Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Nat Chem Biol ; 20(5): 605-614, 2024 May.
Article in English | MEDLINE | ID: mdl-38267667

ABSTRACT

In response to environmental changes, cells flexibly and rapidly alter gene expression through translational controls. In plants, the translation of NIP5;1, a boric acid diffusion facilitator, is downregulated in response to an excess amount of boric acid in the environment through upstream open reading frames (uORFs) that consist of only AUG and stop codons. However, the molecular details of how this minimum uORF controls translation of the downstream main ORF in a boric acid-dependent manner have remained unclear. Here, by combining ribosome profiling, translation complex profile sequencing, structural analysis with cryo-electron microscopy and biochemical assays, we show that the 80S ribosome assembled at AUG-stop migrates into the subsequent RNA segment, followed by downstream translation initiation, and that boric acid impedes this process by the stable confinement of eukaryotic release factor 1 on the 80S ribosome on AUG-stop. Our results provide molecular insight into translation regulation by a minimum and environment-responsive uORF.


Subject(s)
Boric Acids , Protein Biosynthesis , Ribosomes , Ribosomes/metabolism , Boric Acids/chemistry , Peptide Termination Factors/metabolism , Peptide Termination Factors/chemistry , Peptide Termination Factors/genetics , Cryoelectron Microscopy , Open Reading Frames , Codon, Terminator , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics
2.
J Biol Chem ; 300(5): 107277, 2024 May.
Article in English | MEDLINE | ID: mdl-38588804

ABSTRACT

Protein phosphatase 2A (PP2A) is an essential serine/threonine protein phosphatase, and its dysfunction is involved in the onset of cancer and neurodegenerative disorders. PP2A functions as a trimeric holoenzyme whose composition is regulated by the methyl-esterification (methylation) of the PP2A catalytic subunit (PP2Ac). Protein phosphatase methylesterase-1 (PME-1) is the sole PP2Ac methylesterase, and the higher PME-1 expression is observed in various cancer and neurodegenerative diseases. Apart from serving as a methylesterase, PME-1 acts as a PP2A inhibitory protein, binding directly to PP2Ac and suppressing its activity. The intricate function of PME-1 hinders drug development by targeting the PME-1/PP2Ac axis. This study applied the NanoBiT system, a bioluminescence-based protein interaction assay, to elucidate the molecular mechanism that modulates unknown PME-1/PP2Ac protein-protein interaction (PPI). Compound screening identified that the CHK1 inhibitors inhibited PME-1/PP2Ac association without affecting PP2Ac methylation levels. CHK1 directly phosphorylates PP2Ac to promote PME-1 association. Phospho-mass spectrometry identified multiple phospho-sites on PP2Ac, including the Thr219, that affect PME-1 interaction. An anti-phospho-Thr219 PP2Ac antibody was generated and showed that CHK1 regulates the phosphorylation levels of this site in cells. On the contrary, in vitro phosphatase assay showed that CHK1 is the substrate of PP2A, and PME-1 hindered PP2A-mediated dephosphorylation of CHK1. Our data provides novel insights into the molecular mechanisms governing the PME-1/PP2Ac PPI and the triad relationship between PP2A, PME-1, and CHK1.


Subject(s)
Carboxylic Ester Hydrolases , Checkpoint Kinase 1 , Protein Phosphatase 2 , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Humans , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Carboxylic Ester Hydrolases/metabolism , Carboxylic Ester Hydrolases/genetics , Phosphorylation , Luciferases/metabolism , Luciferases/genetics , Protein Binding , HEK293 Cells
3.
J Biol Chem ; 300(7): 107459, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38857861

ABSTRACT

The dedicator of cytokinesis (DOCK)/engulfment and cell motility (ELMO) complex serves as a guanine nucleotide exchange factor (GEF) for the GTPase Rac. RhoG, another GTPase, activates the ELMO-DOCK-Rac pathway during engulfment and migration. Recent cryo-EM structures of the DOCK2/ELMO1 and DOCK2/ELMO1/Rac1 complexes have identified closed and open conformations that are key to understanding the autoinhibition mechanism. Nevertheless, the structural details of RhoG-mediated activation of the DOCK/ELMO complex remain elusive. Herein, we present cryo-EM structures of DOCK5/ELMO1 alone and in complex with RhoG and Rac1. The DOCK5/ELMO1 structure exhibits a closed conformation similar to that of DOCK2/ELMO1, suggesting a shared regulatory mechanism of the autoinhibitory state across DOCK-A/B subfamilies (DOCK1-5). Conversely, the RhoG/DOCK5/ELMO1/Rac1 complex adopts an open conformation that differs from that of the DOCK2/ELMO1/Rac1 complex, with RhoG binding to both ELMO1 and DOCK5. The alignment of the DOCK5 phosphatidylinositol (3,4,5)-trisphosphate binding site with the RhoG C-terminal lipidation site suggests simultaneous binding of RhoG and DOCK5/ELMO1 to the plasma membrane. Structural comparison of the apo and RhoG-bound states revealed that RhoG facilitates a closed-to-open state conformational change of DOCK5/ELMO1. Biochemical and surface plasmon resonance (SPR) assays confirm that RhoG enhances the Rac GEF activity of DOCK5/ELMO1 and increases its binding affinity for Rac1. Further analysis of structural variability underscored the conformational flexibility of the DOCK5/ELMO1/Rac1 complex core, potentially facilitating the proximity of the DOCK5 GEF domain to the plasma membrane. These findings elucidate the structural mechanism underlying the RhoG-induced allosteric activation and membrane binding of the DOCK/ELMO complex.


Subject(s)
Adaptor Proteins, Signal Transducing , Guanine Nucleotide Exchange Factors , rac1 GTP-Binding Protein , Humans , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/chemistry , GTPase-Activating Proteins/genetics , Guanine Nucleotide Exchange Factors/metabolism , Guanine Nucleotide Exchange Factors/chemistry , Protein Binding , Protein Conformation , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/chemistry , rho GTP-Binding Proteins/metabolism , rho GTP-Binding Proteins/chemistry
4.
J Virol ; 98(5): e0019724, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38593321

ABSTRACT

Noroviruses are major causative agents of acute nonbacterial gastroenteritis in humans. There are neither antiviral therapeutic agents nor vaccines for noroviruses at this time. To evaluate the potential usefulness of two previously isolated human monoclonal antibody fragments, CV-1A1 and CV-2F5, we first conducted a single-particle analysis to determine the cryo-electron microscopy structure of virus-like particles (VLPs) from the genogroup I genotype 4 (GI.4) Chiba strain uniformly coated with CV-1A1 fragments. The results revealed that the GI.4-specific CV-1A1 antibody bound to the P2 subdomain, in which amino acids are less conserved and variable. Interestingly, a part of the CV-1A1 intrudes into the histo-blood group antigen-binding site, suggesting that this antibody might exert neutralizing activity. Next, we determined the crystal structure of the protruding (P) domain of the capsid protein in the complex form with the CV-2F5 antibody fragment. Consistent with the cross-reactivity, the CV-2F5 bound to the P1 subdomain, which is rich in amino acids conserved among the GI strains, and moreover induced a disruption of Chiba VLPs. These results suggest that the broadly reactive CV-2F5 antibody can be used as both a universal detection reagent and an antiviral drug for GI noroviruses. IMPORTANCE: We conducted the structural analyses of the VP1 protein from the GI.4 Chiba norovirus to identify the binding sites of the previously isolated human monoclonal antibodies CV-1A1 and CV-2F5. The cryo-electron microscopy of the Chiba virus-like particles (VLPs) complexed with the Fv-clasp forms of GI.4-specific CV-1A1 revealed that this antibody binds to the highly variable P2 subdomain, suggesting that this antibody may have neutralizing ability against the GI.4 strains. X-ray crystallography revealed that the CV-2F5 antibody bound to the P1 subdomain, which is rich in conserved amino acids. This result is consistent with the ability of the CV-2F5 antibody to react with a wide variety of GI norovirus strains. It is also found that the CV-2F5 antibody caused a disruption of VLPs. Our findings, together with previous reports on the structures of VP1 proteins and VLPs, are expected to open a path for the structure-based development of antivirals and vaccines against norovirus disease.


Subject(s)
Antibodies, Monoclonal , Antibodies, Viral , Norovirus , Humans , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Binding Sites , Capsid Proteins/immunology , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Cryoelectron Microscopy/methods , Crystallography, X-Ray , Models, Molecular , Norovirus/immunology
5.
Curr Issues Mol Biol ; 46(4): 3092-3107, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38666924

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that includes autism, Asperger's syndrome, and pervasive developmental disorder. Individuals with ASD may exhibit difficulties in social interactions, communication challenges, repetitive behaviors, and restricted interests. While genetic mutations in individuals with ASD can either activate or inactivate the activities of the gene product, impacting neuronal morphogenesis and causing symptoms, the underlying mechanism remains to be fully established. Herein, for the first time, we report that genetically conserved Rac1 guanine-nucleotide exchange factor (GEF) Dock5 signalosome molecules control process elongation in the N1E-115 cell line, a model line capable of achieving neuronal morphological changes. The increased elongation phenotypes observed in ASD and intellectual disability (ID)-associated Semaphorin-5A (Sema5A) Arg676-to-Cys [p.R676C] were also mediated by Dock5 signalosome molecules. Indeed, knockdown of Dock5 using clustered regularly interspaced short palindromic repeat (CRISPR)/CasRx-based guide(g)RNA specifically recovered the mutated Sema5A-induced increase in process elongation in cells. Knockdown of Elmo2, an adaptor molecule of Dock5, also exhibited similar recovery. Comparable results were obtained when transfecting the interaction region of Dock5 with Elmo2. The activation of c-Jun N-terminal kinase (JNK), one of the primary signal transduction molecules underlying process elongation, was ameliorated by either their knockdown or transfection. These results suggest that the Dock5 signalosome comprises abnormal signaling involved in the process elongation induced by ASD- and ID-associated Sema5A. These molecules could be added to the list of potential therapeutic target molecules for abnormal neuronal morphogenesis in ASD at the molecular and cellular levels.

6.
Biochem Biophys Res Commun ; 708: 149784, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38503170

ABSTRACT

A glycerophosphoethanolamine ethanolaminephosphodiesterase (GPE-EP) from Streptomyces sanglieri hydrolyzes glycerophosphoethanolamine to phosphoethanolamine and glycerol. The structure of GPE-EP was determined by the molecular replacement method using a search model generated with AlphaFold2. This structure includes the entire length of the mature protein and it is composed of an N-terminal domain and a novel C-terminal domain connected to a flexible linker. The N-terminal domain is the catalytic domain containing calcium ions at the catalytic site. Coordination bonds were observed between five amino acid residues and glycerol. Although the function of the C-terminal domain is currently unknown, inter-domain interactions between the N- and C-terminal domains may contribute to its relatively high thermostability.


Subject(s)
Phosphoric Diester Hydrolases , Streptomyces , Phosphoric Diester Hydrolases/metabolism , Amino Acid Sequence , Glycerol , Streptomyces/genetics , Streptomyces/metabolism
7.
Arch Biochem Biophys ; 753: 109926, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346547

ABSTRACT

Of the more than 100 families of glycosyltransferases, family 1 glycosyltransferases catalyze glycosylation using uridine diphosphate (UDP)-sugar as a sugar donor and are thus referred to as UDP-sugar:glycosyl transferases. The blue color of the Nemophila menziesii flower is derived from metalloanthocyanin, which consists of anthocyanin, flavone, and metal ions. Flavone 7-O-ß-glucoside-4'-O-ß-glucoside in the plant is sequentially biosynthesized from flavons by UDP-glucose:flavone 4'-O-glucosyltransferase (NmF4'GT) and UDP-glucose:flavone 4'-O-glucoside 7-O-glucosyltransferase (NmF4'G7GT). To identify the molecular mechanisms of glucosylation of flavone, the crystal structures of NmF4'G7GT in its apo form and in complex with UDP-glucose or luteolin were determined, and molecular structure prediction using AlphaFold2 was conducted for NmF4'GT. The crystal structures revealed that the size of the ligand-binding pocket and interaction environment for the glucose moiety at the pocket entrance plays a critical role in the substrate preference in NmF4'G7GT. The substrate specificity of NmF4'GT was examined by comparing its model structure with that of NmF4'G7GT. The structure of NmF4'GT may have a smaller acceptor pocket, leading to a substrate preference for non-glucosylated flavones (or flavone aglycones).


Subject(s)
Flavones , Glucosyltransferases , Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Ligands , Uridine Diphosphate Glucose/chemistry , Glucose , Glycosyltransferases , Glucosides , Substrate Specificity
8.
Bioorg Med Chem Lett ; 110: 129856, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38914346

ABSTRACT

The discovery and development of structurally distinct lysine methyltransferase G9a inhibitors have been the subject of intense research in epigenetics. Structure-based optimization was conducted, starting with the previously reported seed compound 7a and lead to the identification of a highly potent G9a inhibitor, compound 7i (IC50 = 0.024 µM). X-ray crystallography for the ligand-protein interaction and kinetics study, along with surface plasmon resonance (SPR) analysis, revealed that compound 7i interacts with G9a in a unique binding mode. In addition, compound 7i caused attenuation of cellular H3K9me2 levels and induction of γ-globin mRNA expression in HUDEP-2 cells in a dose-dependent manner.


Subject(s)
Anemia, Sickle Cell , Enzyme Inhibitors , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase , Humans , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Structure-Activity Relationship , Anemia, Sickle Cell/drug therapy , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Epigenesis, Genetic/drug effects , Molecular Structure , Histocompatibility Antigens/metabolism , Dose-Response Relationship, Drug , Crystallography, X-Ray
9.
Int J Mol Sci ; 25(8)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38673728

ABSTRACT

BTB and CNC homology 1 (BACH1) represses the expression of genes involved in the metabolism of iron, heme and reactive oxygen species. While BACH1 is rapidly degraded when it is bound to heme, it remains unclear how BACH1 degradation is regulated under other conditions. We found that FBXO22, a ubiquitin ligase previously reported to promote BACH1 degradation, polyubiquitinated BACH1 only in the presence of heme in a highly purified reconstitution assay. In parallel to this regulatory mechanism, TANK binding kinase 1 (TBK1), a protein kinase that activates innate immune response and regulates iron metabolism via ferritinophagy, was found to promote BACH1 degradation when overexpressed in 293T cells. While TBK1 phosphorylated BACH1 at multiple serine and threonine residues, BACH1 degradation was observed with not only the wild-type TBK1 but also catalytically impaired TBK1. The BACH1 degradation in response to catalytically impaired TBK1 was not dependent on FBXO22 but involved both autophagy-lysosome and ubiquitin-proteasome pathways judging from its suppression by using inhibitors of lysosome and proteasome. Chemical inhibition of TBK1 in hepatoma Hepa1 cells showed that TBK1 was not required for the heme-induced BACH1 degradation. Its inhibition in Namalwa B lymphoma cells increased endogenous BACH1 protein. These results suggest that TBK1 promotes BACH1 degradation in parallel to the FBXO22- and heme-dependent pathway, placing BACH1 as a downstream effector of TBK1 in iron metabolism or innate immune response.


Subject(s)
Basic-Leucine Zipper Transcription Factors , F-Box Proteins , Heme , Protein Serine-Threonine Kinases , Proteolysis , Receptors, Cytoplasmic and Nuclear , Humans , Heme/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , F-Box Proteins/metabolism , F-Box Proteins/genetics , HEK293 Cells , Ubiquitination , Cell Line, Tumor , Lysosomes/metabolism , Autophagy , Proteasome Endopeptidase Complex/metabolism
10.
Nat Commun ; 15(1): 3027, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637505

ABSTRACT

More than one percent of people have epilepsy worldwide. Levetiracetam (LEV) is a successful new-generation antiepileptic drug (AED), and its derivative, brivaracetam (BRV), shows improved efficacy. Synaptic vesicle glycoprotein 2a (SV2A), a putative membrane transporter in the synaptic vesicles (SVs), has been identified as a target of LEV and BRV. SV2A also serves as a receptor for botulinum neurotoxin (BoNT), which is the most toxic protein and has paradoxically emerged as a potent reagent for therapeutic and cosmetic applications. Nevertheless, no structural analysis on AEDs and BoNT recognition by full-length SV2A has been available. Here we describe the cryo-electron microscopy structures of the full-length SV2A in complex with the BoNT receptor-binding domain, BoNT/A2 HC, and either LEV or BRV. The large fourth luminal domain of SV2A binds to BoNT/A2 HC through protein-protein and protein-glycan interactions. LEV and BRV occupy the putative substrate-binding site in an outward-open conformation. A propyl group in BRV creates additional contacts with SV2A, explaining its higher binding affinity than that of LEV, which was further supported by label-free spectral shift assay. Numerous LEV derivatives have been developed as AEDs and positron emission tomography (PET) tracers for neuroimaging. Our work provides a structural framework for AEDs and BoNT recognition of SV2A and a blueprint for the rational design of additional AEDs and PET tracers.


Subject(s)
Botulinum Toxins , Epilepsy , Humans , Anticonvulsants/metabolism , Cryoelectron Microscopy , Levetiracetam/therapeutic use , Epilepsy/drug therapy , Membrane Glycoproteins/metabolism , Nerve Tissue Proteins/metabolism
11.
Nat Commun ; 15(1): 3544, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740791

ABSTRACT

G-protein-coupled receptors (GPCRs) play pivotal roles in various physiological processes. These receptors are activated to different extents by diverse orthosteric ligands and allosteric modulators. However, the mechanisms underlying these variations in signaling activity by allosteric modulators remain largely elusive. Here, we determine the three-dimensional structure of the µ-opioid receptor (MOR), a class A GPCR, in complex with the Gi protein and an allosteric modulator, BMS-986122, using cryogenic electron microscopy. Our results reveal that BMS-986122 binding induces changes in the map densities corresponding to R1673.50 and Y2545.58, key residues in the structural motifs conserved among class A GPCRs. Nuclear magnetic resonance analyses of MOR in the absence of the Gi protein reveal that BMS-986122 binding enhances the formation of the interaction between R1673.50 and Y2545.58, thus stabilizing the fully-activated conformation, where the intracellular half of TM6 is outward-shifted to allow for interaction with the Gi protein. These findings illuminate that allosteric modulators like BMS-986122 can potentiate receptor activation through alterations in the conformational dynamics in the core region of GPCRs. Together, our results demonstrate the regulatory mechanisms of GPCRs, providing insights into the rational development of therapeutics targeting GPCRs.


Subject(s)
Cryoelectron Microscopy , Receptors, Opioid, mu , Receptors, Opioid, mu/metabolism , Receptors, Opioid, mu/chemistry , Receptors, Opioid, mu/genetics , Allosteric Regulation , Humans , Protein Binding , GTP-Binding Protein alpha Subunits, Gi-Go/metabolism , GTP-Binding Protein alpha Subunits, Gi-Go/chemistry , GTP-Binding Protein alpha Subunits, Gi-Go/genetics , HEK293 Cells , Ligands , Models, Molecular , Protein Conformation
12.
Nat Struct Mol Biol ; 31(5): 817-825, 2024 May.
Article in English | MEDLINE | ID: mdl-38538915

ABSTRACT

The anticodon modifications of transfer RNAs (tRNAs) finetune the codon recognition on the ribosome for accurate translation. Bacteria and archaea utilize the modified cytidines, lysidine (L) and agmatidine (agm2C), respectively, in the anticodon of tRNAIle to decipher AUA codon. L and agm2C contain long side chains with polar termini, but their functions remain elusive. Here we report the cryogenic electron microscopy structures of tRNAsIle recognizing the AUA codon on the ribosome. Both modifications interact with the third adenine of the codon via a unique C-A geometry. The side chains extend toward 3' direction of the mRNA, and the polar termini form hydrogen bonds with 2'-OH of the residue 3'-adjacent to the AUA codon. Biochemical analyses demonstrated that AUA decoding is facilitated by the additional interaction between the polar termini of the modified cytidines and 2'-OH of the fourth mRNA residue. We also visualized cyclic N6-threonylcarbamoyladenosine (ct6A), another tRNA modification, and revealed a molecular basis how ct6A contributes to efficient decoding.


Subject(s)
Anticodon , Cryoelectron Microscopy , RNA, Transfer, Ile , RNA, Transfer, Ile/chemistry , RNA, Transfer, Ile/metabolism , RNA, Transfer, Ile/genetics , Anticodon/chemistry , Anticodon/metabolism , Ribosomes/metabolism , Ribosomes/chemistry , Nucleic Acid Conformation , Models, Molecular , Codon/genetics , Lysine/metabolism , Lysine/chemistry , Lysine/analogs & derivatives , Cytidine/analogs & derivatives , Cytidine/chemistry , Cytidine/metabolism , RNA, Transfer/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics , Protein Biosynthesis , Pyrimidine Nucleosides
13.
Sci Rep ; 14(1): 2852, 2024 02 03.
Article in English | MEDLINE | ID: mdl-38310141

ABSTRACT

To develop artificial cell models that mimic living cells, cell-sized lipid vesicles encapsulating cell-free protein synthesis (CFPS) systems are useful for protein expressions or artificial gene circuits for vesicle-vesicle communications. Therefore, investigating the transcriptional and translational properties of CFPS systems in lipid vesicles is important for maximizing the synthesis and functions of proteins. Although transcription and translation using CFPS systems inside lipid vesicles are more important than that outside lipid vesicles, the former processes are not investigated by changing the lipid composition of lipid vesicles. Herein, we investigated changes in transcription and translation using CFPS systems inside giant lipid vesicles (approximately 5-20 µm in diameter) caused by changing the lipid composition of lipid vesicles containing neutral, positively, and negatively charged lipids. After incubating for 30 min, 1 h, 2 h, and 4 h, the transcriptional and translational activities in these lipid vesicles were determined by detecting the fluorescence intensities of the fluorogenic RNA aptamer on the 3'-untranslated region of mRNA (transcription) and the fluorescent protein sfCherry (translation), respectively. The results revealed that transcriptional and translational activities in a lipid vesicle containing positively charged lipids were high when the protein was synthesized using the CFPS system inside the lipid vesicle. Thus, the present study provides an experimental basis for constructing complex artificial cell models using bottom-up approaches.


Subject(s)
Lipids , Proteins , Fluorescence
14.
Nat Commun ; 15(1): 7045, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39147751

ABSTRACT

Arctic (E22G) mutation in amyloid-ß (Aß enhances Aß40 fibril accumulation in Alzheimer's disease (AD). Unlike sporadic AD, familial AD (FAD) patients with the mutation exhibit more Aß40 in the plaque core. However, structural details of E22G Aß40 fibrils remain elusive, hindering therapeutic progress. Here, we determine a distinctive W-shaped parallel ß-sheet structure through co-analysis by cryo-electron microscopy (cryoEM) and solid-state nuclear magnetic resonance (SSNMR) of in-vitro-prepared E22G Aß40 fibrils. The E22G Aß40 fibrils displays typical amyloid features in cotton-wool plaques in the FAD, such as low thioflavin-T fluorescence and a less compact unbundled morphology. Furthermore, kinetic and MD studies reveal previously unidentified in-vitro evidence that E22G Aß40, rather than Aß42, may trigger Aß misfolding in the FAD, and prompt subsequent misfolding of wild-type (WT) Aß40/Aß42 via cross-seeding. The results provide insight into how the Arctic mutation promotes AD via Aß40 accumulation and cross-propagation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Cryoelectron Microscopy , Mutation , Peptide Fragments , Amyloid beta-Peptides/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Humans , Peptide Fragments/metabolism , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/ultrastructure , Kinetics , Protein Folding , Amyloid/metabolism , Amyloid/chemistry , Molecular Dynamics Simulation
15.
NPJ Precis Oncol ; 8(1): 46, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396251

ABSTRACT

Brigatinib-based therapy was effective against osimertinib-resistant EGFR C797S mutants and is undergoing clinical studies. However, tumor relapse suggests additional resistance mutations might emerge. Here, we first demonstrated the binding mode of brigatinib to the EGFR-T790M/C797S mutant by crystal structure analysis and predicted brigatinib-resistant mutations through a cell-based assay including N-ethyl-N-nitrosourea (ENU) mutagenesis. We found that clinically reported L718 and G796 compound mutations appeared, consistent with their proximity to the binding site of brigatinib, and brigatinib-resistant quadruple mutants such as EGFR-activating mutation/T790M/C797S/L718M were resistant to all the clinically available EGFR-TKIs. BI-4020, a fourth-generation EGFR inhibitor with a macrocyclic structure, overcomes the quadruple and major EGFR-activating mutants but not the minor mutants, such as L747P or S768I. Molecular dynamics simulation revealed the binding mode and affinity between BI-4020 and EGFR mutants. This study identified potential therapeutic strategies using the new-generation macrocyclic EGFR inhibitor to overcome the emerging ultimate resistance mutants.

16.
Biomol NMR Assign ; 18(1): 71-78, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38551798

ABSTRACT

The intraflagellar transport (IFT) machinery plays a crucial role in the bidirectional trafficking of components necessary for ciliary signaling, such as the Hedgehog, Wnt/PCR, and cAMP/PKA systems. Defects in some components of the IFT machinery cause dysfunction, leading to a wide range of human diseases and developmental disorders termed ciliopathies, such as nephronophthisis. The IFT machinery comprises three sub-complexes: BBsome, IFT-A, and IFT-B. The IFT protein 54 (IFT54) is an important component of the IFT-B sub-complex. In anterograde movement, IFT54 binds to active kinesin-II, walking along the cilia microtubule axoneme and carrying the dynein-2 complex in an inactive state, which works for retrograde movement. Several mutations in IFT54 are known to cause Senior-Loken syndrome, a ciliopathy. IFT54 possesses a divergent Calponin Homology (CH) domain termed as NN-CH domain at its N-terminus. However, several aspects of the function of the NN-CH domain of IFT54 are still obscure. Here, we report the 1H, 15N, and 13C resonance assignments of the NN-CH domain of human IFT54 and its solution structure. The NN-CH domain of human IFT54 adopts essentially the α1-α2-α3-α4-α5 topology as that of mouse IFT54, whose structure was determined by X-ray crystallographic study. The structural information and assignments obtained in this study shed light on the molecular function of the NN-CH domain in IFT54.


Subject(s)
Microfilament Proteins , Protein Domains , Humans , Calcium-Binding Proteins/chemistry , Calcium-Binding Proteins/metabolism , Calponins , Microfilament Proteins/chemistry , Nitrogen Isotopes , Nuclear Magnetic Resonance, Biomolecular , Solutions
17.
Med Int (Lond) ; 4(5): 45, 2024.
Article in English | MEDLINE | ID: mdl-38983794

ABSTRACT

Numerous antibody biomarkers have been reported for cancer and atherosclerosis-related diseases. The major complications of atherosclerosis and diabetes mellitus (DM) are acute ischemic stroke (AIS), cardiovascular disease (CVD) and chronic kidney disease (CKD). Cancer development is accompanied by arterial disorders, such as angiogenesis and atherosclerosis, and DM is a risk factor for the development of certain types of cancer. Atherosclerosis-related diseases and cancers are therefore interrelated and could be detected using a common biomarker. In the present study, the initial screening using the protein array method identified KIAA0513 as an antigen recognized by serum IgG antibodies in patients with atherosclerosis. The amplified luminescent proximity homogeneous assay-linked immunosorbent assay revealed significantly higher serum antibody levels against recombinant KIAA0513 protein in patients with AIS, transient ischemic attack (TIA), DM, CVD, obstructive sleep apnea syndrome (OSAS), CKD and solid cancers, such as esophageal, gastric, colon, lung and breast cancers, compared with healthy donors. A receiver operating characteristic (ROC) analysis revealed that the highest areas under the ROC curves of anti-KIAA0513 antibodies were obtained for esophageal cancer, nephrosclerosis-type CKD and DM. Spearman's correlation analysis revealed that serum anti-KIAA0513 antibody levels were associated with maximum intima-media thickness and plaque score, which are indices of atherosclerosis and stenosis. Serum anti-KIAA0513 antibody markers appear to be useful for diagnosing AIS, TIA, DM, CVD, OSAS, CKD and solid cancers, and may reflect common arterial alterations leading to atherosclerotic and cancerous diseases.

18.
Pathophysiology ; 30(4): 548-566, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38133141

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that includes autism, Asperger's syndrome, and pervasive developmental disorder. ASD is characterized by poor interpersonal relationships and strong attachment. The correlations between activated or inactivated gene products, which occur as a result of genetic mutations affecting neurons in ASD patients, and ASD symptoms are now of critical concern. Here, for the first time, we describe the process in which that the respective ASD-associated mutations (Arg676-to-Cys [R676C] and Ser951-to-Cys [S951C]) of semaphorin-5A (Sema5A) localize Sema5A proteins themselves around the plasma membrane in the N1E-115 cell line, a model line that can achieve neuronal morphological differentiation. The expression of each mutated construct resulted in the promotion of excessive elongation of neurite-like processes with increased differentiation protein markers; R676C was more effective than S951C. The differentiated phenotypes were very partially neutralized by an antibody, against Plexin-B3 as the specific Sema5A receptor, suggesting that the effects of Sema5A act in an autocrine manner. R676C greatly increased the activation of c-Jun N-terminal kinase (JNK), one of the signaling molecules underlying process elongation. In contrast, the blocking of JNK signaling, by a chemical JNK inhibitor or an inhibitory construct of the interaction of RhoG with Elmo1 as JNK upstream signaling molecules, recovered the excessive process elongation. These results suggest that ASD-associated mutations of Sema5A, acting through the JNK signaling cascade, lead to excessive differentiated phenotypes, and the inhibition of JNK signaling recovers them, revealing possible therapeutic targets for recovering the potential molecular and cellular phenotypes underlying certain ASD symptoms.

19.
Cell Death Discov ; 9(1): 467, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38135680

ABSTRACT

IFN-alpha have been reported to suppress hepatitis B virus (HBV) cccDNA via APOBEC3 cytidine deaminase activity through interferon signaling. To develop a novel anti-HBV drug for a functional cure, we performed in silico screening of the binding compounds fitting the steric structure of the IFN-alpha-binding pocket in IFNAR2. We identified 37 compounds and named them in silico cccDNA modulator (iCDM)-1-37. We found that iCDM-34, a new small molecule with a pyrazole moiety, showed anti-HCV and anti-HBV activities. We measured the anti-HBV activity of iCDM-34 dependent on or independent of entecavir (ETV). iCDM-34 suppressed HBV DNA, pgRNA, HBsAg, and HBeAg, and also clearly exhibited additive inhibitory effects on the suppression of HBV DNA with ETV. We confirmed metabolic stability of iCDM-34 was stable in human liver microsomal fraction. Furthermore, anti-HBV activity in human hepatocyte-chimeric mice revealed that iCDM-34 was not effective as a single reagent, but when combined with ETV, it suppressed HBV DNA compared to ETV alone. Phosphoproteome and Western blotting analysis showed that iCDM-34 did not activate IFN-signaling. The transcriptome analysis of interferon-stimulated genes revealed no increase in expression, whereas downstream factors of aryl hydrocarbon receptor (AhR) showed increased levels of the expression. CDK1/2 and phospho-SAMHD1 levels decreased under iCDM-34 treatment. In addition, AhR knockdown inhibited anti-HCV activity of iCDM-34 in HCV replicon cells. These results suggest that iCDM-34 decreases the phosphorylation of SAMHD1 through CDK1/2, and suppresses HCV replicon RNA, HBV DNA, and pgRNA formation.

SELECTION OF CITATIONS
SEARCH DETAIL