Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(15)2022 Jul 24.
Article in English | MEDLINE | ID: mdl-35897720

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease characterized by memory impairment in patients. Erythropoietin (EPO) has been reported to stimulate neurogenesis. This study was conducted to determine the regenerative effects of EPO in an AD model and to assess its underlying mechanism. Recombinant human EPO was intraperitoneally administered to AD mice induced by intracerebroventricular Aß oligomer injection. Behavioral assessments with novel object recognition test and passive avoidance task showed improvement in memory function of the EPO-treated AD mice compared to that of the saline-treated AD mice (p < 0.0001). An in vivo protein assay for the hippocampus and cortex tissue indicated that EPO treatment modulated neurotransmitters, including dopamine, serotonin, and adrenaline. EPO treatment also restored the activity of serotonin receptors, including 5-HT4R, 5-HT7R, and 5-HT1aR (p < 0.01), at mRNA levels. Furthermore, EPO seemed to exert an anti-inflammatory influence by downregulating TLR4 at mRNA and protein levels (p < 0.05). Finally, an immunohistochemical assay revealed increments of Nestin(+) and NeuN(+) neuronal cells in the CA3 region in the EPO-treated AD mice compared to those in the saline-treated AD mice. The conclusion is that EPO administration might be therapeutic for AD by activating the serotonergic pathway, anti-inflammatory action, and neurogenic characteristics.


Subject(s)
Alzheimer Disease , Erythropoietin , Neurodegenerative Diseases , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Epoetin Alfa/therapeutic use , Erythropoietin/metabolism , Erythropoietin/pharmacology , Erythropoietin/therapeutic use , Hippocampus/metabolism , Humans , Mice , Neurodegenerative Diseases/metabolism , RNA, Messenger/metabolism , Recombinant Proteins/metabolism , Serotonin/metabolism
2.
Int J Mol Sci ; 22(21)2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34769434

ABSTRACT

Our previous clinical studies demonstrated the synergistic therapeutic effect induced by co-administering recombinant human erythropoietin (rhEPO) in human umbilical cord blood (hUCB) therapy for children with cerebral palsy. However, the cellular mechanism beyond the beneficial effects in this combination therapy still needs to be elucidated. A hypoxic-ischemic encephalopathy (HIE) model of neonates, representing cerebral palsy, was prepared and randomly divided into five groups (hUCB+rhEPO combination, hUCB, and rhEPO treatments over HIE, HIE control, and sham). Seven days after, hUCB was administered intraperitoneally and the rhEPO injections were started. Neurobehavioral tests showed the best outcome in the combination therapy group, while the hUCB and rhEPO alone treatments also showed better outcomes compared with the control (p < 0.05). Inflammatory cytokines were downregulated by the treatments and attenuated most by the combination therapy (p < 0.05). The hUCB+rhEPO treatment also showed remarkable increase in phosphorylation of Akt and potentiation of anti-apoptotic responses with decreased Bax and increased Bcl-2 (p < 0.05). Pre-treatment of MK-2206, an Akt inhibitor, for the combination therapy depressed the anti-apoptotic effects. In conclusion, these findings suggest that the therapeutic effect of hUCB therapy might be potentiated by co-administration of rhEPO via augmentation of anti-inflammatory and anti-apoptotic responses related to the phosphorylation of Akt.


Subject(s)
Brain Injuries/therapy , Erythropoietin/pharmacology , Fetal Blood/transplantation , Hypoxia-Ischemia, Brain/therapy , Proto-Oncogene Proteins c-akt/metabolism , Animals , Animals, Newborn , Apoptosis/drug effects , Apoptosis/physiology , Brain Injuries/metabolism , Brain Injuries/pathology , Disease Models, Animal , Female , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Male , Mice , Mice, Inbred ICR , Recombinant Proteins/pharmacology , Signal Transduction
3.
Neurobiol Dis ; 130: 104519, 2019 10.
Article in English | MEDLINE | ID: mdl-31233882

ABSTRACT

The intraneuronal aggregates of hyperphosphorylated and misfolded tau (neurofibrillary tangles, NFTs) cause a stereotypical spatiotemporal Alzheimer's disease (AD) progression that correlates with the severity of the associated cognitive decline. Kinase activity contributes to the balance between neuron survival and cell death. Hyperactivation of kinases including the conventional protein kinase C (PKC) is a defective molecular event accompanying associative memory loss, tau phosphorylation, and progression of AD or related neurodegenerative diseases. Here, we investigated the ability of small therapeutic compounds (a custom library) to improve tau-induced rough-eye phenotype in a Drosophila melanogaster model of frontotemporal dementia. We also assessed the tau phosphorylation in vivo and selected hit compounds. Among the potential hits, we investigated Ro 31-8220, described earlier as a potent PKCα inhibitor. Ro 31-8220 robustly improved the rough-eye phenotype, reduced phosphorylated tau species in vitro and in vivo, reversed tau-induced memory impairment, and improved the fly motor functions. In a human neuroblastoma cell line, Ro 31-8220 reduced the PKC activity and the tau phosphorylation pattern, but we also have to acknowledge the compound's wide range of biological activity. Nevertheless, Ro 31-8220 is a novel therapeutic mitigator of tau-induced neurotoxocity.


Subject(s)
Frontotemporal Dementia/metabolism , Indoles/pharmacology , Neurofibrillary Tangles/drug effects , Neurons/drug effects , tau Proteins/metabolism , Animals , Disease Models, Animal , Drosophila melanogaster , Drug Evaluation, Preclinical , Neurofibrillary Tangles/metabolism , Neurons/metabolism , Phosphorylation/drug effects
4.
J Agric Food Chem ; 54(6): 2314-9, 2006 Mar 22.
Article in English | MEDLINE | ID: mdl-16536613

ABSTRACT

A cyclomaltodextrinase (CDase) isolated from alkalophilic Bacillus sp. I-5 (CDase I-5) exists in a dodecameric form, an assembly of six dimers, each catalytic site of which is located in a narrow groove at the interface of the dimeric unit. Because of the unique geometric shape of the catalytic site, the enzyme has the ability to discriminate the molecular size of substrates. An analysis of the hydrolysis reaction of the enzyme revealed that its kcat/Km value on amylose was 14.6 s(-1) (mg/mL)(-1), whereas that for amylopectin was 0.92 s(-1) (mg/mL)(-1), showing an exceptionally high preference toward amylose. CDase I-5 was applied to modify the starch structure to produce low-amylose starch products by incubating rice starch with this enzyme. We found that the amylose content of rice starch decreased from 28.5 to 9%, while the amylopectin content remained almost constant with no significant change in the side chain length distribution. When the CDase I-5-treated rice starch was stored at 4 degrees C for 7 days, the retrogradation rate was significantly retarded as compared to that in the control sample.


Subject(s)
Amylose/metabolism , Bacillus/enzymology , Glycoside Hydrolases/metabolism , Oryza/chemistry , Starch/metabolism , Amylopectin/metabolism , Chromatography, Gel , Chromatography, Thin Layer , Glycoside Hydrolases/isolation & purification , Hydrogen-Ion Concentration , Kinetics , Starch/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL