des 10 principaux genres a montré une augmentation des proportions de Cutibacterium, Corynebacterium et Staphylococcus. En outre, la proportion de Dermabacter hominis a été multipliée par 18,9 dans le groupe PS, soit une augmentation significative, tandis que celle de nombreuses souches de Streptococcus s'est avérée significativement plus basse. En se concentrant sur les colonies bactériennes isolées des surfaces cutanées, plus de colonies jaunes ont été trouvées dans le groupe PS lorsqu'elles étaient cultivées dans du milieu de bouillon trypticase soja pendant 48 h, et davantage d'interleukine8 a été détectée sur les kératinocytes après la stimulation des colonies jaunes comme S. capitis, M. luteus. CONCLUSIONS: Cette étude suggère que davantage de microorganismes associés au PS peuvent être identifiés à l'aide de la technique 2bRAD, même avec un échantillon de petite taille. Dermabacter hominis et Chryseobacterium ont été rapportés avec une augmentation significative pour les PS, et S. capitis, ainsi que M. luteus, mais pas S. aureus, pouvant être associés à une inflammation cutanée.
Subject(s)
Face , Microbiota , Skin , Humans , Skin/microbiology , Face/microbiology , Adult , Female , Keratinocytes/microbiology , Middle AgedABSTRACT
Objective To investigate the effects of pterostilbene on human colon cancer LoVo cells and study the regulatory mechanism of nuclear factor E2-related factor 2 (Nrf2) in the process of pterostilbene acting on LoVo cells. Methods LoVo cells were treated with different concentrations (5,10,20,40,60,80,100 µmol/L) of pterostilbene.Cell viability,migration,invasion,and apoptosis were examined by CCK-8,scratch,Transwell,and TUNEL assays,respectively.The mitochondrial membrane potential was measured by the mitochondrial membrane potential assay kit with JC-1.The reactive oxygen species level was measured by 2',7'-dichlorofluorescein diacetate.The protein levels of Nrf2,phosphorylated Nrf2,heme oxygenase 1,and apoptotic proteins (Bcl2 and Bax) were determined by Western blotting.In addition,cell viability,Nrf2 expression,and apoptosis rate were determined after co-application of the Nrf2-specific agonist sulforaphane. Results Compared with the control group,40,60,80,100 µmol/L pterostilbene reduced the viability of LoVo cells (P=0.014,P<0.001,P<0.001,P<0.001).Pterostilbene at 5,10,20 µmol/L did not show effects on cell viability but inhibited cell migration (P=0.008,P<0.001,P<0.001) and invasion (all P<0.001).Pterostilbene at 40,60,80 µmol/L increased apoptosis (P=0.014,P<0.001,P<0.001),promoted mitochondrial membrane potential depolarization (P=0.026,P<0.001,P<0.001) and reactive oxygen species accumulation (all P<0.001),and down-regulated the expression of phosphorylated Nrf2 (P=0.030,P<0.001,P<0.001),heme oxygenase 1 (P=0.015,P<0.001,P<0.001),and Bcl2 (P=0.039,P<0.001,P<0.001) in LoVo cells.Pterostilbene at 60,80 µmol/L down-regulated Nrf2 expression (P=0.001,P<0.001) and up-regulated Bax expression (both P<0.001).The application of sulforaphane reversed the effects of pterostilbene on cell viability (P<0.001),apoptosis (P<0.001),and Nrf2 expression (P=0.022). Conclusion Pterostilbene is a compound that can effectively inhibit colon cancer cells by inhibiting the Nrf2 pathway.
Subject(s)
Apoptosis , Colonic Neoplasms , NF-E2-Related Factor 2 , Stilbenes , Humans , Stilbenes/pharmacology , Apoptosis/drug effects , NF-E2-Related Factor 2/metabolism , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/drug therapy , Cell Line, Tumor , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , bcl-2-Associated X Protein/metabolismABSTRACT
Panax ginseng is reputed to be capable of replenishing healthy Qi and bolstering physical strength, and P. notoginseng can resolve blood stasis and alleviate pain. P. ginseng and P. notoginseng are frequently employed to treat ischemic heart diseases caused by blockages in the heart vessels. Mitochondrial dysfunction often coexists with abnormal mitochondrial morphology, and mitochondrial plasticity and dynamics play key roles in cardiovascular diseases. In this study, primary neonatal rat cardiomyocytes were exposed to 4 hours of hypoxia(H) followed by 2 hours of reoxygenation(R). MitoTracker Deep Red and Hoechst 33342 were used to label mitochondria and nuclei, respectively. Fluorescence images were then acquired using ImageXpress Micro Confocal. Automated image processing and parameter extraction/calculation were carried out using ImagePro Plus. Subsequently, representative parameters were selected as indicators to assess alterations in mitochondrial morphology and function. The active compounds of P. ginseng and P. notoginseng were screened out and identified based on the UPLC-Triple-TOF-MS results and mitochondrial morphometric parameters. The findings demonstrated that RS-2, RS-4, SQ-1, and SQ-4 significantly increased the values of three key morphometric parameters, including mitochondrial length, branching, and area, which might contribute to rescuing morphological features of myocardial cells damaged by H/R injury. Among the active components of the two medicinal herbs, 20(R)-ginsenoside Rg_3, ginsenoside Re, and gypenoside â ©â ¦ exhibited the strongest protective effects on mitochondria in cardiomyocytes. Specifically, 20(R)-ginsenoside Rg_3 might upregulate expression of optic atrophy 1(OPA1) and mitofusin 2(MFN2), and ginsenoside Re and gypenoside â ©â ¦ might selectively upregulate OPA1 expression. Collectively, they promoted mitochondrial membrane fusion and mitigated mitochondrial damage, thereby exerting protective effects on cardiomyocytes. This study provides experimental support for the discovery of novel therapeutic agents for myocardial ischemia-reperfusion injury from P. ginseng and P. notoginseng and offers a novel approach for large-scale screening of bioactive compounds with cardioprotective effects from traditional Chinese medicines.
Subject(s)
Cardiotonic Agents , Drugs, Chinese Herbal , Myocytes, Cardiac , Panax notoginseng , Panax , Rats, Sprague-Dawley , Animals , Rats , Panax/chemistry , Panax notoginseng/chemistry , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Cardiotonic Agents/pharmacology , Chromatography, High Pressure Liquid , Mitochondria/drug effects , Mitochondria/metabolism , Mass SpectrometryABSTRACT
Rechargeable aqueous Zn metal batteries (AZMBs) are attractive for stationary energy storage due to their low cost and high safety. However, their practical application is hindered by the excessive use of zinc anodes and poor high-temperature performance, caused by severe side reactions and dendritic growth issues. Here, an electrolyte design strategy is reported based on bidentate coordination of Zn2+ and solvent to tailor the solvation structure. The triethylene glycol (TEG) co-solvent with two-oxygen coordination sites is demonstrated to facilitate the formation of an anions-involved solvation shell, greatly reducing the activity of coordinated H2O molecules. The sequential reduction of OTF- anions and TEG to form an organic-inorganic bilayer SEI (hydrophobic organic layer and high ion conductivity inorganic layer), protecting Zn anodes from side reaction and dendrite growth, thus ensuring an unprecedented Zn reversibility (99.95% over 5000 cycles at 0.5 mA cm-2). More importantly, the full cells of Zn||V2O5 exhibit a record-high cumulative capacity (2552 mAh cm-2) under a lean electrolyte condition (E/C ratio = 15 µL mAh-1), a limited Zn supply (N/P ratio = 1.9) and a high areal capacity (3.0 mAh cm-2).
ABSTRACT
Regulating the electric double layer (EDL) structure of the zinc metal anode by using electrolyte additives is an efficient way to suppress interface side reactions and facilitate uniform zinc deposition. Nevertheless, there are no reports investigating the proactive design of EDL-regulating additives before the start of experiments. Herein, a functional group assembly strategy is proposed to design electrolyte additives for modulating the EDL, thereby realizing a long-lasting zinc metal anode. Specifically, by screening ten common functional groups, N, N-dimethyl-1H-imidazole-1-sulfonamide (IS) is designed by assembling an imidazole group, characterized by its high adsorption capability on the zinc anode, and a sulfone group, which exhibits strong binding with Zn2+ ions. Benefiting from the adsorption functionalization of the imidazole group, the IS molecules occupy the position of H2O in the inner Helmholtz layer of the EDL, forming a molecular protective layer to inhibit H2O-induced side reactions. Meanwhile, the sulfone group in IS, acting as a binding site to Zn2+, promotes the de-solvation of Zn2+ ions, facilitating compact zinc deposition. Consequently, the utilization of IS significantly extending the cycling stability of Zn||Zn and Zn||NaV3O8 â 1.5H2O full cell. This study offers an innovative approach to the design of EDL regulators for high-performance zinc metal batteries.