Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Nat Immunol ; 25(7): 1283-1295, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38862796

ABSTRACT

While some infections elicit germinal centers, others produce only extrafollicular responses. The mechanisms controlling these dichotomous fates are poorly understood. We identify IL-12 as a cytokine switch, acting directly on B cells to promote extrafollicular and suppress germinal center responses. IL-12 initiates a B cell-intrinsic feed-forward loop between IL-12 and IFNγ, amplifying IFNγ production, which promotes proliferation and plasmablast differentiation from mouse and human B cells, in synergy with IL-12. IL-12 sustains the expression of a portion of IFNγ-inducible genes. Together, they also induce unique gene changes, reflecting both IFNγ amplification and cooperative effects between both cytokines. In vivo, cells lacking both IL-12 and IFNγ receptors are more impaired in plasmablast production than those lacking either receptor alone. Further, B cell-derived IL-12 enhances both plasmablast responses and T helper 1 cell commitment. Thus, B cell-derived IL-12, acting on T and B cells, determines the immune response mode, with implications for vaccines, pathogen protection and autoimmunity.


Subject(s)
B-Lymphocytes , Cell Differentiation , Germinal Center , Interferon-gamma , Interleukin-12 , Animals , Interleukin-12/immunology , Interleukin-12/metabolism , Mice , Interferon-gamma/metabolism , Interferon-gamma/immunology , Germinal Center/immunology , Humans , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Differentiation/immunology , Mice, Knockout , Mice, Inbred C57BL , Plasma Cells/immunology , Plasma Cells/metabolism , Lymphocyte Activation/immunology , Receptors, Interferon/metabolism , Receptors, Interferon/genetics , Cells, Cultured , Cell Proliferation
2.
Nat Immunol ; 23(1): 135-145, 2022 01.
Article in English | MEDLINE | ID: mdl-34937918

ABSTRACT

Memory B cells (MBCs) protect the body from recurring infections. MBCs differ from their naive counterparts (NBCs) in many ways, but functional and surface marker differences are poorly characterized. In addition, although mice are the prevalent model for human immunology, information is limited concerning the nature of homology in B cell compartments. To address this, we undertook an unbiased, large-scale screening of both human and mouse MBCs for their differential expression of surface markers. By correlating the expression of such markers with extensive panels of known markers in high-dimensional flow cytometry, we comprehensively identified numerous surface proteins that are differentially expressed between MBCs and NBCs. The combination of these markers allows for the identification of MBCs in humans and mice and provides insight into their functional differences. These results will greatly enhance understanding of humoral immunity and can be used to improve immune monitoring.


Subject(s)
B-Lymphocytes/immunology , Immunologic Memory/immunology , Memory B Cells/immunology , Animals , B-Lymphocytes/metabolism , Biomarkers/metabolism , Female , Flow Cytometry/methods , Humans , Immunity, Humoral/immunology , Male , Memory B Cells/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Phenotype
3.
Nat Immunol ; 23(10): 1457-1469, 2022 10.
Article in English | MEDLINE | ID: mdl-36151396

ABSTRACT

In lupus, Toll-like receptor 7 (TLR7) and TLR9 mediate loss of tolerance to RNA and DNA, respectively. Yet, TLR7 promotes disease, while TLR9 protects from disease, implying differences in signaling. To dissect this 'TLR paradox', we generated two TLR9 point mutants (lacking either ligand (TLR9K51E) or MyD88 (TLR9P915H) binding) in lupus-prone MRL/lpr mice. Ameliorated disease of Tlr9K51E mice compared to Tlr9-/- controls revealed a TLR9 'scaffold' protective function that is ligand and MyD88 independent. Unexpectedly, Tlr9P915H mice were more protected than both Tlr9K51E and Tlr9WT mice, suggesting that TLR9 also possesses ligand-dependent, but MyD88-independent, regulatory signaling and MyD88-mediated proinflammatory signaling. Triple-mixed bone marrow chimeras showed that TLR9-MyD88-independent regulatory roles were B cell intrinsic and restrained differentiation into pathogenic age-associated B cells and plasmablasts. These studies reveal MyD88-independent regulatory roles of TLR9, shedding light on the biology of endosomal TLRs.


Subject(s)
Toll-Like Receptor 7 , Toll-Like Receptor 9 , Animals , DNA , Ligands , Mice , Mice, Inbred C57BL , Mice, Inbred MRL lpr , Mice, Knockout , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , RNA , Toll-Like Receptor 7/genetics , Toll-Like Receptor 7/metabolism , Toll-Like Receptor 9/genetics , Toll-Like Receptor 9/metabolism
4.
Nat Immunol ; 21(3): 331-342, 2020 03.
Article in English | MEDLINE | ID: mdl-32066950

ABSTRACT

Germinal center B cells (GCBCs) are critical for generating long-lived humoral immunity. How GCBCs meet the energetic challenge of rapid proliferation is poorly understood. Dividing lymphocytes typically rely on aerobic glycolysis over oxidative phosphorylation for energy. Here we report that GCBCs are exceptional among proliferating B and T cells, as they actively oxidize fatty acids (FAs) and conduct minimal glycolysis. In vitro, GCBCs had a very low glycolytic extracellular acidification rate but consumed oxygen in response to FAs. [13C6]-glucose feeding revealed that GCBCs generate significantly less phosphorylated glucose and little lactate. Further, GCBCs did not metabolize glucose into tricarboxylic acid (TCA) cycle intermediates. Conversely, [13C16]-palmitic acid labeling demonstrated that GCBCs generate most of their acetyl-CoA and acetylcarnitine from FAs. FA oxidation was functionally important, as drug-mediated and genetic dampening of FA oxidation resulted in a selective reduction of GCBCs. Hence, GCBCs appear to uncouple rapid proliferation from aerobic glycolysis.


Subject(s)
B-Lymphocytes/metabolism , Fatty Acids/metabolism , Germinal Center/metabolism , Animals , B-Lymphocytes/immunology , Cell Proliferation , Energy Metabolism , Fatty Acids, Nonesterified/metabolism , Gene Expression , Germinal Center/cytology , Germinal Center/immunology , Glucose/metabolism , Glycolysis/genetics , In Vitro Techniques , Metabolome , Mice , Mice, Inbred BALB C , Mice, Knockout , Oxidation-Reduction , Oxidative Phosphorylation , Oxygen Consumption
5.
Nat Immunol ; 20(6): 736-746, 2019 06.
Article in English | MEDLINE | ID: mdl-31011187

ABSTRACT

B cell antigen receptor (BCR) and CD40 signaling are rewired in germinal center (GC) B cells (GCBCs) to optimize selection for high-affinity B cells. In GCBC, BCR signals are constrained, but the mechanisms are not well understood. Here we describe a GC-specific, AKT-kinase-driven negative feedback loop that attenuates BCR signaling. Mass spectrometry revealed that AKT target activity was altered in GCBCs compared with naive B cells. Retargeting was linked to differential AKT T308 and S473 phosphorylation, in turn controlled by GC-specific upregulation of phosphoinositide-dependent protein kinase PDK1 and the phosphatase PTEN. In GCBCs, AKT preferentially targeted CSK, SHP-1 and HPK1, which are negative regulators of BCR signaling. We found that phosphorylation enhances enzymatic activity of these proteins, creating a negative feedback loop that dampens upstream BCR signaling. AKT inhibition relieved this negative feedback and enhanced activation of BCR-proximal kinase LYN, as well as downstream BCR signaling molecules in GCBCs.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Germinal Center/immunology , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Antigen, B-Cell/metabolism , Signal Transduction , Animals , Biomarkers , Computational Biology/methods , Enzyme Activation , Gene Knockout Techniques , Humans , Mice, Knockout , Phosphorylation , Substrate Specificity
6.
Immunity ; 53(6): 1136-1150, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33326765

ABSTRACT

Activated B cells participate in either extrafollicular (EF) or germinal center (GC) responses. Canonical responses are composed of a short wave of plasmablasts (PBs) arising from EF sites, followed by GC producing somatically mutated memory B cells (MBC) and long-lived plasma cells. However, somatic hypermutation (SHM) and affinity maturation can take place at both sites, and a substantial fraction of MBC are produced prior to GC formation. Infection responses range from GC responses that persist for months to persistent EF responses with dominant suppression of GCs. Here, we review the current understanding of the functional output of EF and GC responses and the molecular switches promoting them. We discuss the signals that regulate the magnitude and duration of these responses, and outline gaps in knowledge and important areas of inquiry. Understanding such molecular switches will be critical for vaccine development, interpretation of vaccine efficacy and the treatment for autoimmune diseases.


Subject(s)
B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Germinal Center/immunology , Immunity/immunology , Animals , Autoimmune Diseases/immunology , Humans , Immunoglobulin Class Switching , Infections/etiology , Infections/immunology , Lymphocyte Activation , Plasma Cells/immunology , Vaccines/immunology
7.
Immunity ; 53(5): 1078-1094.e7, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33010224

ABSTRACT

Memory B cells (MBCs) can respond to heterologous antigens either by molding new specificities through secondary germinal centers (GCs) or by selecting preexisting clones without further affinity maturation. To distinguish these mechanisms in flavivirus infections and immunizations, we studied recall responses to envelope protein domain III (DIII). Conditional deletion of activation-induced cytidine deaminase (AID) between heterologous challenges of West Nile, Japanese encephalitis, Zika, and dengue viruses did not affect recall responses. DIII-specific MBCs were contained mostly within the plasma-cell-biased CD80+ subset, and few GCs arose following heterologous boosters, demonstrating that recall responses are confined by preexisting clonal diversity. Measurement of monoclonal antibody (mAb) binding affinity to DIII proteins, timed AID deletion, single-cell RNA sequencing, and lineage tracing experiments point to selection of relatively low-affinity MBCs as a mechanism to promote diversity. Engineering immunogens to avoid this MBC diversity may facilitate flavivirus-type-specific vaccines with minimized potential for infection enhancement.


Subject(s)
B-Lymphocytes/immunology , Cross Reactions/immunology , Flavivirus Infections/immunology , Flavivirus Infections/virology , Flavivirus/immunology , Host-Pathogen Interactions/immunology , Immunologic Memory , Animals , B-Lymphocytes/metabolism , Disease Models, Animal , Dose-Response Relationship, Immunologic , Flavivirus Infections/metabolism , Immunization , Mice , Mice, Knockout , Mice, Transgenic , Plasma Cells/immunology , Plasma Cells/metabolism , Species Specificity
8.
Immunity ; 48(2): 313-326.e5, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29396161

ABSTRACT

Positive selection of germinal center (GC) B cells is driven by B cell receptor (BCR) affinity and requires help from follicular T helper cells. The transcription factors c-Myc and Foxo1 are critical for GC B cell selection and survival. However, how different affinity-related signaling events control these transcription factors in a manner that links to selection is unknown. Here we showed that GC B cells reprogram CD40 and BCR signaling to transduce via NF-κB and Foxo1, respectively, whereas naive B cells propagate both signals downstream of either receptor. Although either BCR or CD40 ligation induced c-Myc in naive B cells, both signals were required to highly induce c-Myc, a critical mediator of GC B cell survival and cell cycle reentry. Thus, GC B cells rewire their signaling to enhance selection stringency via a requirement for both antigen receptor- and T cell-mediated signals to induce mediators of positive selection.


Subject(s)
CD40 Antigens/physiology , Germinal Center/immunology , Proto-Oncogene Proteins c-myc/biosynthesis , Receptors, Antigen, B-Cell/physiology , Signal Transduction/physiology , Animals , Forkhead Box Protein O1/physiology , MAP Kinase Signaling System/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , NF-kappa B/physiology , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Syk Kinase/physiology
9.
Nat Immunol ; 15(7): 631-7, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24880458

ABSTRACT

Memory B cells (MBCs) are long-lived sources of rapid, isotype-switched secondary antibody-forming cell (AFC) responses. Whether MBCs homogeneously retain the ability to self-renew and terminally differentiate or if these functions are compartmentalized into MBC subsets has remained unclear. It has been suggested that antibody isotype controls MBC differentiation upon restimulation. Here we demonstrate that subcategorizing MBCs on the basis of their expression of CD80 and PD-L2, independently of isotype, identified MBC subsets with distinct functions upon rechallenge. CD80(+)PD-L2(+) MBCs differentiated rapidly into AFCs but did not generate germinal centers (GCs); conversely, CD80(-)PD-L2(-) MBCs generated few early AFCs but robustly seeded GCs. The gene-expression patterns of the subsets supported both the identity and function of these distinct MBC types. Hence, the differentiation and regeneration of MBCs are compartmentalized.


Subject(s)
B-Lymphocyte Subsets/immunology , B7-1 Antigen/physiology , Immunoglobulin Isotypes/physiology , Immunologic Memory , Programmed Cell Death 1 Ligand 2 Protein/physiology , Amino Acid Sequence , Animals , Antibody-Producing Cells/physiology , Germinal Center/immunology , Immunization , Mice , Mice, Inbred BALB C , Molecular Sequence Data , T-Lymphocytes/physiology
10.
Immunity ; 47(5): 913-927.e6, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29150239

ABSTRACT

Although apoptotic cells (ACs) contain nucleic acids that can be recognized by Toll-like receptors (TLRs), engulfment of ACs does not initiate inflammation in healthy organisms. Here we identified macrophage populations that continually engulf ACs in distinct tissues and found that these macrophages share characteristics compatible with immunologically silent clearance of ACs; such characteristics include high expression of AC recognition receptors, low expression of TLR9, and reduced TLR responsiveness to nucleic acids. Removal of the macrophages from tissues resulted in loss of many of these characteristics and the ability to generate inflammatory responses to AC-derived nucleic acids, suggesting that cues from the tissue microenvironment program macrophages for silent AC clearance. The transcription factors KLF2 and KLF4 control the expression of many genes within this AC clearance program. The coordinated expression of AC receptors with genes that limit responses to nucleic acids might ensure maintenance of homeostasis and thus represent a central feature of tissue macrophages.


Subject(s)
Apoptosis , Macrophages/immunology , Animals , Female , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/physiology , Macrophage Activation , Male , Mice , Mice, Inbred C57BL , Toll-Like Receptor 7/physiology , Toll-Like Receptor 9/physiology
11.
Immunity ; 45(5): 1052-1065, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27793595

ABSTRACT

The extrafollicular (EF) plasmablast response to self-antigens that contain Toll-like receptor (TLR) ligands is prominent in murine lupus models and some bacterial infections, but the inhibitors and activators involved have not been fully delineated. Here, we used two conventional dendritic cell (cDC) depletion systems to investigate the role of cDCs on a classical TLR-dependent autoreactive EF response elicited in rheumatoid-factor B cells by DNA-containing immune complexes. Contrary to our hypothesis, cDC depletion amplified rather than dampened the EF response in Fas-intact but not Fas-deficient mice. Further, we demonstrated that cDC-dependent regulation requires Fas and Fas ligand (FasL) expression by T cells, but not Fas expression by B cells. Thus, cDCs activate FasL-expressing T cells that regulate Fas-expressing extrafollicular helper T (Tefh) cells. These studies reveal a regulatory role for cDCs in B cell plasmablast responses and provide a mechanistic explanation for the excess autoantibody production observed in Fas deficiency.


Subject(s)
Autoimmunity/immunology , B-Lymphocytes/immunology , Dendritic Cells/immunology , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , Animals , Autoantibodies/immunology , Cell Separation , Disease Models, Animal , Enzyme-Linked Immunospot Assay , Fas Ligand Protein/immunology , Flow Cytometry , Fluorescent Antibody Technique , Mice , Mice, Inbred BALB C , Mice, Inbred MRL lpr , Mice, Transgenic , fas Receptor/immunology
12.
Immunity ; 44(1): 116-130, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26795247

ABSTRACT

There is little insight into or agreement about the signals that control differentiation of memory B cells (MBCs) and long-lived plasma cells (LLPCs). By performing BrdU pulse-labeling studies, we found that MBC formation preceded the formation of LLPCs in an adoptive transfer immunization system, which allowed for a synchronized Ag-specific response with homogeneous Ag-receptor, yet at natural precursor frequencies. We confirmed these observations in wild-type (WT) mice and extended them with germinal center (GC) disruption experiments and variable region gene sequencing. We thus show that the GC response undergoes a temporal switch in its output as it matures, revealing that the reaction engenders both MBC subsets with different immune effector function and, ultimately, LLPCs at largely separate points in time. These data demonstrate the kinetics of the formation of the cells that provide stable humoral immunity and therefore have implications for autoimmunity, for vaccine development, and for understanding long-term pathogen resistance.


Subject(s)
B-Lymphocyte Subsets/cytology , B-Lymphocytes/cytology , Cell Differentiation/immunology , Germinal Center/immunology , Immunologic Memory/immunology , Plasma Cells/cytology , Adoptive Transfer , Animals , B-Lymphocyte Subsets/immunology , B-Lymphocytes/immunology , Cell Separation , Enzyme-Linked Immunospot Assay , Flow Cytometry , Germinal Center/cytology , Immunity, Humoral/immunology , Immunohistochemistry , Mice , Mice, Inbred BALB C , Mice, Transgenic , Plasma Cells/immunology , Time Factors
13.
J Immunol ; 210(4): 377-388, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36602759

ABSTRACT

The activation of lymphocytes in patients with lupus and in mouse models of the disease is coupled with an increased cellular metabolism in which glucose plays a major role. The pharmacological inhibition of glycolysis with 2-deoxy-d-glucose (2DG) reversed the expansion of follicular helper CD4+ T cells and germinal center B cells in lupus-prone mice, as well as the production of autoantibodies. The response of foreign Ags was however not affected by 2DG in these mice, suggesting that B and CD4+ T cell activation by autoantigens is uniquely sensitive to glycolysis. In this study, we tested this hypothesis with monoclonal B cells and CD4+ T cells specific for lupus-relevant autoantigens. AM14 Vκ8R (AM14) transgenic B cells are activated by IgG2a/chromatin immune complexes and they can receive cognate help from chromatin-specific 13C2 CD4+ T cells. We showed that activation of AM14 B cells by their cognate Ag PL2-3 induced glycolysis, and that the inhibition of glycolysis reduced their activation and differentiation into Ab-forming cells, in the absence or presence of T cell help. The dependency of autoreactive B cells on glycolysis is in sharp contrast with the previously reported dependency of 4-hydroxy-3-nitrophenyl acetyl-specific B cells on fatty acid oxidation. Contrary to AM14 B cells, the activation and differentiation of 13C2 T cells into follicular helper CD4+ T cells was not altered by 2DG, which differs from polyclonal CD4+ T cells from lupus-prone mice. These results further define the role of glycolysis in the production of lupus autoantibodies and demonstrate the need to evaluate the metabolic requirements of Ag-specific B and T cells.


Subject(s)
CD4-Positive T-Lymphocytes , Lupus Erythematosus, Systemic , Lymphoma, B-Cell , Animals , Mice , Autoantibodies , Autoantigens/metabolism , Chromatin/metabolism , Glucose/metabolism , Lupus Erythematosus, Systemic/metabolism , Lymphocyte Activation , T-Lymphocytes, Helper-Inducer
14.
Immunity ; 42(3): 552-65, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25786178

ABSTRACT

The inducible T cell costimulator (ICOS) is a potent promoter of organ inflammation in murine lupus. ICOS stimulates T follicular helper cell differentiation in lymphoid tissue, suggesting that it might drive autoimmunity by enhancing autoantibody production. Yet the pathogenic relevance of this mechanism remains unclear. It is also unknown whether other ICOS-induced processes might contribute to lupus pathology. Here we show that selective ablation of ICOS ligand (ICOSL) in CD11c(+) cells, but not in B cells, dramatically ameliorates kidney and lung inflammation in lupus-prone MRL.Fas(lpr) mice. Autoantibody formation was largely unaffected by ICOSL deficiency in CD11c(+) cells. However, ICOSL display by CD11c(+) cells in inflamed organs had a nonredundant role in protecting invading T cells from apoptosis by elevating activity of the PI3K-Akt signaling pathway, thereby facilitating T cell accrual. These findings reveal a mechanism that locally sustains organ inflammation in lupus.


Subject(s)
CD11c Antigen/immunology , Inducible T-Cell Co-Stimulator Ligand/immunology , Inducible T-Cell Co-Stimulator Protein/immunology , Kidney/immunology , Lupus Nephritis/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Apoptosis , Autoantibodies/biosynthesis , CD11c Antigen/genetics , Cell Differentiation , Female , Gene Expression Regulation , Humans , Inducible T-Cell Co-Stimulator Ligand/deficiency , Inducible T-Cell Co-Stimulator Ligand/genetics , Inducible T-Cell Co-Stimulator Protein/genetics , Kidney/pathology , Lung/immunology , Lung/pathology , Lupus Nephritis/genetics , Lupus Nephritis/pathology , Mice, Transgenic , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/immunology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/immunology , Signal Transduction , T-Lymphocytes, Helper-Inducer/pathology
15.
Immunity ; 42(2): 367-378, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25680276

ABSTRACT

T cell dysfunction is well documented during chronic viral infections but little is known about functional abnormalities in humoral immunity. Here we report that mice persistently infected with lymphocytic choriomeningitis virus (LCMV) exhibit a severe defect in Fcγ-receptor (FcγR)-mediated antibody effector functions. Using transgenic mice expressing human CD20, we found that chronic LCMV infection impaired the depletion of B cells with rituximab, an anti-CD20 antibody widely used for the treatment of B cell lymphomas. In addition, FcγR-dependent activation of dendritic cells by agonistic anti-CD40 antibody was compromised in chronically infected mice. These defects were due to viral antigen-antibody complexes and not the chronic infection per se, because FcγR-mediated effector functions were normal in persistently infected mice that lacked LCMV-specific antibodies. Our findings have implications for the therapeutic use of antibodies and suggest that high levels of pre-existing immune complexes could limit the effectiveness of antibody therapy in humans.


Subject(s)
Antibodies, Viral/immunology , Antigen-Antibody Complex/immunology , Lymphocyte Depletion , Lymphocytic Choriomeningitis/immunology , Receptors, IgG/immunology , Animals , Antibodies, Monoclonal, Murine-Derived/pharmacology , Antigens, CD20/biosynthesis , Antigens, CD20/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , CD40 Antigens/immunology , Dendritic Cells/immunology , Hypergammaglobulinemia/immunology , Immunologic Factors/pharmacology , Lymphocyte Activation/immunology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Rituximab
16.
Immunity ; 43(1): 120-31, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26187411

ABSTRACT

The B cell response to Salmonella typhimurium (STm) occurs massively at extrafollicular sites, without notable germinal centers (GCs). Little is known in terms of its specificity. To expand the knowledge of antigen targets, we screened plasmablast (PB)-derived monoclonal antibodies (mAbs) for Salmonella specificity, using ELISA, flow cytometry, and antigen microarray. Only a small fraction (0.5%-2%) of the response appeared to be Salmonella-specific. Yet, infection of mice with limited B cell receptor (BCR) repertoires impaired the response, suggesting that BCR specificity was important. We showed, using laser microdissection, that somatic hypermutation (SHM) occurred efficiently at extrafollicular sites leading to affinity maturation that in turn led to detectable STm Ag-binding. These results suggest a revised vision of how clonal selection and affinity maturation operate in response to Salmonella. Clonal selection initially is promiscuous, activating cells with virtually undetectable affinity, yet SHM and selection occur during the extrafollicular response yielding higher affinity, detectable antibodies.


Subject(s)
B-Lymphocytes/immunology , Clonal Selection, Antigen-Mediated/immunology , Germinal Center/immunology , Salmonella typhimurium/immunology , Somatic Hypermutation, Immunoglobulin/immunology , Animals , Antibodies, Monoclonal/immunology , Clonal Selection, Antigen-Mediated/genetics , Immunoglobulin G/biosynthesis , Immunoglobulin G/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/immunology , Salmonella Infections/immunology , Salmonella Infections/microbiology , Somatic Hypermutation, Immunoglobulin/genetics , Spleen/cytology , Spleen/immunology
17.
J Virol ; 96(9): e0002622, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35404084

ABSTRACT

Humoral immunity is a major component of the adaptive immune response against viruses and other pathogens with pathogen-specific antibody acting as the first line of defense against infection. Virus-specific antibody levels are maintained by continual secretion of antibody by plasma cells residing in the bone marrow. This raises the important question of how the virus-specific plasma cell population is stably maintained and whether memory B cells are required to replenish plasma cells, balancing their loss arising from their intrinsic death rate. In this study, we examined the longevity of virus-specific antibody responses in the serum of mice following acute viral infection with three different viruses: lymphocytic choriomeningitis virus (LCMV), influenza virus, and vesicular stomatitis virus (VSV). To investigate the contribution of memory B cells to the maintenance of virus-specific antibody levels, we employed human CD20 transgenic mice, which allow for the efficient depletion of B cells with rituximab, a human CD20-specific monoclonal antibody. Mice that had resolved an acute infection with LCMV, influenza virus, or VSV were treated with rituximab starting at 2 months after infection, and the treatment was continued for up to a year postinfection. This treatment regimen with rituximab resulted in efficient depletion of B cells (>95%), with virus-specific memory B cells being undetectable. There was an early transient drop in the antibody levels after rituximab treatment followed by a plateauing of the curve with virus-specific antibody levels remaining relatively stable (half-life of 372 days) for up to a year after infection in the absence of memory B cells. The number of virus-specific plasma cells in the bone marrow were consistent with the changes seen in serum antibody levels. Overall, our data show that virus-specific plasma cells in the bone marrow are intrinsically long-lived and can maintain serum antibody titers for extended periods of time without requiring significant replenishment from memory B cells. These results provide insight into plasma cell longevity and have implications for B cell depletion regimens in cancer and autoimmune patients in the context of vaccination in general and especially for COVID-19 vaccines. IMPORTANCE Following vaccination or primary virus infection, virus-specific antibodies provide the first line of defense against reinfection. Plasma cells residing in the bone marrow constitutively secrete antibodies, are long-lived, and can thus maintain serum antibody levels over extended periods of time in the absence of antigen. Our data, in the murine model system, show that virus-specific plasma cells are intrinsically long-lived but that some reseeding by memory B cells might occur. Our findings demonstrate that, due to the longevity of plasma cells, virus-specific antibody levels remain relatively stable in the absence of memory B cells and have implications for vaccination.


Subject(s)
Antibodies, Viral , Lymphocytic Choriomeningitis , Memory B Cells , Rituximab , Animals , Antibodies, Viral/blood , Humans , Immunity, Humoral , Immunologic Memory , Lymphocytic Choriomeningitis/immunology , Memory B Cells/cytology , Mice , Mice, Transgenic , Orthomyxoviridae Infections/immunology , Plasma Cells/cytology , Rhabdoviridae Infections/immunology , Rituximab/pharmacology
18.
Immunol Rev ; 288(1): 49-63, 2019 03.
Article in English | MEDLINE | ID: mdl-30874353

ABSTRACT

Germinal centers (GC) are sites of rapid B-cell proliferation in response to certain types of immunization. They arise in about 1 week and can persist for several months. In GCs, B cells differentiate in a unique way and begin to undergo somatic mutation of the Ig V regions at a high rate. GC B cells (GCBC) thus undergo clonal diversification that can affect the affinity of the newly mutant B-cell receptor (BCR) for its driving antigen. Through processes that are still poorly understood, GCBC with higher affinity are selectively expanded while those with mutations that inactivate the BCR are lost. In addition, at various times during the extended GC reaction, some GCBC undergo differentiation into either long-lived memory B cells (MBC) or plasma cells. The cellular and molecular signals that govern these fate decisions are not well-understood, but are an active area of research in multiple laboratories. In this review, we cover both the history of this field and focus on recent work that has helped to elucidate the signals and molecules, such as key transcription factors, that coordinate both positive selection as well as differentiation of GCBC.


Subject(s)
B-Lymphocytes/immunology , Clonal Selection, Antigen-Mediated , Receptors, Antigen, B-Cell/metabolism , Animals , Antibody Formation , Cell Differentiation , Epitopes , Germinal Center/immunology , Humans , Immunologic Memory , Lymphocyte Activation , Signal Transduction
19.
Eur J Immunol ; 51(7): 1774-1784, 2021 07.
Article in English | MEDLINE | ID: mdl-33772778

ABSTRACT

Optimal vaccines are needed for sustained suppression of SARS-CoV-2 and other novel coronaviruses. Here, we developed a recombinant type 5 adenovirus vector encoding the gene for the SARS-CoV-2 S1 subunit antigen (Ad5.SARS-CoV-2-S1) for COVID-19 immunization and evaluated its immunogenicity in mice. A single immunization with Ad5.SARS-CoV-2-S1 via S.C. injection or I.N delivery induced robust antibody and cellular immune responses. Vaccination elicited significant S1-specific IgG, IgG1, and IgG2a endpoint titers as early as 2 weeks, and the induced antibodies were long lasting. I.N. and S.C. administration of Ad5.SARS-CoV-2-S1 produced S1-specific GC B cells in cervical and axillary LNs, respectively. Moreover, I.N. and S.C. immunization evoked significantly greater antigen-specific T-cell responses compared to unimmunized control groups with indications that S.C. injection was more effective than I.N. delivery in eliciting cellular immune responses. Mice vaccinated by either route demonstrated significantly increased virus-specific neutralization antibodies on weeks 8 and 12 compared to control groups, as well as BM antibody forming cells (AFC), indicative of long-term immunity. Thus, this Ad5-vectored SARS-CoV-2 vaccine candidate showed promising immunogenicity following delivery to mice by S.C. and I.N. routes of administration, supporting the further development of Ad-based vaccines against COVID-19 and other infectious diseases for sustainable global immunization programs.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Adenoviridae/genetics , Adenoviridae/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , B-Lymphocytes/immunology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Immunoglobulin G/immunology , Mice , Mice, Inbred BALB C , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , T-Lymphocytes/immunology , Vaccination
20.
Nat Immunol ; 11(6): 535-42, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20453843

ABSTRACT

Memory B and plasma cells (PCs) are generated in the germinal center (GC). Because follicular helper T cells (T(FH) cells) have high expression of the immunoinhibitory receptor PD-1, we investigated the role of PD-1 signaling in the humoral response. We found that the PD-1 ligands PD-L1 and PD-L2 were upregulated on GC B cells. Mice deficient in PD-L2 (Pdcd1lg2(-/-)), PD-L1 and PD-L2 (Cd274(-/-)Pdcd1lg2(-/-)) or PD-1 (Pdcd1(-/-)) had fewer long-lived PCs. The mechanism involved more GC cell death and less T(FH) cell cytokine production in the absence of PD-1; the effect was selective, as remaining PCs had greater affinity for antigen. PD-1 expression on T cells and PD-L2 expression on B cells controlled T(FH) cell and PC numbers. Thus, PD-1 regulates selection and survival in the GC, affecting the quantity and quality of long-lived PCs.


Subject(s)
Antigens, Surface/metabolism , Apoptosis Regulatory Proteins/metabolism , B-Lymphocytes/cytology , Cell Differentiation , Germinal Center/cytology , Plasma Cells/cytology , Animals , Antigens, Surface/genetics , Apoptosis Regulatory Proteins/genetics , B-Lymphocytes/immunology , Cell Survival , Mice , Mice, Knockout , Programmed Cell Death 1 Receptor
SELECTION OF CITATIONS
SEARCH DETAIL