Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Cell ; 186(3): 621-645.e33, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36736301

ABSTRACT

Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/ß-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/ß immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/ß. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/ß-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/ß-dependent antiviral immunity.


Subject(s)
COVID-19 , Mycobacterium , Child , Humans , Interferon-gamma , SARS-CoV-2 , Interferon-alpha , Interferon Regulatory Factor-1
2.
Proc Natl Acad Sci U S A ; 120(40): e2307318120, 2023 10 03.
Article in English | MEDLINE | ID: mdl-37748074

ABSTRACT

Epithelial tissue is at the forefront of innate immunity, playing a crucial role in the recognition and elimination of pathogens. Met is a receptor tyrosine kinase that is necessary for epithelial cell survival, proliferation, and regeneration. Here, we showed that Met is essential for the induction of cytokine production by cytosolic nonself double-stranded RNA through retinoic acid-inducible gene-I-like receptors (RLRs) in epithelial cells. Surprisingly, the tyrosine kinase activity of Met was dispensable for promoting cytokine production. Rather, the intracellular carboxy terminus of Met interacted with mitochondrial antiviral-signaling protein (MAVS) in RLR-mediated signaling to directly promote MAVS signalosome formation. These studies revealed a kinase activity-independent function of Met in the promotion of antiviral innate immune responses, defining dual roles of Met in both regeneration and immune responses in the epithelium.


Subject(s)
Epithelial Cells , Receptor Protein-Tyrosine Kinases , Immunity, Innate , Antiviral Agents , Cytokines
3.
Proc Natl Acad Sci U S A ; 119(28): e2204511119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867748

ABSTRACT

Despite excellent vaccines, resurgent outbreaks of hepatitis A have caused thousands of hospitalizations and hundreds of deaths within the United States in recent years. There is no effective antiviral therapy for hepatitis A, and many aspects of the hepatitis A virus (HAV) replication cycle remain to be elucidated. Replication requires the zinc finger protein ZCCHC14 and noncanonical TENT4 poly(A) polymerases with which it associates, but the underlying mechanism is unknown. Here, we show that ZCCHC14 and TENT4A/B are required for viral RNA synthesis following translation of the viral genome in infected cells. Cross-linking immunoprecipitation sequencing (CLIP-seq) experiments revealed that ZCCHC14 binds a small stem-loop in the HAV 5' untranslated RNA possessing a Smaug recognition-like pentaloop to which it recruits TENT4. TENT4 polymerases lengthen and stabilize the 3' poly(A) tails of some cellular and viral mRNAs, but the chemical inhibition of TENT4A/B with the dihydroquinolizinone RG7834 had no impact on the length of the HAV 3' poly(A) tail, stability of HAV RNA, or cap-independent translation of the viral genome. By contrast, RG7834 inhibited the incorporation of 5-ethynyl uridine into nascent HAV RNA, indicating that TENT4A/B function in viral RNA synthesis. Consistent with potent in vitro antiviral activity against HAV (IC50 6.11 nM), orally administered RG7834 completely blocked HAV infection in Ifnar1-/- mice, and sharply reduced serum alanine aminotransferase activities, hepatocyte apoptosis, and intrahepatic inflammatory cell infiltrates in mice with acute hepatitis A. These results reveal requirements for ZCCHC14-TENT4A/B in hepatovirus RNA synthesis, and suggest that TENT4A/B inhibitors may be useful for preventing or treating hepatitis A in humans.


Subject(s)
Chromosomal Proteins, Non-Histone , DNA-Directed DNA Polymerase , Hepatitis A virus , Hepatitis A , Intrinsically Disordered Proteins , RNA Nucleotidyltransferases , RNA, Viral , Virus Replication , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Chromosomal Proteins, Non-Histone/metabolism , DNA-Directed DNA Polymerase/metabolism , Hepatitis A/drug therapy , Hepatitis A/metabolism , Hepatitis A/virology , Hepatitis A virus/drug effects , Hepatitis A virus/genetics , Hepatitis A virus/physiology , Humans , Intrinsically Disordered Proteins/metabolism , Mice , Mice, Mutant Strains , RNA Nucleotidyltransferases/metabolism , RNA, Viral/biosynthesis , RNA, Viral/genetics , Receptor, Interferon alpha-beta/genetics , Virus Replication/drug effects
4.
PLoS Pathog ; 18(8): e1010543, 2022 08.
Article in English | MEDLINE | ID: mdl-35969644

ABSTRACT

Although picornaviruses are conventionally considered 'nonenveloped', members of multiple picornaviral genera are released nonlytically from infected cells in extracellular vesicles. The mechanisms underlying this process are poorly understood. Here, we describe interactions of the hepatitis A virus (HAV) capsid with components of host endosomal sorting complexes required for transport (ESCRT) that play an essential role in release. We show release of quasi-enveloped virus (eHAV) in exosome-like vesicles requires a conserved export signal located within the 8 kDa C-terminal VP1 pX extension that functions in a manner analogous to late domains of canonical enveloped viruses. Fusing pX to a self-assembling engineered protein nanocage (EPN-pX) resulted in its ESCRT-dependent release in extracellular vesicles. Mutational analysis identified a 24 amino acid peptide sequence located within the center of pX that was both necessary and sufficient for nanocage release. Deleting a YxxL motif within this sequence ablated eHAV release, resulting in virus accumulating intracellularly. The pX export signal is conserved in non-human hepatoviruses from a wide range of mammalian species, and functional in pX sequences from bat hepatoviruses when fused to the nanocage protein, suggesting these viruses are released as quasi-enveloped virions. Quantitative proteomics identified multiple ESCRT-related proteins associating with EPN-pX, including ALG2-interacting protein X (ALIX), and its paralog, tyrosine-protein phosphatase non-receptor type 23 (HD-PTP), a second Bro1 domain protein linked to sorting of ubiquitylated cargo into multivesicular endosomes. RNAi-mediated depletion of either Bro1 domain protein impeded eHAV release. Super-resolution fluorescence microscopy demonstrated colocalization of viral capsids with endogenous ALIX and HD-PTP. Co-immunoprecipitation assays using biotin-tagged peptides and recombinant proteins revealed pX interacts directly through the export signal with N-terminal Bro1 domains of both HD-PTP and ALIX. Our study identifies an exceptionally potent viral export signal mediating extracellular release of virus-sized protein assemblies and shows release requires non-redundant activities of both HD-PTP and ALIX.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Hepatitis A virus , Animals , Calcium-Binding Proteins/metabolism , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cell Cycle Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , Endosomal Sorting Complexes Required for Transport/metabolism , Hepatitis A virus/genetics , Hepatitis A virus/metabolism , Mammals , Viral Proteins/metabolism
5.
J Biol Chem ; 298(7): 102097, 2022 07.
Article in English | MEDLINE | ID: mdl-35660020

ABSTRACT

Hepatitis B virus (HBV) infection is a major global health problem with no established cure. Dedicator of cytokinesis 11 (DOCK11), known as a guanine nucleotide exchange factor (GEF) for Cdc42, is reported to be essential for the maintenance of HBV. However, potential therapeutic strategies targeting DOCK11 have not yet been explored. We have previously developed an in vitro virus method as a more efficient tool for the analysis of proteomics and evolutionary protein engineering. In this study, using the in vitro virus method, we screened and identified a novel antiasialoglycoprotein receptor (ASGR) antibody, ASGR3-10M, and a DOCK11-binding peptide, DCS8-42A, for potential use in HBV infection. We further constructed a fusion protein (10M-D42AN) consisting of ASGR3-10M, DCS8-42A, a fusogenic peptide, and a nuclear localization signal to deliver the peptide inside hepatocytes. We show using immunofluorescence staining that 10M-D42AN was endocytosed into early endosomes and released into the cytoplasm and nucleus. Since DCS8-42A shares homology with activated cdc42-associated kinase 1 (Ack1), which promotes EGFR endocytosis required for HBV infection, we also found that 10M-D42AN inhibited endocytosis of EGFR and Ack1. Furthermore, we show 10M-D42AN suppressed the function of DOCK11 in the host DNA repair system required for covalently closed circular DNA synthesis and suppressed HBV proliferation in mice. In conclusion, this study realizes a novel hepatocyte-specific drug delivery system using an anti-ASGR antibody, a fusogenic peptide, and DOCK11-binding peptide to provide a novel treatment for HBV.


Subject(s)
Drug Delivery Systems , Guanine Nucleotide Exchange Factors , Hepatitis B virus , Hepatitis B , Single-Chain Antibodies , Animals , DNA, Circular/genetics , ErbB Receptors/metabolism , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Hepatitis B/drug therapy , Hepatitis B virus/pathogenicity , Hepatitis B virus/physiology , Hepatocytes/metabolism , Hepatocytes/virology , Humans , Mice , Peptides/metabolism , Single-Chain Antibodies/metabolism , Virus Replication/genetics
6.
J Hepatol ; 78(2): 271-280, 2023 02.
Article in English | MEDLINE | ID: mdl-36152761

ABSTRACT

BACKGROUND & AIMS: Consistent with its relatively narrow host species range, hepatitis A virus (HAV) cannot infect C57BL/6 mice. However, in Mavs-/- mice with genetic deficiency of the innate immune signaling adaptor MAVS, HAV replicates robustly in the absence of disease. The HAV 3ABC protease cleaves MAVS in human cells, thereby disrupting virus-induced IFN responses, but it cannot cleave murine MAVS (mMAVS) due to sequence differences at the site of scission. Here, we sought to elucidate the role of 3ABC MAVS cleavage in determining HAV pathogenesis and host species range. METHODS: Using CRISPR/Cas9 gene editing, we established two independent lineages of C57BL/6 mice with knock-in mutations altering two amino acids in mMAVS ('mMAVS-VS'), rendering it susceptible to 3ABC cleavage without loss of signaling function. We challenged homozygous Mavsvs/vs mice with HAV, and compared infection outcomes with C57BL/6 and genetically deficient Mavs-/- mice. RESULTS: The humanized murine mMAVS-VS protein was cleaved as efficiently as human MAVS when co-expressed with 3ABC in Huh-7 cells. In embyronic fibroblasts from Mavsvs/vs mice, mMAVS-VS was cleaved by ectopically expressed 3ABC, significantly disrupting Sendai virus-induced IFN responses. However, in contrast to Mavs-/- mice with genetic MAVS deficiency, HAV failed to establish infection in Mavsvs/vs mice, even with additional genetic knockout of Trif or Irf1. Nonetheless, when crossed with permissive Ifnar1-/- mice lacking type I IFN receptors, Mavsvs/vsIfnar1-/- mice demonstrated enhanced viral replication coupled with significant reductions in serum alanine aminotransferase, hepatocellular apoptosis, and intrahepatic inflammatory cell infiltrates compared with Ifnar1-/- mice. CONCLUSIONS: MAVS cleavage by 3ABC boosts viral replication and disrupts disease pathogenesis, but it is not by itself sufficient to break the host-species barrier to HAV infection in mice. IMPACT AND IMPLICATIONS: The limited host range of human hepatitis viruses could be explained by species-specific viral strategies that disrupt innate immune responses. Both hepatitis A virus (HAV) and hepatitis C virus express viral proteases that cleave the innate immune adaptor protein MAVS, in human but not mouse cells. However, the impact of this immune evasion strategy has never been assessed in vivo. Here we show that HAV 3ABC protease cleavage of MAVS enhances viral replication and lessens liver inflammation in mice lacking interferon receptors, but that it is insufficient by itself to overcome the cross-species barrier to infection in mice. These results enhance our understanding of how hepatitis viruses interact with the host and their impact on innate immune responses.


Subject(s)
Hepatitis A virus , Hepatitis A , Animals , Mice , Humans , Hepatitis A virus/genetics , Peptide Hydrolases , Mice, Inbred C57BL , Immunity, Innate , Viral Proteases
7.
J Virol ; 96(21): e0119522, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36286484

ABSTRACT

Hepatoviruses are atypical hepatotropic picornaviruses that are released from infected cells without lysis in small membranous vesicles. These exosome-like, quasi-enveloped virions (eHAV) are infectious and the only form of hepatitis A virus (HAV) found circulating in blood during acute infection. eHAV is released through multivesicular endosomes in a process dependent on endosomal sorting complexes required for transport (ESCRT). Capsid protein interactions with the ESCRT-associated Bro1 domain proteins, ALG-2-interacting protein X (ALIX) and His domain-containing protein tyrosine phosphatase (HD-PTP), which are both recruited to the pX domain of 1D (VP1pX), are critical for this process. Previous proteomics studies suggest pX also binds the HECT domain, NEDD4 family E3 ubiquitin ligase, ITCH. Here, we confirm this interaction and show ITCH binds directly to the carboxy-terminal half of pX from both human and bat hepatoviruses independently of ALIX. A small chemical compound (compound 5) designed to disrupt interactions between WW domains of NEDD4 ligases and substrate molecules blocked ITCH binding to pX and demonstrated substantial antiviral activity against HAV. CRISPR deletion or small interfering RNA (siRNA) knockdown of ITCH expression inhibited the release of a self-assembling nanocage protein fused to pX and also impaired the release of eHAV from infected cells. The release could be rescued by overexpression of wild-type ITCH, but not a catalytically inactive ITCH mutant. Despite this, we found no evidence that ITCH ubiquitylates pX or that eHAV release is strongly dependent upon Lys residues in pX. These data indicate ITCH plays an important role in the ESCRT-dependent release of quasi-enveloped hepatovirus, although the substrate molecule targeted for ubiquitylation remains to be determined. IMPORTANCE Mechanisms underlying the cellular release of quasi-enveloped hepatoviruses are only partially understood, yet play a crucial role in the pathogenesis of this common agent of viral hepatitis. Multiple NEDD4 family E3 ubiquitin ligases, including ITCH, have been reported to promote the budding of conventional enveloped viruses but are not known to function in the release of HAV or other picornaviruses from infected cells. Here, we show that the unique C-terminal pX extension of the VP1 capsid protein of HAV interacts directly with ITCH and that ITCH promotes eHAV release in a manner analogous to its role in budding of some conventional enveloped viruses. The catalytic activity of ITCH is required for efficient eHAV release and may potentially function to ubiquitylate the viral capsid or activate ESCRT components.


Subject(s)
Hepatitis A virus , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Hepatovirus/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Hepatitis A virus/physiology , Nedd4 Ubiquitin Protein Ligases/metabolism
8.
J Infect Dis ; 226(3): 407-419, 2022 08 26.
Article in English | MEDLINE | ID: mdl-32515477

ABSTRACT

BACKGROUND: Many long noncoding RNAs (lncRNAs) have important roles in biological processes. The lncRNA HULC was found to be upregulated in human hepatoma tissues. HULC is thought to be involved in multiple steps of hepatoma development and progression; however, the relationship between HULC and hepatitis C virus (HCV) infection, which is a leading cause of hepatoma, remains unclear. METHODS: We examined the effect of HCV replication on HULC expression and the underlying mechanism using cell culture systems. Subsequently, we tested the effect of HULC suppression and overexpression on HCV replication. Finally, we examined the impact of HCV eradication on HULC expression using human liver tissue and blood samples. RESULTS: HCV replication increased HULC expression in cell cultures. A promoter assay showed that an HCV nonstructural protein, NS5A, increased HULC transcription. HULC suppression inhibited HCV replication; conversely, its overexpression enhanced HCV replication. These effects on HCV replication seemed to occur by the modification of HCV translation. Measurements from human liver and blood samples showed that HCV eradication significantly reduced HULC levels in the liver and blood. CONCLUSIONS: HCV infection increases HULC expression in vitro and in vivo. HULC modulates HCV replication through an HCV internal ribosome entry site-directed translation step.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis C , Liver Neoplasms , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/pharmacology , Hepacivirus/genetics , Up-Regulation , Liver Neoplasms/genetics , Virus Replication , RNA, Viral
9.
Endocr J ; 69(8): 907-918, 2022 Aug 29.
Article in English | MEDLINE | ID: mdl-35321982

ABSTRACT

Selenoprotein P is upregulated in type 2 diabetes, causing insulin and exercise resistance. We have previously reported that eicosapentaenoic acid (EPA) negatively regulates Selenop expression by suppressing Srebf1 in H4IIEC3 hepatocytes. However, EPA downregulated Srebf1 long before downregulating Selenop. Here, we report additional novel mechanisms for the Selenop gene regulation by EPA. EPA upregulated Foxo1 mRNA expression, which was canceled with the ERK1/2 inhibitor, but not with the PKA inhibitor. Foxo1 knockdown by siRNA initiated early suppression of Selenop, but not Srebf1, by EPA. However, EPA did not affect the nuclear translocation of the FoxO1 protein. Neither ERK1/2 nor PKA inhibitor affected FoxO1 nuclear translocation. In summary, FoxO1 knockdown accelerates the EPA-mediated Selenop downregulation independent of SREBP-1c in hepatocytes. EPA upregulates Foxo1 mRNA via the ERK1/2 pathway without altering its protein and nuclear translocation. These findings suggest redundant and conflicting transcriptional networks in the lipid-induced redox regulation.


Subject(s)
Diabetes Mellitus, Type 2 , Eicosapentaenoic Acid , Down-Regulation , Forkhead Box Protein O1 , Hepatocytes , Humans , Insulin , RNA, Messenger , Selenoprotein P , Sterol Regulatory Element Binding Protein 1 , Sterols
10.
Gut ; 67(2): 362-371, 2018 02.
Article in English | MEDLINE | ID: mdl-27789659

ABSTRACT

OBJECTIVE: The clinical significance of polymorphisms in the interleukin-28B gene encoding interferon (IFN)-λ3, which has antiviral effects, is known in chronic HCV but not in HBV infection. Thus, we measured IFN-λ3 levels in patients with HBV and investigated its clinical significance and association with nucleos(t)ide (NUC) analogue administration. DESIGN: Serum IFN-λ3 level was measured in 254 patients with HBV with varying clinical conditions using our own high sensitivity method. The resulting values were compared with various clinical variables. In addition, cell lines originating from various organs were cultured with NUCs, and the production of IFN-λ3 was evaluated. RESULTS: Higher serum IFN-λ3 levels were detected in the patients treated with nucleotide analogues (adefovir or tenofovir) compared with those treated with nucleoside analogues (lamivudine or entecavir). There were no other differences in the clinical background between the two groups. A rise in the serum IFN-λ3 levels was observed during additional administration of the nucleotide analogues. In vitro experiments showed that the nucleotide analogues directly and dose-dependently induced IFN-λ3 production only in colon cancer cells. Furthermore, the supernatant from cultured adefovir-treated colon cancer cells significantly induced IFN-stimulated genes (ISGs) and inhibited hepatitis B surface antigen (HBsAg) production in hepatoma cells, as compared with the supernatant from entecavir-treated cells. CONCLUSIONS: We discovered that the nucleotide analogues show an additional pharmacological effect by inducing IFN-λ3 production, which further induces ISGs and results in a reduction of HBsAg production. These findings provide novel insights for HBV treatment and suggest IFN-λ3 induction as a possible target.


Subject(s)
Antiviral Agents/therapeutic use , Carcinoma, Hepatocellular/blood , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/drug therapy , Interleukins/blood , Liver Neoplasms/blood , Adenine/analogs & derivatives , Adenine/pharmacology , Adenine/therapeutic use , Adult , Aged , Aged, 80 and over , Antiviral Agents/pharmacology , Asymptomatic Infections , Culture Media, Conditioned/pharmacology , DNA, Viral/blood , Female , Gene Expression/drug effects , Genotype , Guanine/analogs & derivatives , Guanine/pharmacology , Guanine/therapeutic use , HT29 Cells , Hep G2 Cells , Hepatitis B Surface Antigens/metabolism , Hepatitis B virus/genetics , Humans , Interferons , Interleukins/pharmacology , Lamivudine/pharmacology , Lamivudine/therapeutic use , Liver Cirrhosis/blood , Male , Middle Aged , Organophosphonates/pharmacology , Organophosphonates/therapeutic use , Polymorphism, Genetic , Recombinant Proteins , Tenofovir/pharmacology , Tenofovir/therapeutic use , Up-Regulation/genetics , Young Adult
11.
J Biol Chem ; 292(26): 10791-10800, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28465347

ABSTRACT

Selenoprotein P (encoded by SELENOP in humans, Selenop in rat), a liver-derived secretory protein, induces resistance to insulin and vascular endothelial growth factor (VEGF) in type 2 diabetes. Suppression of selenoprotein P may provide a novel therapeutic approach to treating type 2 diabetes; however, few drugs inhibiting SELENOP expression in hepatocytes have been identified. The present findings demonstrate that eicosapentaenoic acid (EPA) suppresses SELENOP expression by inactivating sterol regulatory element-binding protein-1c (SREBP-1c, encoded by Srebf1 in rat) in H4IIEC3 hepatocytes. Treatment with EPA caused concentration- and time-dependent reduction in SELENOP promoter activity. EPA activated AMP-activated protein kinase (AMPK); however, the inhibitory effect of EPA on SELENOP promoter activity was not canceled with an AMPK inhibitor compound C and dominant-negative AMPK transfection. Deletion mutant promoter assays and computational analysis of transcription factor-binding sites conserved among the species resulted in identification of a sterol regulatory element (SRE)-like site in the SELENOP promoter. A chromatin immunoprecipitation (ChIP) assay revealed that EPA decreases binding of SREBP-1c to the SELENOP promoter. Knockdown of Srebf1 resulted in a significant down-regulation of Selenop expression. Conversely, SREBP-1c overexpression inhibited the suppressive effect of EPA. These data provide a novel mechanism of action for EPA involving improvement of systemic insulin sensitivity through the regulation of selenoprotein P production independently of the AMPK pathway and suggest an additional approach to developing anti-diabetic drugs.


Subject(s)
Down-Regulation/drug effects , Eicosapentaenoic Acid/pharmacology , Hepatocytes/metabolism , Selenoprotein P/biosynthesis , Sterol Regulatory Element Binding Protein 1/metabolism , Animals , Cell Line, Tumor , Humans , Rats , Selenoprotein P/genetics , Sterol Regulatory Element Binding Protein 1/genetics
12.
Article in English | MEDLINE | ID: mdl-29661883

ABSTRACT

Simeprevir is a novel NS3/4A protease inhibitor (PI) of hepatitis C virus (HCV). The baseline polymorphism NS3-Q80K is frequently observed in genotype (GT) 1a HCV and often associated with treatment failure in simeprevir-containing regimens. We aimed to elucidate mechanisms of treatment failure due to NS3-Q80K. We included a Q80R mutation in our study and generated a series of Huh-7.5 cell lines, each of which harbored either wild-type GT 1a strain H77S.3 or the Q80K or Q80R variant. The cells were cultured with increasing concentrations of simeprevir, and NS3 domain sequences were determined. The mutations identified by sequence analyses were subsequently introduced into H77S.3. The sensitivity of each mutant to the NS3/4A PIs simeprevir, asunaprevir, grazoprevir, and paritaprevir was analyzed. We introduced the mutations into GT 1b strain N.2 and compared the sensitivity to simeprevir with that of GT 1a strain H77S.3. While simeprevir treatment selected mutations at residue D168, such as D168A/V in the wild-type virus, an additional mutation at residue R155, R155K, was selected in Q80K/R variants at simeprevir concentrations of <2.5 µM. Sensitivity analyses showed that simeprevir concentrations of <1 µM significantly boosted the replication of Q80K/R R155K variants. Interestingly, this boost was not observed with the other NS3/4A PIs or in Q80R R155Q/G/T/W variants or GT 1b isolates. The boosted replication of the Q80K+R155K variant by simeprevir could be related to treatment failure in simeprevir-containing antiviral treatments in GT 1a HCV-infected patients with the NS3-Q80K polymorphism. This result provides new insight into how resistance-associated variants can cause treatment failure.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepatitis C, Chronic/virology , Simeprevir/pharmacology , Drug Resistance, Viral/genetics , Genome, Viral/genetics , Genotype , Hepacivirus/genetics , Isoquinolines/pharmacology , Mutation/genetics , Sulfonamides/pharmacology , Virus Replication/genetics
13.
Int J Mol Sci ; 19(2)2018 Jan 23.
Article in English | MEDLINE | ID: mdl-29360739

ABSTRACT

Hepatocellular carcinoma (HCC) frequently develops from hepatitis C virus (HCV) and hepatitis B virus (HBV) infection. We previously reported that peretinoin, an acyclic retinoid, inhibits HCV replication. This study aimed to examine the influence of peretinoin on the HBV lifecycle. HBV-DNA and covalently closed circular DNA (cccDNA) were evaluated by a qPCR method in HepG2.2.15 cells. Peretinoin significantly reduced the levels of intracellular HBV-DNA, nuclear cccDNA, and HBV transcript at a concentration that did not induce cytotoxicity. Conversely, other retinoids, such as 9-cis, 13-cis retinoic acid (RA), and all-trans-retinoic acid (ATRA), had no effect or rather increased HBV replication. Mechanistically, although peretinoin increased the expression of HBV-related transcription factors, as observed for other retinoids, peretinoin enhanced the binding of histone deacetylase 1 (HDAC1) to cccDNA in the nucleus and negatively regulated HBV transcription. Moreover, peretinoin significantly inhibited the expression of SPHK1, a potential inhibitor of HDAC activity, and might be involved in hepatic inflammation, fibrosis, and HCC. SPHK1 overexpression in cells cancelled the inhibition of HBV replication induced by peretinoin. This indicates that peretinoin activates HDAC1 and thereby suppresses HBV replication by inhibiting the sphingosine metabolic pathway. Therefore, peretinoin may be a novel therapeutic agent for HBV replication and chemoprevention against HCC.


Subject(s)
Antiviral Agents/pharmacology , Hepatitis B virus/drug effects , Metabolic Networks and Pathways/drug effects , Retinoids/pharmacology , Sphingosine/metabolism , Virus Replication/drug effects , Adaptor Proteins, Signal Transducing/metabolism , Cell Line , Cells, Cultured , DNA, Circular/genetics , DNA, Circular/metabolism , DNA, Viral/genetics , DNA, Viral/metabolism , Early Growth Response Protein 1/metabolism , Histone Deacetylase 1/metabolism , Humans , Protein Binding , Signal Transduction/drug effects
14.
Am J Pathol ; 186(8): 2055-2067, 2016 08.
Article in English | MEDLINE | ID: mdl-27315779

ABSTRACT

Notch signaling abnormalities are reported to be involved in the acceleration of malignancy in solid tumors and stem cell formation or regeneration in various organs. We analyzed specific genes for DNA copy number variations in liver cancer cells and investigated whether these factors relate to clinical outcome. Chromosome 20p, which includes the ligand for Notch pathways, Jagged1, was found to be amplified in several types of hepatoma cells, and its mRNA was up-regulated according to α-fetoprotein gene expression levels. Notch inhibition using Jagged1 shRNA and γ-secretase inhibitors produced significant suppression of cell growth in α-fetoprotein-producing cells with suppression of downstream genes. Using in vivo hepatoma models, the administration of γ-secretase inhibitors resulted in reduced tumor sizes and effective Notch inhibition with widespread apoptosis and necrosis of viable tumor cells. The γ-secretase inhibitors suppressed cell growth of the epithelial cell adhesion molecule-positive fraction in hepatoma cells, indicating that Notch inhibitors could suppress the stem cell features of liver cancer cells. Even in clinical liver cancer samples, the expression of α-fetoprotein and Jagged1 showed significant correlation, and amplification of the copy number of Jagged1 was associated with Jagged1 mRNA expression and poor survival after liver cancer surgical resection. In conclusion, amplification of Jagged1 contributed to mRNA expression that activates the Jagged1-Notch signaling pathway in liver cancer and led to poor outcome.


Subject(s)
Carcinoma, Hepatocellular/genetics , DNA Copy Number Variations/genetics , Jagged-1 Protein/genetics , Liver Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Animals , Carcinoma, Hepatocellular/mortality , Female , Humans , Kaplan-Meier Estimate , Liver Neoplasms/mortality , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Oligonucleotide Array Sequence Analysis , Real-Time Polymerase Chain Reaction
15.
J Infect Dis ; 213(7): 1096-106, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26621908

ABSTRACT

BACKGROUND: Although nucleos(t)ide analog (NA) therapy effectively reduces the hepatitis B virus (HBV) DNA load in the serum of patients with chronic hepatitis B, it does not completely reduce the incidence of hepatocellular carcinoma (HCC). METHODS AND RESULTS: A total of 109 patients who had chronic hepatitis B and were receiving NA therapy were analyzed. Multivariate Cox regression analysis showed that age (>60 years had a hazard ratio [HR] of 2.66), FIB-4 index (an index of >2.1 had a HR of 2.57), and the presence of HBV core-related antigen (HBcrAg; HR, 3.53) during treatment were significantly associated with the development of HCC. The amount of HBV DNA and pregenomic RNA in liver were significantly higher in 16 HBcrAg-positive patients, compared with 12 HBcrAg-negative patients, suggesting active HBV replication in HBcrAg-positive livers. Hepatic gene expression profiling showed that HBV-promoting transcriptional factors, including HNF4α, PPARα, and LRH1, were upregulated in HBcrAg-positive livers. HepAD38 cells overexpressing LRH1 increased HBV replication, characterized by higher HBV DNA and pregenomic RNA levels, during long-term exposure to entecavir. Conversely, overexpression of precore/core in HepG2 cells increased levels of these transcriptional factors. Metformin efficiently repressed HBV replication in primary human hepatocytes. CONCLUSIONS: Modulating HBV transcriptional factors by metformin in combination with NA therapy would potentiate anti-HBV activity and reduce the incidence of HCC in HBcrAg-positive patients.


Subject(s)
Antiviral Agents/therapeutic use , Carcinoma, Hepatocellular/virology , Hepatitis B Core Antigens/blood , Hepatitis B, Chronic/complications , Liver Neoplasms/virology , Adult , Aged , Cell Line, Tumor , Female , Hepatitis B virus/drug effects , Hepatitis B virus/physiology , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Humans , Hypoglycemic Agents/pharmacology , Liver/virology , Liver Cirrhosis/pathology , Male , Metformin/pharmacology , Middle Aged , Proportional Hazards Models , Transcriptome , Virus Replication/drug effects
16.
J Biol Chem ; 289(1): 335-45, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24257750

ABSTRACT

Selenoprotein P (SeP; encoded by SEPP1 in humans) is a liver-derived secretory protein that induces insulin resistance in type 2 diabetes. Suppression of SeP might provide a novel therapeutic approach to treating type 2 diabetes, but few drugs that inhibit SEPP1 expression in hepatocytes have been identified to date. The present findings demonstrate that metformin suppresses SEPP1 expression by activating AMP-activated kinase (AMPK) and subsequently inactivating FoxO3a in H4IIEC3 hepatocytes. Treatment with metformin reduced SEPP1 promoter activity in a concentration- and time-dependent manner; this effect was cancelled by co-administration of an AMPK inhibitor. Metformin also suppressed Sepp1 gene expression in the liver of mice. Computational analysis of transcription factor binding sites conserved among the species resulted in identification of the FoxO-binding site in the metformin-response element of the SEPP1 promoter. A luciferase reporter assay showed that metformin suppresses Forkhead-response element activity, and a ChIP assay revealed that metformin decreases binding of FoxO3a, a direct target of AMPK, to the SEPP1 promoter. Transfection with siRNAs for Foxo3a, but not for Foxo1, cancelled metformin-induced luciferase activity suppression of the metformin-response element of the SEPP1 promoter. The overexpression of FoxO3a stimulated SEPP1 promoter activity and rescued the suppressive effect of metformin. Metformin did not affect FoxO3a expression, but it increased its phosphorylation and decreased its nuclear localization. These data provide a novel mechanism of action for metformin involving improvement of systemic insulin sensitivity through the regulation of SeP production and suggest an additional approach to the development of anti-diabetic drugs.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Regulation/drug effects , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Selenoprotein P/biosynthesis , AMP-Activated Protein Kinases/genetics , Active Transport, Cell Nucleus/drug effects , Active Transport, Cell Nucleus/genetics , Animals , Cell Line, Tumor , Cell Nucleus/genetics , Cell Nucleus/metabolism , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Gene Expression Regulation/genetics , Humans , Mice , Phosphorylation/drug effects , Phosphorylation/genetics , Rats , Response Elements/drug effects , Response Elements/genetics , Selenoprotein P/genetics
17.
Cancer Sci ; 106(9): 1143-52, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26122702

ABSTRACT

Differentially regulated microRNA (miRNA) are associated with hepatic fibrosis; however, their potential usefulness for blocking hepatic fibrosis has not been exploited fully. We examined the expression of miRNA in the liver of a transgenic mouse model in which platelet-derived growth factor C (PDGF-C) is overexpressed (Pdgf-c Tg), resulting in hepatic fibrosis and steatosis and the eventual development of hepatocellular carcinoma (HCC). Robust induction of miR-214 correlated with fibrogenesis in the liver of Pdgf-c Tg mice, atherogenic high-fat diet-induced NASH mice, and patients with chronic hepatitis B or C. Pdgf-c Tg mice were injected with locked nucleic acid (LNA)-antimiR-214 via the tail vein using Invivofectamine 2.0 and the degree of hepatic fibrosis and tumor incidence were evaluated. Pdgf-c Tg mice treated with LNA-antimiR-214 showed a marked reduction in fibrosis and tumor incidence compared with saline or LNA-miR-control-injected control mice. In vitro, LNA-antimiR-214 significantly ameliorated TGF-ß1-induced pro-fibrotic gene expression in Lx-2 cells. MiR-214 targets a negative regulator of EGFR signaling, Mig-6. Mimic-miR-214 decreased the expression of Mig-6 and increased the levels of EGF-mediated p-EGFR (Y1173 and Y845) and p-Met (Tyr1234/1235) in Huh-7 cells. Conversely, LNA-antimiR-214 repressed the expression of these genes. In conclusion, miR-214 appears to participate in the development of hepatic fibrosis by modulating the EGFR and TGF-ß signaling pathways. LNA-antimiR-214 is a potential therapy for the prevention of hepatic fibrosis.


Subject(s)
Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Lymphokines/genetics , Mice, Transgenic/genetics , MicroRNAs/genetics , Platelet-Derived Growth Factor/genetics , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line , Cell Line, Tumor , Epidermal Growth Factor/genetics , ErbB Receptors/genetics , Gene Expression/genetics , HEK293 Cells , Hep G2 Cells , Humans , Incidence , Liver/pathology , Liver Cirrhosis/pathology , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Oligonucleotides/genetics , Proto-Oncogene Proteins c-met/genetics , Signal Transduction/genetics , Transforming Growth Factor beta1/genetics
18.
Hepatology ; 59(3): 828-38, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24311440

ABSTRACT

UNLABELLED: Pretreatment up-regulation of hepatic interferon (IFN)-stimulated genes (ISGs) has a stronger association with the treatment-resistant interleukin (IL)28B minor genotype (MI; TG/GG at rs8099917) than with the treatment-sensitive IL28B major genotype (MA; TT at rs8099917). We compared the expression of ISGs in the liver and blood of 146 patients with chronic hepatitis C who received pegylated IFN and ribavirin combination therapy. Gene expression profiles in the liver and blood of 85 patients were analyzed using an Affymetrix GeneChip (Affymetrix, Santa Clara, CA). ISG expression was correlated between the liver and blood of the MA patients, whereas no correlation was observed in the MI patients. This loss of correlation was the result of the impaired infiltration of immune cells into the liver lobules of MI patients, as demonstrated by regional gene expression analysis in liver lobules and portal areas using laser capture microdissection and immunohistochemical staining. Despite having lower levels of immune cells, hepatic ISGs were up-regulated in the liver of MI patients and they were found to be regulated by multiple factors, namely, IL28A/B, IFN-λ4, and wingless-related MMTV integration site 5A (WNT5A). Interestingly, WNT5A induced the expression of ISGs, but also increased hepatitis C virus replication by inducing the expression of the stress granule protein, GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1), in the Huh-7 cell line. In the liver, the expression of WNT5A and its receptor, frizzled family receptor 5, was significantly correlated with G3BP1. CONCLUSIONS: Immune cells were lost and induced the expression of other inflammatory mediators, such as WNT5A, in the liver of IL28B minor genotype patients. This might be related to the high level of hepatic ISG expression in these patients and the treatment-resistant phenotype of the IL28B minor genotype.


Subject(s)
Drug Resistance, Viral/genetics , Hepacivirus/immunology , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/genetics , Interferon-alpha/pharmacology , Interleukins/genetics , Polyethylene Glycols/pharmacology , Adult , Aged , Antiviral Agents/pharmacology , Down-Regulation/immunology , Drug Resistance, Viral/immunology , Female , Frizzled Receptors/immunology , Frizzled Receptors/metabolism , Genotype , Hepacivirus/growth & development , Hepatitis C, Chronic/immunology , Humans , Interferon alpha-2 , Interferon-alpha/genetics , Interferon-alpha/immunology , Interferon-beta/genetics , Interferon-beta/immunology , Interferons , Interleukins/immunology , Liver/cytology , Liver/drug effects , Liver/immunology , Male , Middle Aged , Proto-Oncogene Proteins/immunology , Proto-Oncogene Proteins/metabolism , Recombinant Proteins/pharmacology , Signal Transduction/immunology , Up-Regulation/immunology , Wnt Proteins/immunology , Wnt Proteins/metabolism , Wnt-5a Protein
19.
Hepatology ; 60(5): 1519-30, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24962339

ABSTRACT

UNLABELLED: Malnutrition in the advanced fibrosis stage of chronic hepatitis C (CH-C) impairs interferon (IFN) signaling by inhibiting mammalian target of rapamycin complex 1 (mTORC1) signaling. However, the effect of profibrotic signaling on IFN signaling is not known. Here, the effect of transforming growth factor (TGF)-ß signaling on IFN signaling and hepatitis C virus (HCV) replication was examined in Huh-7.5 cells by evaluating the expression of forkhead box O3A (Foxo3a), suppressor of cytokine signaling 3 (Socs3), c-Jun, activating transcription factor 2, ras homolog enriched in brain, and mTORC1. The findings were confirmed in liver tissue samples obtained from 91 patients who received pegylated-IFN and ribavirin combination therapy. TGF-ß signaling was significantly up-regulated in the advanced fibrosis stage of CH-C. A significant positive correlation was observed between the expression of TGF-ß2 and mothers against decapentaplegic homolog 2 (Smad2), Smad2 and Foxo3a, and Foxo3a and Socs3 in the liver of CH-C patients. In Huh-7.5 cells, TGF-ß1 activated the Foxo3a promoter through an AP1 binding site; the transcription factor c-Jun was involved in this activation. Foxo3a activated the Socs3 promoter and increased HCV replication. TGF-ß1 also inhibited mTORC1 and IFN signaling. Interestingly, c-Jun and TGF-ß signaling was up-regulated in treatment-resistant IL28B minor genotype patients (TG/GG at rs8099917), especially in the early fibrosis stage. Branched chain amino acids or a TGF-ß receptor inhibitor canceled these effects and showed an additive effect on the anti-HCV activity of direct-acting antiviral drugs (DAAs). CONCLUSION: Blocking TGF-ß signaling could potentiate the antiviral efficacy of IFN- and/ or DAA-based treatment regimens and would be useful for the treatment of difficult-to-cure CH-C patients.


Subject(s)
Hepatitis C, Chronic/metabolism , Interferons/metabolism , Liver Cirrhosis/metabolism , Transforming Growth Factor beta/metabolism , Adult , Aged , Amino Acids , Animals , Antiviral Agents/therapeutic use , Cell Line, Tumor , Dietary Supplements , Drug Therapy, Combination , Female , Forkhead Box Protein O3 , Forkhead Transcription Factors/metabolism , Gene Expression Regulation , Hepatitis C, Chronic/complications , Hepatitis C, Chronic/drug therapy , Humans , Interleukins/genetics , Liver/metabolism , Liver Cirrhosis/virology , Male , Mechanistic Target of Rapamycin Complex 1 , Mice , Middle Aged , Multiprotein Complexes/metabolism , Nutritional Status , Proto-Oncogene Proteins c-jun/metabolism , Ribavirin/therapeutic use , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism
20.
J Virol ; 87(9): 5270-86, 2013 May.
Article in English | MEDLINE | ID: mdl-23449803

ABSTRACT

The replication and infectivity of the lipotropic hepatitis C virus (HCV) are regulated by cellular lipid status. Among differentially expressed microRNAs (miRNAs), we found that miR-27a was preferentially expressed in HCV-infected liver over hepatitis B virus (HBV)-infected liver. Gene expression profiling of Huh-7.5 cells showed that miR-27a regulates lipid metabolism by targeting the lipid synthetic transcription factor RXRα and the lipid transporter ATP-binding cassette subfamily A member 1. In addition, miR-27a repressed the expression of many lipid metabolism-related genes, including FASN, SREBP1, SREBP2, PPARα, and PPARγ, as well as ApoA1, ApoB100, and ApoE3, which are essential for the production of infectious viral particles. miR-27a repression increased the cellular lipid content, decreased the buoyant density of HCV particles from 1.13 to 1.08 g/cm(3), and increased viral replication and infectivity. miR-27a overexpression substantially decreased viral infectivity. Furthermore, miR-27a enhanced in vitro interferon (IFN) signaling, and patients who expressed high levels of miR-27a in the liver showed a more favorable response to pegylated IFN and ribavirin combination therapy. Interestingly, the expression of miR-27a was upregulated by HCV infection and lipid overload through the adipocyte differentiation transcription factor C/EBPα. In turn, upregulated miR-27a repressed HCV infection and lipid storage in cells. Thus, this negative feedback mechanism might contribute to the maintenance of a low viral load and would be beneficial to the virus by allowing it to escape host immune surveillance and establish a persistent chronic HCV infection.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Down-Regulation , Hepacivirus/physiology , Lipid Metabolism , Liver Neoplasms/metabolism , MicroRNAs/metabolism , Virus Replication , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/virology , Cell Line , Hepacivirus/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/virology , MicroRNAs/genetics
SELECTION OF CITATIONS
SEARCH DETAIL