Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Proc Natl Acad Sci U S A ; 120(21): e2208276120, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37186859

ABSTRACT

Iron-chalcogenide superconductors FeSe1-xSx possess unique electronic properties such as nonmagnetic nematic order and its quantum critical point. The nature of superconductivity with such nematicity is important for understanding the mechanism of unconventional superconductivity. A recent theory suggested the possible emergence of a fundamentally new class of superconductivity with the so-called Bogoliubov Fermi surfaces (BFSs) in this system. However, such an ultranodal pair state requires broken time-reversal symmetry (TRS) in the superconducting state, which has not been observed experimentally. Here, we report muon spin relaxation (µSR) measurements in FeSe1-xSx superconductors for 0 ≤ x ≤ 0.22 covering both orthorhombic (nematic) and tetragonal phases. We find that the zero-field muon relaxation rate is enhanced below the superconducting transition temperature Tc for all compositions, indicating that the superconducting state breaks TRS both in the nematic and tetragonal phases. Moreover, the transverse-field µSR measurements reveal that the superfluid density shows an unexpected and substantial reduction in the tetragonal phase (x > 0.17). This implies that a significant fraction of electrons remain unpaired in the zero-temperature limit, which cannot be explained by the known unconventional superconducting states with point or line nodes. The TRS breaking and the suppressed superfluid density in the tetragonal phase, together with the reported enhanced zero-energy excitations, are consistent with the ultranodal pair state with BFSs. The present results reveal two different superconducting states with broken TRS separated by the nematic critical point in FeSe1-xSx, which calls for the theory of microscopic origins that account for the relation between nematicity and superconductivity.

2.
Proc Natl Acad Sci U S A ; 119(18): e2110501119, 2022 May 03.
Article in English | MEDLINE | ID: mdl-35486694

ABSTRACT

SignificanceThe notion of the quantum critical point (QCP) is at the core of modern condensed matter physics. Near a QCP of the symmetry-breaking order, associated quantum-mechanical fluctuations are intensified, which can lead to unconventional superconductivity. Indeed, dome-shaped superconducting phases are often observed near the magnetic QCPs, which supports the spin fluctuation-driven superconductivity. However, the fundamental question remains as to whether a nonmagnetic QCP of electronic nematic order characterized by spontaneous rotational symmetry breaking can promote superconductivity in real materials. Here, we provide an experimental demonstration that a pure nematic QCP exists near the center of a superconducting dome in nonmagnetic FeSe[Formula: see text] Tex. This result evidences that nematic fluctuations enhanced around the nematic QCP can boost superconductivity.

3.
Proc Natl Acad Sci U S A ; 118(20)2021 May 18.
Article in English | MEDLINE | ID: mdl-33980712

ABSTRACT

We use polarization-resolved electronic Raman spectroscopy to study quadrupolar charge dynamics in a nonmagnetic [Formula: see text] superconductor. We observe two types of long-wavelength [Formula: see text] symmetry excitations: 1) a low-energy quasi-elastic scattering peak (QEP) and 2) a broad electronic continuum with a maximum at 55 meV. Below the tetragonal-to-orthorhombic structural transition at [Formula: see text], a pseudogap suppression with temperature dependence reminiscent of the nematic order parameter develops in the [Formula: see text] symmetry spectra of the electronic excitation continuum. The QEP exhibits critical enhancement upon cooling toward [Formula: see text] The intensity of the QEP grows with increasing sulfur concentration x and maximizes near critical concentration [Formula: see text], while the pseudogap size decreases with the suppression of [Formula: see text] We interpret the development of the pseudogap in the quadrupole scattering channel as a manifestation of transition from the non-Fermi liquid regime, dominated by strong Pomeranchuk-like fluctuations giving rise to intense electronic continuum of excitations in the fourfold symmetric high-temperature phase, to the Fermi liquid regime in the broken-symmetry nematic phase where the quadrupole fluctuations are suppressed.

4.
Proc Natl Acad Sci U S A ; 117(12): 6424-6429, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32165540

ABSTRACT

Electronic nematicity, a correlated state that spontaneously breaks rotational symmetry, is observed in several layered quantum materials. In contrast to their liquid-crystal counterparts, the nematic director cannot usually point in an arbitrary direction (XY nematics), but is locked by the crystal to discrete directions (Ising nematics), resulting in strongly anisotropic fluctuations above the transition. Here, we report on the observation of nearly isotropic XY-nematic fluctuations, via elastoresistance measurements, in hole-doped Ba1-x Rb x Fe2As2 iron-based superconductors. While for [Formula: see text], the nematic director points along the in-plane diagonals of the tetragonal lattice, for [Formula: see text], it points along the horizontal and vertical axes. Remarkably, for intermediate doping, the susceptibilities of these two symmetry-irreducible nematic channels display comparable Curie-Weiss behavior, thus revealing a nearly XY-nematic state. This opens a route to assess this elusive electronic quantum liquid-crystalline state.

5.
Proc Natl Acad Sci U S A ; 115(6): 1227-1231, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29363600

ABSTRACT

The emergence of the nematic electronic state that breaks rotational symmetry is one of the most fascinating properties of the iron-based superconductors, and has relevance to cuprates as well. FeSe has a unique ground state in which superconductivity coexists with a nematic order without long-range magnetic ordering, providing a significant opportunity to investigate the role of nematicity in the superconducting pairing interaction. Here, to reveal how the superconducting gap evolves with nematicity, we measure the thermal conductivity and specific heat of FeSe1 - x S x , in which the nematicity is suppressed by isoelectronic sulfur substitution and a nematic critical point (NCP) appears at [Formula: see text] We find that, in the whole nematic regime ([Formula: see text]), the field dependence of two quantities consistently shows two-gap behavior; one gap is small but highly anisotropic with deep minima or line nodes, and the other is larger and more isotropic. In stark contrast, in the tetragonal regime ([Formula: see text]), the larger gap becomes strongly anisotropic, demonstrating an abrupt change in the superconducting gap structure at the NCP. Near the NCP, charge fluctuations of [Formula: see text] and [Formula: see text] orbitals are enhanced equally in the tetragonal side, whereas they develop differently in the orthorhombic side. Our observation therefore directly implies that the orbital-dependent nature of the nematic fluctuations has a strong impact on the superconducting gap structure and hence on the pairing interaction.

6.
Proc Natl Acad Sci U S A ; 113(31): 8653-7, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27439874

ABSTRACT

When quantum fluctuations destroy underlying long-range ordered states, novel quantum states emerge. Spin-liquid (SL) states of frustrated quantum antiferromagnets, in which highly correlated spins fluctuate down to very low temperatures, are prominent examples of such quantum states. SL states often exhibit exotic physical properties, but the precise nature of the elementary excitations behind such phenomena remains entirely elusive. Here, we use thermal Hall measurements that can capture the unexplored property of the elementary excitations in SL states, and report the observation of anomalous excitations that may unveil the unique features of the SL state. Our principal finding is a negative thermal Hall conductivity [Formula: see text] which the charge-neutral spin excitations in a gapless SL state of the 2D kagomé insulator volborthite Cu3V2O7(OH)2[Formula: see text]2H2O exhibit, in much the same way in which charged electrons show the conventional electric Hall effect. We find that [Formula: see text] is absent in the high-temperature paramagnetic state and develops upon entering the SL state in accordance with the growth of the short-range spin correlations, demonstrating that [Formula: see text] is a key signature of the elementary excitation formed in the SL state. These results suggest the emergence of nontrivial elementary excitations in the gapless SL state which feel the presence of fictitious magnetic flux, whose effective Lorentz force is found to be less than 1/100 of the force experienced by free electrons.

7.
Proc Natl Acad Sci U S A ; 113(29): 8139-43, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27382157

ABSTRACT

In most unconventional superconductors, the importance of antiferromagnetic fluctuations is widely acknowledged. In addition, cuprate and iron-pnictide high-temperature superconductors often exhibit unidirectional (nematic) electronic correlations, including stripe and orbital orders, whose fluctuations may also play a key role for electron pairing. In these materials, however, such nematic correlations are intertwined with antiferromagnetic or charge orders, preventing the identification of the essential role of nematic fluctuations. This calls for new materials having only nematicity without competing or coexisting orders. Here we report systematic elastoresistance measurements in FeSe1-xSx superconductors, which, unlike other iron-based families, exhibit an electronic nematic order without accompanying antiferromagnetic order. We find that the nematic transition temperature decreases with sulfur content x; whereas, the nematic fluctuations are strongly enhanced. Near [Formula: see text], the nematic susceptibility diverges toward absolute zero, revealing a nematic quantum critical point. The obtained phase diagram for the nematic and superconducting states highlights FeSe1-xSx as a unique nonmagnetic system suitable for studying the impact of nematicity on superconductivity.

8.
Proc Natl Acad Sci U S A ; 113(33): 9177-81, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27482118

ABSTRACT

The spontaneous appearance of nematicity, a state of matter that breaks rotation but not translation symmetry, is one of the most intriguing properties of the iron-based superconductors (Fe SC), and has relevance for the cuprates as well. Establishing the critical electronic modes behind nematicity remains a challenge, however, because their associated susceptibilities are not easily accessible by conventional probes. Here, using FeSe as a model system, and symmetry-resolved electronic Raman scattering as a probe, we unravel the presence of critical charge nematic fluctuations near the structural/nematic transition temperature, [Formula: see text] 90 K. The diverging behavior of the associated nematic susceptibility foretells the presence of a Pomeranchuk instability of the Fermi surface with d-wave symmetry. The excellent scaling between the observed nematic susceptibility and elastic modulus data demonstrates that the structural distortion is driven by this d-wave Pomeranchuk transition. Our results make a strong case for charge-induced nematicity in FeSe.

9.
Proc Natl Acad Sci U S A ; 111(46): 16309-13, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25378706

ABSTRACT

Fermi systems in the cross-over regime between weakly coupled Bardeen-Cooper-Schrieffer (BCS) and strongly coupled Bose-Einstein-condensate (BEC) limits are among the most fascinating objects to study the behavior of an assembly of strongly interacting particles. The physics of this cross-over has been of considerable interest both in the fields of condensed matter and ultracold atoms. One of the most challenging issues in this regime is the effect of large spin imbalance on a Fermi system under magnetic fields. Although several exotic physical properties have been predicted theoretically, the experimental realization of such an unusual superconducting state has not been achieved so far. Here we show that pure single crystals of superconducting FeSe offer the possibility to enter the previously unexplored realm where the three energies, Fermi energy εF, superconducting gap Δ, and Zeeman energy, become comparable. Through the superfluid response, transport, thermoelectric response, and spectroscopic-imaging scanning tunneling microscopy, we demonstrate that εF of FeSe is extremely small, with the ratio Δ/εF ~ 1(~0.3) in the electron (hole) band. Moreover, thermal-conductivity measurements give evidence of a distinct phase line below the upper critical field, where the Zeeman energy becomes comparable to εF and Δ. The observation of this field-induced phase provides insights into previously poorly understood aspects of the highly spin-polarized Fermi liquid in the BCS-BEC cross-over regime.

10.
Rep Prog Phys ; 79(7): 074503, 2016 07.
Article in English | MEDLINE | ID: mdl-27275757

ABSTRACT

The realization of new classes of ground states in strongly correlated electron systems continues to be a major issue in condensed matter physics. Heavy fermion materials, whose electronic structure is essentially three-dimensional, are one of the most suitable systems for obtaining novel electronic states because of their intriguing properties associated with many-body effects. Recently, a state-of-the-art molecular beam epitaxy technique was developed to reduce the dimensionality of heavy electron systems by fabricating artificial superlattices that include heavy fermion compounds; this approach can produce a new type of electronic state in two-dimensional (2D) heavy fermion systems. In artificial superlattices of the antiferromagnetic heavy fermion compound CeIn3 and the conventional metal LaIn3, the magnetic order is suppressed by a reduction in the thickness of the CeIn3 layers. In addition, the 2D confinement of heavy fermions leads to enhancement of the effective electron mass and deviation from the standard Fermi liquid electronic properties, which are both associated with the dimensional tuning of quantum criticality. In the superconducting superlattices of the heavy fermion superconductor CeCoIn5 and nonmagnetic metal YbCoIn5, signatures of superconductivity are observed even at the thickness of one unit-cell layer of CeCoIn5. The most remarkable feature of this 2D heavy fermion superconductor is that the thickness reduction of the CeCoIn5 layers changes the temperature and angular dependencies of the upper critical field significantly. This result is attributed to a substantial suppression of the Pauli pair-breaking effect through the local inversion symmetry breaking at the interfaces of CeCoIn5 block layers. The importance of the inversion symmetry breaking in this system has also been supported by site-selective nuclear magnetic resonance spectroscopy, which can resolve spectroscopic information from each layer separately, even within the same CeCoIn5 block layer. In addition, recent experiments involving CeCoIn5/YbCoIn5 superlattices have shown that the degree of the inversion symmetry breaking and, in turn, the Rashba splitting are controllable, offering the prospect of achieving even more fascinating superconducting states. Thus, these Kondo superlattices pave the way for the exploration of unconventional metallic and superconducting states.

11.
Phys Rev Lett ; 116(23): 237003, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27341252

ABSTRACT

The iron-based superconductors AFe_{2}As_{2} with A=K, Rb, Cs exhibit large Sommerfeld coefficients approaching those of heavy-fermion systems. We have investigated the magnetostriction and thermal expansion of this series to shed light on this unusual behavior. Quantum oscillations of the magnetostriction allow identifying the band-specific quasiparticle masses which by far exceed the band-structure derived masses. The divergence of the Grüneisen ratio derived from thermal expansion indicates that with increasing volume along the series a quantum critical point is approached. The critical fluctuations responsible for the enhancement of the quasiparticle masses appear to weaken the superconducting state.

12.
Proc Natl Acad Sci U S A ; 110(9): 3293-7, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-23404698

ABSTRACT

When a second-order magnetic phase transition is tuned to zero temperature by a nonthermal parameter, quantum fluctuations are critically enhanced, often leading to the emergence of unconventional superconductivity. In these "quantum critical" superconductors it has been widely reported that the normal-state properties above the superconducting transition temperature T(c) often exhibit anomalous non-Fermi liquid behaviors and enhanced electron correlations. However, the effect of these strong critical fluctuations on the superconducting condensate below T(c) is less well established. Here we report measurements of the magnetic penetration depth in heavy-fermion, iron-pnictide, and organic superconductors located close to antiferromagnetic quantum critical points, showing that the superfluid density in these nodal superconductors universally exhibits, unlike the expected T-linear dependence, an anomalous 3/2 power-law temperature dependence over a wide temperature range. We propose that this noninteger power law can be explained if a strong renormalization of effective Fermi velocity due to quantum fluctuations occurs only for momenta k close to the nodes in the superconducting energy gap Δ(k). We suggest that such "nodal criticality" may have an impact on low-energy properties of quantum critical superconductors.

13.
Sci Adv ; 10(11): eadk3539, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38478600

ABSTRACT

The field-induced quantum-disordered state of layered honeycomb magnet α-RuCl3 is a prime candidate for Kitaev spin liquids hosting Majorana fermions and non-Abelian anyons. Recent observations of anomalous planar thermal Hall effect demonstrate a topological edge mode, but whether it originates from Majorana fermions or bosonic magnons remains controversial. Here, we distinguish these origins from combined low-temperature measurements of high-resolution specific heat and thermal Hall conductivity with rotating magnetic fields within the honeycomb plane. A distinct closure of the low-energy bulk gap is observed for the fields in the Ru-Ru bond direction, and the gap opens rapidly when the field is tilted. Notably, this change occurs concomitantly with the sign reversal of the Hall effect. General discussions of topological bands show that this is the hallmark of an angle rotation-induced topological transition of fermions, providing conclusive evidence for the Majorana-fermion origin of the thermal Hall effect in α-RuCl3.

14.
Nat Commun ; 14(1): 2966, 2023 May 23.
Article in English | MEDLINE | ID: mdl-37221184

ABSTRACT

Chiral spin-triplet superconductivity is a topologically nontrivial pairing state with broken time-reversal symmetry, which can host Majorana quasiparticles. The heavy-fermion superconductor UTe2 exhibits peculiar properties of spin-triplet pairing, and the possible chiral state has been actively discussed. However, the symmetry and nodal structure of its order parameter in the bulk, which determine the Majorana surface states, remains controversial. Here we focus on the number and positions of superconducting gap nodes in the ground state of UTe2. Our magnetic penetration depth measurements for three field orientations in three crystals all show the power-law temperature dependence with exponents close to 2, which excludes single-component spin-triplet states. The anisotropy of low-energy quasiparticle excitations indicates multiple point nodes near the ky- and kz-axes in momentum space. These results can be consistently explained by a chiral B3u + iAu non-unitary state, providing fundamentals of the topological properties in UTe2.

15.
Nat Commun ; 14(1): 1260, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36898999

ABSTRACT

Bose-Einstein condensation (BEC) in quantum magnets, where bosonic spin excitations condense into ordered ground states, is a realization of BEC in a thermodynamic limit. Although previous magnetic BEC studies have focused on magnets with small spins of S ≤ 1, larger spin systems potentially possess richer physics because of the multiple excitations on a single site level. Here, we show the evolution of the magnetic phase diagram of S = 3/2 quantum magnet Ba2CoGe2O7 when the averaged interaction J is controlled by a dilution of magnetic sites. By partial substitution of Co with nonmagnetic Zn, the magnetic order dome transforms into a double dome structure, which can be explained by three kinds of magnetic BECs with distinct excitations. Furthermore, we show the importance of the randomness effects induced by the quenched disorder: we discuss the relevance of geometrical percolation and Bose/Mott glass physics near the BEC quantum critical point.

16.
Sci Adv ; 9(18): eabq5561, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37134174

ABSTRACT

Continued advances in quantum technologies rely on producing nanometer-scale wires. Although several state-of-the-art nanolithographic technologies and bottom-up synthesis processes have been used to engineer these wires, critical challenges remain in growing uniform atomic-scale crystalline wires and constructing their network structures. Here, we discover a simple method to fabricate atomic-scale wires with various arrangements, including stripes, X-junctions, Y-junctions, and nanorings. Single-crystalline atomic-scale wires of a Mott insulator, whose bandgap is comparable to those of wide-gap semiconductors, are spontaneously grown on graphite substrates by pulsed-laser deposition. These wires are one unit cell thick and have an exact width of two and four unit cells (1.4 and 2.8 nm) and lengths up to a few micrometers. We show that the nonequilibrium reaction-diffusion processes may play an essential role in atomic pattern formation. Our findings offer a previously unknown perspective on the nonequilibrium self-organization phenomena on an atomic scale, paving a unique way for the quantum architecture of nano-network.

17.
Chemphyschem ; 13(1): 74-8, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22012837

ABSTRACT

Quantum spin liquids (QSLs) are fluidlike states of quantum spins in which the long-range ordered state is destroyed by quantum fluctuations. The ground state of QSLs and their exotic phenomena, which have been extensively discussed for decades, have yet to be identified. We employ thermal-transport measurements on newly discovered QSL candidates κ-(BEDT-TTF)(2)Cu(2)(CN)(3) and EtMe(3)Sb[Pd(dmit)(2)](2), and report that the two organic insulators have different QSLs characterized by different elementary excitations. In κ-(BEDT-TTF)(2)Cu(2)(CN)(3), heat transport is thermally activated at low temperatures, and this suggests the presence of a spin gap in this QSL. In stark contrast, in EtMe(3)Sb[Pd(dmit)(2)](2), a sizable linear temperature dependence of thermal conductivity is clearly resolved in the zero-temperature limit, and shows gapless excitation with a long mean free path (ca. 1000 lattice distances). Such a long mean free path demonstrates a novel feature of QSL as a quantum-condensed state with long-distance coherence.

18.
Sci Rep ; 12(1): 9187, 2022 Jun 02.
Article in English | MEDLINE | ID: mdl-35654914

ABSTRACT

A finite residual linear term in the thermal conductivity at zero temperature in insulating magnets indicates the presence of gapless excitations of itinerant quasiparticles, which has been observed in some candidate materials of quantum spin liquids (QSLs). In the organic triangular insulator ß'-EtMe3Sb[Pd(dmit)2]2, a QSL candidate material, the low-temperature thermal conductivity depends on the cooling process and the finite residual term is observed only in samples with large thermal conductivity. Moreover, the cooling rate dependence is largely sample dependent. Here we find that, while the low-temperature thermal conductivity significantly depends on the cooling rate, the high-temperature resistivity is almost perfectly independent of the cooling rate. These results indicate that in the samples with the finite residual term, the mean free path of the quasiparticles that carry the heat at low temperatures is governed by disorders, whose characteristic length scale of the distribution is much longer than the electron mean free path that determines the high-temperature resistivity. This explains why recent X-ray diffraction and nuclear magnetic resonance measurements show no cooling rate dependence. Naturally, these measurements are unsuitable for detecting disorders of the length scale relevant for the thermal conductivity, just as they cannot determine the residual resistivity of metals. Present results indicate that very careful experiments are needed when discussing itinerant spin excitations in ß'-EtMe3Sb[Pd(dmit)2]2.

19.
Nat Commun ; 13(1): 323, 2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35031621

ABSTRACT

Quantum spin liquids realize massive entanglement and fractional quasiparticles from localized spins, proposed as an avenue for quantum science and technology. In particular, topological quantum computations are suggested in the non-abelian phase of Kitaev quantum spin liquid with Majorana fermions, and detection of Majorana fermions is one of the most outstanding problems in modern condensed matter physics. Here, we propose a concrete way to identify the non-abelian Kitaev quantum spin liquid by magnetic field angle dependence. Topologically protected critical lines exist on a plane of magnetic field angles, and their shapes are determined by microscopic spin interactions. A chirality operator plays a key role in demonstrating microscopic dependences of the critical lines. We also show that the chirality operator can be used to evaluate topological properties of the non-abelian Kitaev quantum spin liquid without relying on Majorana fermion descriptions. Experimental criteria for the non-abelian spin liquid state are provided for future experiments.

20.
Proc Natl Acad Sci U S A ; 105(20): 7120-3, 2008 May 20.
Article in English | MEDLINE | ID: mdl-18480261

ABSTRACT

In high-transition-temperature (T(c)) superconductivity, charge doping is a natural tuning parameter that takes copper oxides from the antiferromagnet to the superconducting region. In the metallic state above T(c), the standard Landau's Fermi-liquid theory of metals as typified by the temperature squared (T(2)) dependence of resistivity appears to break down. Whether the origin of the non-Fermi-liquid behavior is related to physics specific to the cuprates is a fundamental question still under debate. We uncover a transformation from the non-Fermi-liquid state to a standard Fermi-liquid state driven not by doping but by magnetic field in the overdoped high-T(c) superconductor Tl(2)Ba(2)CuO(6+x). From the c-axis resistivity measured up to 45 T, we show that the Fermi-liquid features appear above a sufficiently high field that decreases linearly with temperature and lands at a quantum critical point near the superconductivity's upper critical field-with the Fermi-liquid coefficient of the T(2) dependence showing a power-law diverging behavior on the approach to the critical point. This field-induced quantum criticality bears a striking resemblance to that in quasi-two-dimensional heavy-Fermion superconductors, suggesting a common underlying spin-related physics in these superconductors with strong electron correlations.


Subject(s)
Chemistry, Physical/methods , Quantum Theory , Anisotropy , Hot Temperature , Metals , Models, Chemical , Models, Theoretical , Oxygen/chemistry , Temperature , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL