Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 245
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 25(1): 54-65, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38062135

ABSTRACT

The nature of activation signals is essential in determining T cell subset differentiation; however, the features that determine T cell subset preference acquired during intrathymic development remain elusive. Here we show that naive CD4+ T cells generated in the mouse thymic microenvironment lacking Scd1, encoding the enzyme catalyzing oleic acid (OA) production, exhibit enhanced regulatory T (Treg) cell differentiation and attenuated development of experimental autoimmune encephalomyelitis. Scd1 deletion in K14+ thymic epithelia recapitulated the enhanced Treg cell differentiation phenotype of Scd1-deficient mice. The dearth of OA permitted DOT1L to increase H3K79me2 levels at the Atp2a2 locus of thymocytes at the DN2-DN3 transition stage. Such epigenetic modification persisted in naive CD4+ T cells and facilitated Atp2a2 expression. Upon T cell receptor activation, ATP2A2 enhanced the activity of the calcium-NFAT1-Foxp3 axis to promote naive CD4+ T cells to differentiate into Treg cells. Therefore, OA availability is critical for preprogramming thymocytes with Treg cell differentiation propensities in the periphery.


Subject(s)
Oleic Acid , Thymocytes , Animals , Mice , Oleic Acid/metabolism , Thymus Gland , T-Lymphocytes, Regulatory , Cell Differentiation , Forkhead Transcription Factors/genetics
2.
Nat Immunol ; 15(11): 1009-16, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25329189

ABSTRACT

Mesenchymal stem cells (MSCs) are multipotent stromal cells that exist in many tissues and are capable of differentiating into several different cell types. Exogenously administered MSCs migrate to damaged tissue sites, where they participate in tissue repair. Their communication with the inflammatory microenvironment is an essential part of this process. In recent years, much has been learned about the cellular and molecular mechanisms of the interaction between MSCs and various participants in inflammation. Depending on their type and intensity, inflammatory stimuli confer on MSCs the ability to suppress the immune response in some cases or to enhance it in others. Here we review the current findings on the immunoregulatory plasticity of MSCs in disease pathogenesis and therapy.


Subject(s)
Immunosuppression Therapy , Inflammation/immunology , Mesenchymal Stem Cells/immunology , Regeneration/immunology , Wound Healing/immunology , Cell Differentiation/immunology , Cell Proliferation , Humans , Regeneration/physiology , T-Lymphocytes/immunology
3.
Proc Natl Acad Sci U S A ; 120(43): e2304689120, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37856544

ABSTRACT

The importance of classical CD8+ T cells in tumor eradication is well acknowledged. However, the anti-tumor activity of MHC (major histocompatibility complex) Ib-restricted CD8+ T (Ib-CD8+ T) cells remains obscure. Here, we show that CX3CR1-expressing Ib-CD8+ T cells (Ib-restricted CD8+ T cells) highly express cytotoxic factors, austerely resist exhaustion, and effectively eliminate various tumors. These Ib-CD8+ T cells can be primed by MHC Ia (MHC class Ia molecules) expressed on various cell types for optimal activation in a Tbet-dependent manner. Importantly, MHC Ia does not allogeneically activate Ib-CD8+ T cells, rather, sensitizes these cells for T cell receptor activation. Such effects were observed when MHC Ia+ cells were administered to tumor-bearing Kb-/-Db-/-mice. A similar population of tumoricidal CX3CR1+CD8+ T cells was identified in wild-type mice and melanoma patients. Adoptive transfer of Ib-CD8+ T cells to wild-type mice inhibited tumor progression without damaging normal tissues. Taken together, we demonstrate that MHC class Ia can prime Ib-CD8+ T cells for robust tumoricidal activities.


Subject(s)
CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class I , Humans , Mice , Animals , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , H-2 Antigens , Histocompatibility Antigens/metabolism , Mice, Inbred C57BL
4.
Hepatology ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38466833

ABSTRACT

BACKGROUND AND AIMS: RAD51 recombinase (RAD51) is a highly conserved DNA repair protein and is indispensable for embryonic viability. As a result, the role of RAD51 in liver development and function is unknown. Our aim was to characterize the function of RAD51 in postnatal liver development. APPROACH AND RESULTS: RAD51 is highly expressed during liver development and during regeneration following hepatectomy and hepatic injury, and is also elevated in chronic liver diseases. We generated a hepatocyte-specific Rad51 deletion mouse model using Alb -Cre ( Rad51 -conditional knockout (CKO)) and Adeno-associated virus 8-thyroxine-binding globulin-cyclization recombination enzyme to evaluate the function of RAD51 in liver development and regeneration. The phenotype in Rad51 -CKO mice is dependent on CRE dosage, with Rad51fl/fl ; Alb -Cre +/+ manifesting a more severe phenotype than the Rad51fl/fl ; Alb -Cre +/- mice. RAD51 deletion in postnatal hepatocytes results in aborted mitosis and early onset of pathological polyploidization that is associated with oxidative stress and cellular senescence. Remarkable liver fibrosis occurs spontaneously as early as in 3-month-old Rad51fl/fl ; Alb -Cre +/+ mice. While liver regeneration is compromised in Rad51 -CKO mice, they are more tolerant of carbon tetrachloride-induced hepatic injury and resistant to diethylnitrosamine/carbon tetrachloride-induced HCC. A chronic inflammatory microenvironment created by the senescent hepatocytes appears to activate ductular reaction the transdifferentiation of cholangiocytes to hepatocytes. The newly derived RAD51 functional immature hepatocytes proliferate vigorously, acquire increased malignancy, and eventually give rise to HCC. CONCLUSIONS: Our results demonstrate a novel function of RAD51 in liver development, homeostasis, and tumorigenesis. The Rad51 -CKO mice represent a unique genetic model for premature liver senescence, fibrosis, and hepatocellular carcinogenesis.

5.
Mol Ther ; 32(4): 1144-1157, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38310354

ABSTRACT

The potent immunomodulatory function of mesenchymal stem/stromal cells (MSCs) elicited by proinflammatory cytokines IFN-γ and TNF-α (IT) is critical to resolve inflammation and promote tissue repair. However, little is known about how the immunomodulatory capability of MSCs is related to their differentiation competency in the inflammatory microenvironment. In this study, we demonstrate that the adipocyte differentiation and immunomodulatory function of human adipose tissue-derived MSCs (MSC(AD)s) are mutually exclusive. Mitochondrial reactive oxygen species (mtROS), which promote adipocyte differentiation, were decreased in MSC(AD)s due to IT-induced upregulation of superoxide dismutase 2 (SOD2). Furthermore, knockdown of SOD2 led to enhanced adipogenic differentiation but reduced immunosuppression capability of MSC(AD)s. Interestingly, the adipogenic differentiation was associated with increased mitochondrial biogenesis and upregulation of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PPARGC1A/PGC-1α) expression. IT inhibited PGC-1α expression and decreased mitochondrial mass but promoted glycolysis in an SOD2-dependent manner. MSC(AD)s lacking SOD2 were compromised in their therapeutic efficacy in DSS-induced colitis in mice. Taken together, these findings indicate that the adipogenic differentiation and immunomodulation of MSC(AD)s may compete for resources in fulfilling the respective biosynthetic needs. Blocking of adipogenic differentiation by mitochondrial antioxidant may represent a novel strategy to enhance the immunosuppressive activity of MSCs in the inflammatory microenvironment.


Subject(s)
Mesenchymal Stem Cells , Superoxide Dismutase , Mice , Humans , Animals , Cell Differentiation , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Adipocytes , Mesenchymal Stem Cells/metabolism
6.
J Infect Dis ; 228(9): 1166-1178, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37290049

ABSTRACT

Mycobacterium tuberculosis, the causative agent of tuberculosis, is acquiring drug resistance at a faster rate than the discovery of new antibiotics. Therefore, alternate therapies that can limit the drug resistance and disease recurrence are urgently needed. Emerging evidence indicates that combined treatment with antibiotics and an immunomodulator provides superior treatment efficacy. Clofazimine (CFZ) enhances the generation of T central memory (TCM) cells by blocking the Kv1.3+ potassium channels. Rapamycin (RAPA) facilitates M. tuberculosis clearance by inducing autophagy. In this study, we observed that cotreatment with CFZ and RAPA potently eliminates both multiple and extensively drug-resistant (MDR and XDR) clinical isolates of M. tuberculosis in a mouse model by inducing robust T-cell memory and polyfunctional TCM responses. Furthermore, cotreatment reduces the expression of latency-associated genes of M. tuberculosis in human macrophages. Therefore, CFZ and RAPA cotherapy holds promise for treating patients infected with MDR and XDR strains of M. tuberculosis.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Animals , Mice , Humans , Clofazimine/adverse effects , Antitubercular Agents/pharmacology , Antitubercular Agents/therapeutic use , Sirolimus/pharmacology , Sirolimus/therapeutic use , Memory T Cells , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial
7.
Nat Immunol ; 12(12): 1151-8, 2011 Oct 12.
Article in English | MEDLINE | ID: mdl-21993849

ABSTRACT

Interleukin 17 receptor E (IL-17RE) is an orphan receptor of the IL-17 receptor family. Here we show that IL-17RE is a receptor specific to IL-17C and has an essential role in host mucosal defense against infection. IL-17C activated downstream signaling through IL-17RE-IL-17RA complex for the induction of genes encoding antibacterial peptides as well as proinflammatory molecules. IL-17C was upregulated in colon epithelial cells during infection with Citrobacter rodentium and acted in synergy with IL-22 to induce the expression of antibacterial peptides in colon epithelial cells. Loss of IL-17C-mediated signaling in IL-17RE-deficient mice led to lower expression of genes encoding antibacterial molecules, greater bacterial burden and early mortality during infection. Together our data identify IL-17RE as a receptor of IL-17C that regulates early innate immunity to intestinal pathogens.


Subject(s)
Enterobacteriaceae Infections/immunology , Immunity, Mucosal/immunology , Interleukin-17/metabolism , Intestinal Mucosa/immunology , Receptors, Interleukin-17/metabolism , Animals , Antimicrobial Cationic Peptides/genetics , Antimicrobial Cationic Peptides/immunology , Cell Line , Citrobacter rodentium , Colon/immunology , Colon/metabolism , Enterobacteriaceae Infections/genetics , Enterobacteriaceae Infections/microbiology , Gene Expression Regulation , HEK293 Cells , HT29 Cells , Humans , Immunity, Mucosal/genetics , Interleukins/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-17/genetics , Signal Transduction , Interleukin-22
8.
Cytotherapy ; 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37804284

ABSTRACT

Mesenchymal stromal cells (MSCs) are promising cell therapy candidates, but their debated efficacy in clinical trials still limits successful adoption. Here, we discuss proceedings from a roundtable session titled "Failure to Launch Mesenchymal Stromal Cells 10 Years Later: What's on the Horizon?" held at the International Society for Cell & Gene Therapy 2023 Annual Meeting. Panelists discussed recent progress toward developing patient-stratification approaches for MSC treatments, highlighting the role of baseline levels of inflammation in mediating MSC treatment efficacy. In addition, MSC critical quality attributes (CQAs) are beginning to be elucidated and applied to investigational MSC products, including immunomodulatory functional assays and other potency markers that will help to ensure product consistency and quality. Lastly, next-generation MSC products, such as culture-priming strategies, were discussed as a promising strategy to augment MSC basal fitness and therapeutic potency. Key variables that will need to be considered alongside investigations of patient stratification approaches, CQAs and next-generation MSC products include the specific disease target being evaluated, route of administration of the cells and cell manufacturing parameters; these factors will have to be matched with postulated mechanisms of action towards treatment efficacy. Taken together, patient stratification metrics paired with the selection of therapeutically potent MSCs (using rigorous CQAs and/or engineered MSC products) represent a path forward to improve clinical successes and regulatory endorsements.

9.
Cytotherapy ; 25(8): 803-807, 2023 08.
Article in English | MEDLINE | ID: mdl-37149800

ABSTRACT

The rapidly growing field of mesenchymal stromal cell (MSC) basic and translational research requires standardization of terminology and functional characterization. The International Standards Organization's (ISO) Technical Committee (TC) on Biotechnology, working with extensive input from the International Society for Cells and Gene Therapy (ISCT), has recently published ISO standardization documents that are focused on biobanking of MSCs from two tissue sources, Wharton's Jelly, MSC(WJ) and Bone Marrow, MSC(M)), for research and development purposes and development. This manuscript explains the path towards the consensus on the following two documents: the Technical Standard ISO/TS 22859 for MSC(WJ) and the full ISO Standard 24651 for MSC(M) biobanking. The ISO standardization documents are aligned with ISCT's MSC committee position and recommendations on nomenclature because there was active input and incorporation of ISCT MSC committee recommendations in the development of these standards. The ISO standardization documents contain both requirements and recommendations for functional characterization of MSC(WJ) and MSC(M) using a matrix of assays. Importantly, the ISO standardization documents have a carefully defined scope and are meant for research use of culture expanded MSC(WJ) and MSC(M). The ISO standardization documents can be updated in a revision process and will be systematically reviewed after 3-5 years as scientific insights grow. They represent international consensus on MSC identity, definition, and characterization; are rigorous in detailing multivariate characterization of MSCs and represent an evolving-but-important first step in standardization of MSC biobanking and characterization for research use and development.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Umbilical Cord , Bone Marrow , Biological Specimen Banks , Cell Differentiation , Cell Proliferation , Cells, Cultured
10.
Immunity ; 40(1): 140-52, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-24412611

ABSTRACT

Although the microbiota has been shown to drive production of interleukin-17A (IL-17A) from T helper 17 cells to promote cell proliferation and tumor growth in colorectal cancer, the molecular mechanisms for microbiota-mediated regulation of tumorigenesis are largely unknown. Here, we found that the innate-like cytokine IL-17C was upregulated in human colorectal cancers and in mouse intestinal tumor models. Alterations in the microbiota drove IL-17C upregulation specifically in intestinal epithelial cells (IECs) through Toll-like receptor (TLR)-MyD88-dependent signaling during intestinal tumorigenesis. Microbiota-driven IL-17C induced Bcl-2 and Bcl-xL expression in IECs in an autocrine manner to promote cell survival and tumorigenesis in both chemically induced and spontaneous intestinal tumor models. Thus, IL-17C promotes cancer development by increasing IEC survival, and the microbiota can mediate cancer pathogenesis through regulation of IL-17C.


Subject(s)
Carcinogenesis/immunology , Colonic Neoplasms/immunology , Interleukin-17/metabolism , Intestinal Mucosa/immunology , Microbiota/immunology , Animals , Autocrine Communication , Cell Survival , Cells, Cultured , Colonic Neoplasms/microbiology , Disease Models, Animal , Humans , Interleukin-17/genetics , Intestinal Mucosa/microbiology , Mice , Mice, Knockout , Myeloid Differentiation Factor 88/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Signal Transduction , Up-Regulation , bcl-X Protein/genetics , bcl-X Protein/metabolism
11.
Acta Pharmacol Sin ; 44(8): 1612-1624, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36747104

ABSTRACT

Suprachiasmatic nucleus (SCN) in mammals functions as the master circadian pacemaker that coordinates temporal organization of physiological processes with the environmental light/dark cycles. But the causative links between SCN and cardiovascular diseases, specifically the reparative responses after myocardial infarction (MI), remain largely unknown. In this study we disrupted mouse SCN function to investigate the role of SCN in cardiac dysfunction post-MI. Bilateral ablation of the SCN (SCNx) was generated in mice by electrical lesion; myocardial infarction was induced via ligation of the mid-left anterior descending artery (LAD); cardiac function was assessed using echocardiography. We showed that SCN ablation significantly alleviated MI-induced cardiac dysfunction and cardiac fibrosis, and promoted angiogenesis. RNA sequencing revealed differentially expressed genes in the heart of SCNx mice from D0 to D3 post-MI, which were functionally associated with the inflammatory response and cytokine-cytokine receptor interaction. Notably, the expression levels of insulin-like growth factor 2 (Igf2) in the heart and serum IGF2 concentration were significantly elevated in SCNx mice on D3 post-MI. Stimulation of murine peritoneal macrophages in vitro with serum isolated from SCNx mice on D3 post-MI accelerated the transition of anti-inflammatory macrophages, while antibody-mediated neutralization of IGF2 receptor blocked the macrophage transition toward the anti-inflammatory phenotype in vitro as well as the corresponding cardioprotective effects observed in SCNx mice post-MI. In addition, disruption of mouse SCN function by exposure to a desynchronizing condition (constant light) caused similar protective effects accompanied by elevated IGF2 expression on D3 post-MI. Finally, mice deficient in the circadian core clock genes (Ckm-cre; Bmal1f/f mice or Per1/2 double knockout) did not lead to increased serum IGF2 concentration and showed no protective roles in post-MI, suggesting that the cardioprotective effect observed in this study was mediated particularly by the SCN itself, but not by self-sustained molecular clock. Together, we demonstrate that inhibition of SCN function promotes Igf2 expression, which leads to macrophage transition and improves cardiac repair post-MI.


Subject(s)
Circadian Rhythm , Myocardial Infarction , Animals , Mice , Circadian Rhythm/genetics , Macrophages , Mammals , Mice, Inbred C57BL , Myocardial Infarction/metabolism , Suprachiasmatic Nucleus/metabolism
12.
Proc Natl Acad Sci U S A ; 117(5): 2462-2472, 2020 02 04.
Article in English | MEDLINE | ID: mdl-31953260

ABSTRACT

Preadipocytes can give rise to either white adipocytes or beige adipocytes. Owing to their distinct abilities in nutrient storage and energy expenditure, strategies that specifically promote "beiging" of adipocytes hold great promise for counterbalancing obesity and metabolic diseases. Yet, factors dictating the differentiation fate of adipocyte progenitors remain to be elucidated. We found that stearoyl-coenzyme A desaturase 1 (Scd1)-deficient mice, which resist metabolic stress, possess augmentation in beige adipocytes under basal conditions. Deletion of Scd1 in mature adipocytes expressing Fabp4 or Ucp1 did not affect thermogenesis in mice. Rather, Scd1 deficiency shifted the differentiation fate of preadipocytes from white adipogenesis to beige adipogenesis. Such effects are dependent on succinate accumulation in adipocyte progenitors, which fuels mitochondrial complex II activity. Suppression of mitochondrial complex II by Atpenin A5 or oxaloacetic acid reverted the differentiation potential of Scd1-deficient preadipocytes to white adipocytes. Furthermore, supplementation of succinate was found to increase beige adipocyte differentiation both in vitro and in vivo. Our data reveal an unappreciated role of Scd1 in determining the cell fate of adipocyte progenitors through succinate-dependent regulation of mitochondrial complex II.


Subject(s)
Electron Transport Complex II/metabolism , Fats/metabolism , Obesity/enzymology , Stearoyl-CoA Desaturase/genetics , Succinic Acid/metabolism , Adipocytes, Beige/cytology , Adipocytes, Beige/metabolism , Adipogenesis , Animals , Energy Metabolism , Fatty Acid-Binding Proteins/genetics , Fatty Acid-Binding Proteins/metabolism , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Obesity/genetics , Obesity/metabolism , Obesity/physiopathology , Stearoyl-CoA Desaturase/metabolism , Thermogenesis
13.
Biochem Biophys Res Commun ; 610: 15-22, 2022 06 25.
Article in English | MEDLINE | ID: mdl-35430447

ABSTRACT

The transcription factor p63, belonging to the p53 family, is considered the master regulator of epidermal differentiation, skin, and in general of the differentiation of ectodermal tissues. Mutations in TP63 gene cause several rare ectodermal dysplasia disorders that refers to epidermal structural abnormalities and ocular surface disease, such as Ectrodactyly Ectodermal Dysplasia Clefting (EEC) syndrome. In this review, we discuss the key roles of p63 in keratinocytes and corneal epithelial differentiation, highlighting the function of the ΔNp63α isoform in driving limbal stem cell and epithelial stem cells commitment. We have summarized the specific ocular phenotypes observed in the TP63-mutation derived EEC syndrome, discussing the current and novel therapeutic strategies for the management of the ocular manifestations in EEC syndrome.


Subject(s)
Cleft Lip , Cleft Palate , Ectodermal Dysplasia , Cleft Lip/drug therapy , Cleft Palate/drug therapy , Ectodermal Dysplasia/drug therapy , Ectodermal Dysplasia/genetics , Humans , Transcription Factors/chemistry , Transcription Factors/genetics
14.
Cell Immunol ; 379: 104576, 2022 09.
Article in English | MEDLINE | ID: mdl-35797932

ABSTRACT

Neutrophils are the most predominant cell population in the innate immune system. The role of neutrophils in the initiation, development and metastasis of tumor has been actively studied in recent years. In cancer, neutrophils exert both pro- and anti-cancer effects, and their phenotype and function are affected by the tumor microenvironment (TME). This review aims to summarize the role of neutrophils in tumorigenesis with emphasis on their interaction with mesenchymal stromal cells (MSCs).


Subject(s)
Mesenchymal Stem Cells , Neoplasms , Carcinogenesis , Humans , Neutrophils/pathology , Tumor Microenvironment
15.
Cytotherapy ; 23(5): 368-372, 2021 05.
Article in English | MEDLINE | ID: mdl-33714704

ABSTRACT

The International Society for Cell & Gene Therapy mesenchymal stromal cell (MSC) committee has been an interested observer of community interests in all matters related to MSC identity, mechanism of action, potency assessment and etymology, and it has regularly contributed to this conversation through a series of MSC pre-conferences and committee publications dealing with these matters. Arising from these reflections, the authors propose that an overlooked and potentially disruptive perspective is the impact of in vivo persistence on potency that is not predicted by surrogate cellular potency assays performed in vitro and how this translates to in vivo outcomes. Systemic delivery or extravascular implantation at sites removed from the affected organ system seems to be adequate in affecting clinical outcomes in many pre-clinical murine models of acute tissue injury and inflammatory pathology, including the recent European Medicines Agency-approved use of MSCs in Crohn-related fistular disease. The authors further propose that MSC viability and metabolic fitness likely dominate as a potency quality attribute, especially in recipients poised for salutary benefits as defined by emerging predictive biomarkers of response.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , Cell- and Tissue-Based Therapy , Genetic Therapy , Mice
16.
Cytotherapy ; 23(12): 1060-1063, 2021 12.
Article in English | MEDLINE | ID: mdl-34116944

ABSTRACT

The Cellular Therapy Coding and Labeling Advisory Group of the International Council for Commonality in Blood Banking Automation and the International Society for Cell & Gene Therapy mesenchymal stromal cell (MSC) committee are providing specific recommendations on abbreviating tissue sources of culture-adapted MSCs. These recommendations include using abbreviations based on the ISBT 128 terminology model that specifies standard class names to distinguish cell types and tissue sources for culture-adapted MSCs. Thus, MSCs from bone marrow are MSC(M), MSCs from cord blood are MSC(CB), MSCs from adipose tissue are MSC(AT) and MSCs from Wharton's jelly are MSC(WJ). Additional recommendations include using these abbreviations through the full spectrum of pre-clinical, translational and clinical research for the development of culture-adapted MSC products. This does not apply to basic research focused on investigating the developmental origins, identity or functionalities of endogenous progenitor cells in different tissues. These recommendations will serve to harmonize nomenclature in describing research and development surrounding culture-adapted MSCs, many of which are destined for clinical and/or commercial translation. These recommendations will also serve to align research and development efforts on culture-adapted MSCs with other cell therapy products.


Subject(s)
Mesenchymal Stem Cells , Wharton Jelly , Automation , Blood Banks , Cell Differentiation , Cell Proliferation , Cell- and Tissue-Based Therapy , Cells, Cultured , Consensus , Genetic Therapy
17.
Immunity ; 35(2): 273-84, 2011 Aug 26.
Article in English | MEDLINE | ID: mdl-21835648

ABSTRACT

Neural progenitor cell (NPC) therapy is considered a promising treatment modality for multiple sclerosis (MS), potentially acting through neural repair. Here, we showed that intravenous administration of NPCs ameliorated experimental autoimmune encephalomyelitis (EAE) by selectively inhibiting pathogenic T helper 17 (Th17) cell differentiation. Leukemia inhibitory factor (LIF) produced by NPCs was responsible for the observed EAE suppression. Through the inducible LIF receptor expression, LIF inhibited the differentiation of Th17 cells in EAE mice and that from MS subjects. At the molecular level, LIF exerted an opposing effect on interleukin 6 (IL-6)-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation required for Th17 cell differentiation by triggering a signaling cascade that activated extracellular signal-regulated MAP kinase (ERK) and upregulated suppressor of cytokine signaling 3 (SOCS3) expression. This study reveals a critical role for LIF in regulating Th17 cell differentiation and provides insights into the mechanisms of action of NPC therapy in MS.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/therapy , Leukemia Inhibitory Factor/metabolism , Neurons/metabolism , Stem Cells/metabolism , Th17 Cells/metabolism , Animals , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Multiple Sclerosis/immunology , Multiple Sclerosis/therapy , Neurons/immunology , Neurons/pathology , Neurons/transplantation , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Stem Cell Transplantation , Stem Cells/immunology , Stem Cells/pathology , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/immunology , Suppressor of Cytokine Signaling Proteins/metabolism , Th17 Cells/immunology , Th17 Cells/pathology
18.
J Phys Chem A ; 124(51): 10808-10816, 2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33317265

ABSTRACT

Three cross-conjugated chalcone derivatives T3CT, T3CP2, and T3CP3 were designed and synthesized to develop excellent organic nonlinear optical (NLO) materials. In a Z-scan experiment, all compounds show good NLO absorption characteristics in the visible to near-infrared region. The photophysical mechanism is confirmed to be two-photon absorption (TPA)-induced excited-state absorption (ESA). Intramolecular charge transfer (ICT) observed in transient absorption spectra (TAS) significantly affects molecular NLO properties. We define the π-conjugated system that dominates the electron transition process in the cross-conjugated structure as the effective π-conjugated structure. Electron transition analysis shows a sufficiently strong ICT can effectively expand the effective π-conjugated structure in these cross-conjugated structures. The TPA cross sections of these compounds at 650 and 750 nm are only in the range of 17-97 GM. However, we achieve a significant enhancement of the TPA cross section at 580 nm (1737-2027 GM) by extending the effective π-conjugated structure. Excited by 580 nm femtosecond laser pulses, all compounds exhibit excellent OL performance and the minimum OL threshold is 4.71 × 10-3 J/cm2. The results show that these cross-conjugated chalcone derivatives have promising applications in OL, and their NLO performance can be effectively improved by modulating the effective π-conjugated structure.

19.
Mol Cancer ; 18(1): 177, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31805946

ABSTRACT

Cancer immunotherapies that engage immune cells to fight against tumors are proving to be powerful weapons in combating cancer and are becoming increasingly utilized in the clinics. However, for the majority of patients with solid tumors, little or no progress has been seen, presumably due to lack of adequate approaches that can reprogram the local immunosuppressive tumor milieu and thus reinvigorate antitumor immunity. Tumor-associated macrophages (TAMs), which abundantly infiltrate most solid tumors, could contribute to tumor progression by stimulating proliferation, angiogenesis, metastasis, and by providing a barrier against antitumor immunity. Initial TAMs-targeting strategies have shown efficacy across therapeutic modalities and tumor types in both preclinical and clinical studies. TAMs-targeted therapeutic approaches can be roughly divided into those that deplete TAMs and those that modulate TAMs activities. We here reviewed the mechanisms by which macrophages become immunosuppressive and compromise antitumor immunity. TAMs-focused therapeutic strategies are also summarized.


Subject(s)
Immunotherapy , Macrophages/immunology , Neoplasms/etiology , Neoplasms/therapy , Tumor Microenvironment/immunology , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/genetics , Biomarkers, Tumor/immunology , Biomarkers, Tumor/metabolism , Humans , Immunotherapy/methods , Macrophages/metabolism , Macrophages/pathology , Molecular Targeted Therapy , Neoplasms/metabolism , Neoplasms/pathology
20.
Acta Pharmacol Sin ; 40(9): 1168-1183, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30858476

ABSTRACT

Understanding the dynamics of the immune response following late myocardial reperfusion is critical for the development of immunomodulatory therapy for myocardial infarction (MI). Cyclosporine A (CSA) possesses multiple therapeutic applications for MI, but its effects on the inflammation caused by acute MI are not clear. This study aimed to determine the dynamics of the immune response following myocardial ischemia/reperfusion (I/R) and the effects of CSA in a mouse model of prolonged myocardial ischemia designated to represent the human condition of late reperfusion. Adult C57BL/6 mice were subjected to 90 min of closed-chest myocardial I/R, which induced severe myocardial injury and excessive inflammation in the heart. Multicomponent analysis of the immune response caused by prolonged I/R revealed that the peak of cytokines/chemokines in the systemic circulation was synchronized with the maximal influx of neutrophils and T-cells in the heart 1 day after MI. The peak of cytokine/chemokine secretion in the infarcted heart coincided with the maximal macrophage and natural killer cell infiltration on day 3 after MI. The cellular composition of the mediastinal lymph nodes changed similarly to that of the infarcted hearts. CSA (10 mg/kg/day) given after prolonged I/R impaired heart function, enlarged the resulting scar, and reduced heart vascularization. It did not change the content of immune cells in hearts exposed to prolonged I/R, but the levels of MCP-1 and MIP-1α (hearts) and IL-12 (hearts and serum) were significantly reduced in the CSA-treated group in comparison to the untreated group, indicating alterations in immune cell function. Our findings provide new knowledge necessary for the development of immunomodulatory therapy targeting the immune response after prolonged myocardial ischemia/reperfusion.


Subject(s)
Cyclosporine/pharmacology , Immunity, Cellular/drug effects , Immunity, Cellular/physiology , Myocardial Reperfusion Injury/physiopathology , Animals , Chemokines/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Killer Cells, Natural/metabolism , Lymph Nodes/drug effects , Lymph Nodes/physiology , Male , Mice, Inbred C57BL , Myocardial Infarction/immunology , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/immunology , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Neutrophils/metabolism , T-Lymphocytes/metabolism , Time Factors , Ventricular Remodeling/drug effects , Ventricular Remodeling/physiology
SELECTION OF CITATIONS
SEARCH DETAIL