Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Small ; 11(26): 3153-61, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25739374

ABSTRACT

Self-assembled structures of metallic nanoparticles with dynamically changeable interparticle distance hold promise for the regulation of collective physical properties. This paper describes gold nanoparticle dimers and trimers that exhibit spontaneous and reversible changes in interparticle distance. To exploit this property, a gold nanoparticle is modified with precisely one long DNA strand and approximately five short DNA strands. The long DNA serves to align the nanoparticles on a template DNA via hybridization, while the short DNAs function to induce the interparticle distance changes. The obtained dimer and trimer are characterized with gel electrophoresis, dynamic light scattering measurements, and transmission electron microscopy (TEM). When the complementary short DNA is added to form the fully matched duplexes on the particle surface in the presence of MgCl2 , spontaneous reduction of the interparticle distance is observed with TEM and cryo-electron microscopy. By contrast, when the terminal-mismatched DNA is added, no structural change occurs under the same conditions. Therefore, the single base pairing/unpairing at the outermost surface of the nanoparticle impacts the interparticle distance. This unique feature could be applied to the regulation of structures and properties of various DNA-functionalized nanoparticle assemblies.


Subject(s)
Base Pairing , Crystallization/methods , DNA/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , DNA/ultrastructure , Dimerization , Materials Testing , Molecular Conformation , Nanoconjugates/chemistry , Nanoconjugates/ultrastructure , Particle Size
2.
Chemistry ; 20(52): 17420-5, 2014 Dec 22.
Article in English | MEDLINE | ID: mdl-25349129

ABSTRACT

A single-nucleotide polymorphism (SNP) detection method was developed by combining single-base primer extension and salt-induced aggregation of gold nanoparticles densely functionalized with double-stranded DNA (dsDNA-AuNP). The dsDNA-AuNPs undergo rapid aggregation in a medium of high ionic strength, whereas particles having a single-base protrusion at the outermost surface disperse stably, allowing detection of a single-base difference in length by color changes. When SNP typing primers are used as analytes to hybridize to the single-stranded DNA on the AuNP surface, the resulting dsDNA-AuNP works as a visual indicator of single-base extension. A set of four extension reaction mixtures is prepared using each of ddNTPs and subsequently subjected to the aggregation assay. Three mixtures involving ddNTP that is not complementary to the SNP site in the target produce the aggregates that exhibit a purple color. In contrast, one mixture with the complementary ddNTP generates the single-base protrusion and appears red. This method could potentially be used in clinical diagnostics for personalized medicine.


Subject(s)
DNA, Single-Stranded/chemistry , DNA/chemistry , DNA/genetics , Gold/chemistry , Metal Nanoparticles/chemistry , Base Sequence , Biosensing Techniques , Colorimetry/methods , Diagnostic Techniques and Procedures , Humans , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL