Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Immunity ; 51(1): 77-89.e6, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31229354

ABSTRACT

T helper 17 (Th17) cells are pathogenic in many inflammatory diseases, but also support the integrity of the intestinal barrier in a non-inflammatory manner. It is unclear what distinguishes inflammatory Th17 cells elicited by pathogens and tissue-resident homeostatic Th17 cells elicited by commensals. Here, we compared the characteristics of Th17 cells differentiating in response to commensal bacteria (SFB) to those differentiating in response to a pathogen (Citrobacter rodentium). Homeostatic Th17 cells exhibited little plasticity towards expression of inflammatory cytokines, were characterized by a metabolism typical of quiescent or memory T cells, and did not participate in inflammatory processes. In contrast, infection-induced Th17 cells showed extensive plasticity towards pro-inflammatory cytokines, disseminated widely into the periphery, and engaged aerobic glycolysis in addition to oxidative phosphorylation typical for inflammatory effector cells. These findings will help ensure that future therapies directed against inflammatory Th17 cells do not inadvertently damage the resident gut population.


Subject(s)
Citrobacter rodentium/immunology , Enterobacteriaceae Infections/immunology , Gastrointestinal Microbiome/immunology , Intestines/immunology , Th17 Cells/immunology , Animals , Cell Plasticity , Cells, Cultured , Cytokines/metabolism , Glycolysis , Homeostasis , Immunologic Memory , Inflammation , Mice , Mice, Transgenic
2.
Genome Res ; 34(6): 967-978, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39038849

ABSTRACT

The human gut microbiota is of increasing interest, with metagenomics a key tool for analyzing bacterial diversity and functionality in health and disease. Despite increasing efforts to expand microbial gene catalogs and an increasing number of metagenome-assembled genomes, there have been few pan-metagenomic association studies and in-depth functional analyses across different geographies and diseases. Here, we explored 6014 human gut metagenome samples across 19 countries and 23 diseases by performing compositional, functional cluster, and integrative analyses. Using interpreted machine learning classification models and statistical methods, we identified Fusobacterium nucleatum and Anaerostipes hadrus with the highest frequencies, enriched and depleted, respectively, across different disease cohorts. Distinct functional distributions were observed in the gut microbiomes of both westernized and nonwesternized populations. These compositional and functional analyses are presented in the open-access Human Gut Microbiome Atlas, allowing for the exploration of the richness, disease, and regional signatures of the gut microbiota across different cohorts.


Subject(s)
Gastrointestinal Microbiome , Metagenome , Metagenomics , Humans , Gastrointestinal Microbiome/genetics , Metagenomics/methods , Machine Learning , Fusobacterium nucleatum/genetics , Bacteria/classification , Bacteria/genetics
3.
Gut ; 73(7): 1183-1198, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38621924

ABSTRACT

OBJECTIVE: Targeting bacterial translocation in cirrhosis is limited to antibiotics with risk of antimicrobial resistance. This study explored the therapeutic potential of a non-absorbable, gut-restricted, engineered carbon bead adsorbent, Yaq-001 in models of cirrhosis and acute-on-chronic liver failure (ACLF) and, its safety and tolerability in a clinical trial in cirrhosis. DESIGN: Performance of Yaq-001 was evaluated in vitro. Two-rat models of cirrhosis and ACLF, (4 weeks, bile duct ligation with or without lipopolysaccharide), receiving Yaq-001 for 2 weeks; and two-mouse models of cirrhosis (6-week and 12-week carbon tetrachloride (CCl4)) receiving Yaq-001 for 6 weeks were studied. Organ and immune function, gut permeability, transcriptomics, microbiome composition and metabolomics were analysed. The effect of faecal water on gut permeability from animal models was evaluated on intestinal organoids. A multicentre, double-blind, randomised, placebo-controlled clinical trial in 28 patients with cirrhosis, administered 4 gr/day Yaq-001 for 3 months was performed. RESULTS: Yaq-001 exhibited rapid adsorption kinetics for endotoxin. In vivo, Yaq-001 reduced liver injury, progression of fibrosis, portal hypertension, renal dysfunction and mortality of ACLF animals significantly. Significant impact on severity of endotoxaemia, hyperammonaemia, liver cell death, systemic inflammation and organ transcriptomics with variable modulation of inflammation, cell death and senescence in the liver, kidneys, brain and colon was observed. Yaq-001 reduced gut permeability in the organoids and impacted positively on the microbiome composition and metabolism. Yaq-001 regulated as a device met its primary endpoint of safety and tolerability in the clinical trial. CONCLUSIONS: This study provides strong preclinical rationale and safety in patients with cirrhosis to allow clinical translation. TRIAL REGISTRATION NUMBER: NCT03202498.


Subject(s)
Acute-On-Chronic Liver Failure , Gastrointestinal Microbiome , Liver Cirrhosis , Humans , Animals , Liver Cirrhosis/complications , Mice , Male , Gastrointestinal Microbiome/drug effects , Double-Blind Method , Rats , Disease Models, Animal , Female , Middle Aged , Bacterial Translocation/drug effects , Carbon/therapeutic use , Carbon/pharmacology
4.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063109

ABSTRACT

Glioblastoma (GBM), a highly malignant tumour of the central nervous system, presents with a dire prognosis and low survival rates. The heterogeneous and recurrent nature of GBM renders current treatments relatively ineffective. In our study, we utilized an integrative systems biology approach to uncover the molecular mechanisms driving GBM progression and identify viable therapeutic drug targets for developing more effective GBM treatment strategies. Our integrative analysis revealed an elevated expression of CHST2 in GBM tumours, designating it as an unfavourable prognostic gene in GBM, as supported by data from two independent GBM cohorts. Further, we pinpointed WZ-4002 as a potential drug candidate to modulate CHST2 through computational drug repositioning. WZ-4002 directly targeted EGFR (ERBB1) and ERBB2, affecting their dimerization and influencing the activity of adjacent genes, including CHST2. We validated our findings by treating U-138 MG cells with WZ-4002, observing a decrease in CHST2 protein levels and a reduction in cell viability. In summary, our research suggests that the WZ-4002 drug candidate may effectively modulate CHST2 and adjacent genes, offering a promising avenue for developing efficient treatment strategies for GBM patients.


Subject(s)
Drug Repositioning , Glioblastoma , Systems Biology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Humans , Drug Repositioning/methods , Systems Biology/methods , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , ErbB Receptors/metabolism , ErbB Receptors/genetics , Gene Expression Regulation, Neoplastic/drug effects , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Cell Survival/drug effects , Drug Discovery/methods
5.
J Transl Med ; 21(1): 332, 2023 05 20.
Article in English | MEDLINE | ID: mdl-37210557

ABSTRACT

BACKGROUND: Despite numerous clinical trials and decades of endeavour, there is still no effective cure for Alzheimer's disease. Computational drug repositioning approaches may be employed for the development of new treatment strategies for Alzheimer's patients since an extensive amount of omics data has been generated during pre-clinical and clinical studies. However, targeting the most critical pathophysiological mechanisms and determining drugs with proper pharmacodynamics and good efficacy are equally crucial in drug repurposing and often imbalanced in Alzheimer's studies. METHODS: Here, we investigated central co-expressed genes upregulated in Alzheimer's disease to determine a proper therapeutic target. We backed our reasoning by checking the target gene's estimated non-essentiality for survival in multiple human tissues. We screened transcriptome profiles of various human cell lines perturbed by drug induction (for 6798 compounds) and gene knockout using data available in the Connectivity Map database. Then, we applied a profile-based drug repositioning approach to discover drugs targeting the target gene based on the correlations between these transcriptome profiles. We evaluated the bioavailability, functional enrichment profiles and drug-protein interactions of these repurposed agents and evidenced their cellular viability and efficacy in glial cell culture by experimental assays and Western blotting. Finally, we evaluated their pharmacokinetics to anticipate to which degree their efficacy can be improved. RESULTS: We identified glutaminase as a promising drug target. Glutaminase overexpression may fuel the glutamate excitotoxicity in neurons, leading to mitochondrial dysfunction and other neurodegeneration hallmark processes. The computational drug repurposing revealed eight drugs: mitoxantrone, bortezomib, parbendazole, crizotinib, withaferin-a, SA-25547 and two unstudied compounds. We demonstrated that the proposed drugs could effectively suppress glutaminase and reduce glutamate production in the diseased brain through multiple neurodegeneration-associated mechanisms, including cytoskeleton and proteostasis. We also estimated the human blood-brain barrier permeability of parbendazole and SA-25547 using the SwissADME tool. CONCLUSIONS: This study method effectively identified an Alzheimer's disease marker and compounds targeting the marker and interconnected biological processes by use of multiple computational approaches. Our results highlight the importance of synaptic glutamate signalling in Alzheimer's disease progression. We suggest repurposable drugs (like parbendazole) with well-evidenced activities that we linked to glutamate synthesis hereby and novel molecules (SA-25547) with estimated mechanisms for the treatment of Alzheimer's patients.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Drug Repositioning/methods , Glutaminase/genetics , Glutaminase/metabolism , Glutaminase/therapeutic use , Transcriptome , Glutamates/genetics , Glutamates/therapeutic use
6.
J Hepatol ; 76(2): 332-342, 2022 02.
Article in English | MEDLINE | ID: mdl-34571050

ABSTRACT

BACKGROUND & AIMS: Rifaximin-α is efficacious for the prevention of recurrent hepatic encephalopathy (HE), but its mechanism of action remains unclear. We postulated that rifaximin-α reduces gut microbiota-derived endotoxemia and systemic inflammation, a known driver of HE. METHODS: In a placebo-controlled, double-blind, mechanistic study, 38 patients with cirrhosis and HE were randomised 1:1 to receive either rifaximin-α (550 mg BID) or placebo for 90 days. PRIMARY OUTCOME: 50% reduction in neutrophil oxidative burst (OB) at 30 days. SECONDARY OUTCOMES: changes in psychometric hepatic encephalopathy score (PHES) and neurocognitive functioning, shotgun metagenomic sequencing of saliva and faeces, plasma and faecal metabolic profiling, whole blood bacterial DNA quantification, neutrophil toll-like receptor (TLR)-2/4/9 expression and plasma/faecal cytokine analysis. RESULTS: Patients were well-matched: median MELD (11 rifaximin-α vs. 10 placebo). Rifaximin-α did not lead to a 50% reduction in spontaneous neutrophil OB at 30 days compared to baseline (p = 0.48). However, HE grade normalised (p = 0.014) and PHES improved (p = 0.009) after 30 days on rifaximin-α. Rifaximin-α reduced circulating neutrophil TLR-4 expression on day 30 (p = 0.021) and plasma tumour necrosis factor-α (TNF-α) (p <0.001). Rifaximin-α suppressed oralisation of the gut, reducing levels of mucin-degrading sialidase-rich species, Streptococcus spp, Veillonella atypica and parvula, Akkermansia and Hungatella. Rifaximin-α promoted a TNF-α- and interleukin-17E-enriched intestinal microenvironment, augmenting antibacterial responses to invading pathobionts and promoting gut barrier repair. Those on rifaximin-α were less likely to develop infection (odds ratio 0.21; 95% CI 0.05-0.96). CONCLUSION: Rifaximin-α led to resolution of overt and covert HE, reduced the likelihood of infection, reduced oralisation of the gut and attenuated systemic inflammation. Rifaximin-α plays a role in gut barrier repair, which could be the mechanism by which it ameliorates bacterial translocation and systemic endotoxemia in cirrhosis. CLINICAL TRIAL NUMBER: ClinicalTrials.gov NCT02019784. LAY SUMMARY: In this clinical trial, we examined the underlying mechanism of action of an antibiotic called rifaximin-α which has been shown to be an effective treatment for a complication of chronic liver disease which effects the brain (termed encephalopathy). We show that rifaximin-α suppresses gut bacteria that translocate from the mouth to the intestine and cause the intestinal wall to become leaky by breaking down the protective mucus barrier. This suppression resolves encephalopathy and reduces inflammation in the blood, preventing the development of infection.


Subject(s)
Hepatic Encephalopathy/drug therapy , Inflammation/drug therapy , Liver Cirrhosis/drug therapy , Mucins/metabolism , Rifaximin/pharmacology , Adult , Aged , Double-Blind Method , Female , Gastrointestinal Agents/metabolism , Gastrointestinal Agents/pharmacology , Gastrointestinal Agents/therapeutic use , Hepatic Encephalopathy/physiopathology , Humans , Inflammation/epidemiology , Inflammation/prevention & control , Liver Cirrhosis/epidemiology , Liver Cirrhosis/physiopathology , Male , Middle Aged , Mucins/drug effects , Ontario/epidemiology , Placebos , Rifaximin/metabolism , Rifaximin/therapeutic use
7.
J Transl Med ; 20(1): 173, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35410233

ABSTRACT

The human microbiome has been linked to several diseases. Gastrointestinal diseases are still one of the most prominent area of study in host-microbiome interactions however the underlying microbial mechanisms in these disorders are not fully established. Irritable bowel syndrome (IBS) remains as one of the prominent disorders with significant changes in the gut microbiome composition and without definitive treatment. IBS has a severe impact on socio-economic and patient's lifestyle. The association studies between the IBS and microbiome have shed a light on relevance of microbial composition, and hence microbiome-based trials were designed. However, there are no clear evidence of potential treatment for IBS. This review summarizes the epidemiology and socioeconomic impact of IBS and then focus on microbiome observational and clinical trials. At the end, we propose a new perspective on using data-driven approach and applying computational modelling and machine learning to design microbiome-aware personalized treatment for IBS.


Subject(s)
Gastrointestinal Microbiome , Irritable Bowel Syndrome , Microbiota , Humans , Irritable Bowel Syndrome/diagnosis , Irritable Bowel Syndrome/therapy
8.
Mol Syst Biol ; 17(10): e10459, 2021 10.
Article in English | MEDLINE | ID: mdl-34694070

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) refers to excess fat accumulation in the liver. In animal experiments and human kinetic study, we found that administration of combined metabolic activators (CMAs) promotes the oxidation of fat, attenuates the resulting oxidative stress, activates mitochondria, and eventually removes excess fat from the liver. Here, we tested the safety and efficacy of CMA in NAFLD patients in a placebo-controlled 10-week study. We found that CMA significantly decreased hepatic steatosis and levels of aspartate aminotransferase, alanine aminotransferase, uric acid, and creatinine, whereas found no differences on these variables in the placebo group after adjustment for weight loss. By integrating clinical data with plasma metabolomics and inflammatory proteomics as well as oral and gut metagenomic data, we revealed the underlying molecular mechanisms associated with the reduced hepatic fat and inflammation in NAFLD patients and identified the key players involved in the host-microbiome interactions. In conclusion, we showed that CMA can be used to develop a pharmacological treatment strategy in NAFLD patients.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat , Humans , Inflammation , Liver , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/drug therapy , Weight Loss
9.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34948010

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most malignant central nervous system tumors, showing a poor prognosis and low survival rate. Therefore, deciphering the underlying molecular mechanisms involved in the progression of the GBM and identifying the key driver genes responsible for the disease progression is crucial for discovering potential diagnostic markers and therapeutic targets. In this context, access to various biological data, development of new methodologies, and generation of biological networks for the integration of multi-omics data are necessary for gaining insights into the appearance and progression of GBM. Systems biology approaches have become indispensable in analyzing heterogeneous high-throughput omics data, extracting essential information, and generating new hypotheses from biomedical data. This review provides current knowledge regarding GBM and discusses the multi-omics data and recent systems analysis in GBM to identify key biological functions and genes. This knowledge can be used to develop efficient diagnostic and treatment strategies and can also be used to achieve personalized medicine for GBM.


Subject(s)
Brain Neoplasms/diagnosis , Glioblastoma/diagnosis , Systems Biology/methods , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/mortality , Early Detection of Cancer , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/mortality , Humans , Prognosis , Survival Analysis
10.
Int J Mol Sci ; 22(21)2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34768988

ABSTRACT

The complex pathology of Alzheimer's disease (AD) emphasises the need for comprehensive modelling of the disease, which may lead to the development of efficient treatment strategies. To address this challenge, we analysed transcriptome data of post-mortem human brain samples of healthy elders and individuals with late-onset AD from the Religious Orders Study and Rush Memory and Aging Project (ROSMAP) and Mayo Clinic (MayoRNAseq) studies in the AMP-AD consortium. In this context, we conducted several bioinformatics and systems medicine analyses including the construction of AD-specific co-expression networks and genome-scale metabolic modelling of the brain in AD patients to identify key genes, metabolites and pathways involved in the progression of AD. We identified AMIGO1 and GRPRASP2 as examples of commonly altered marker genes in AD patients. Moreover, we found alterations in energy metabolism, represented by reduced oxidative phosphorylation and ATPase activity, as well as the depletion of hexanoyl-CoA, pentanoyl-CoA, (2E)-hexenoyl-CoA and numerous other unsaturated fatty acids in the brain. We also observed that neuroprotective metabolites (e.g., vitamins, retinoids and unsaturated fatty acids) tend to be depleted in the AD brain, while neurotoxic metabolites (e.g., ß-alanine, bilirubin) were more abundant. In summary, we systematically revealed the key genes and pathways related to the progression of AD, gained insight into the crucial mechanisms of AD and identified some possible targets that could be used in the treatment of AD.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Adenosine Triphosphatases/genetics , Aging/genetics , Brain/metabolism , Brain/pathology , Computational Biology/methods , Energy Metabolism/genetics , Gene Expression Profiling/methods , Genetic Markers/genetics , Genome, Human/genetics , Humans , Oxidative Phosphorylation , Transcriptome/genetics
11.
Am J Geriatr Psychiatry ; 28(1): 75-86, 2020 01.
Article in English | MEDLINE | ID: mdl-31327631

ABSTRACT

OBJECTIVE: Prevalence of Lewy body dementias (LBD) is second only to Alzheimer's disease (AD) among people with neurodegenerative dementia. LBD cause earlier mortality, more intense neuropsychiatric symptoms, more caregivers' burden, and higher costs than AD. The molecular mechanisms underlying LBD are largely unknown. As advancing molecular level mechanistic understanding is essential for identifying reliable peripheral biomarkers and novel therapeutic targets for LBD, the authors aimed to identify differentially expressed genes (DEG), and dysfunctional molecular networks in postmortem LBD brains. METHODS: The authors investigated the transcriptomics of postmortem anterior cingulate and dorsolateral prefrontal cortices of people with pathology-verified LBD using next-generation RNA-sequencing. The authors verified the identified DEG using high-throughput quantitative polymerase chain reactions. Functional implications of identified DEG and the consequent metabolic reprogramming were evaluated by Ingenuity pathway analyses, genome-scale metabolic modeling, reporter metabolite analyses, and in silico gene silencing. RESULTS: The authors identified and verified 12 novel DEGs (MPO, SELE, CTSG, ALPI, ABCA13, GALNT6, SST, RBM3, CSF3, SLC4A1, OXTR, and RAB44) in LBD brains with genome-wide statistical significance. The authors documented statistically significant down-regulation of several cytokine genes. Identified dysfunctional molecular networks highlighted the contributions of mitochondrial dysfunction, oxidative stress, and immunosenescence toward neurodegeneration in LBD. CONCLUSION: Our findings support that chronic microglial activation and neuroinflammation, well-documented in AD, are notably absent in LBD. The lack of neuroinflammation in LBD brains was corroborated by statistically significant down-regulation of several inflammatory markers. Identified DEGs, especially down-regulated inflammatory markers, may aid distinguishing LBD from AD, and their biomarker potential warrant further investigation.


Subject(s)
Brain/metabolism , Gyrus Cinguli/metabolism , Inflammation/metabolism , Lewy Body Disease/metabolism , Prefrontal Cortex/metabolism , Transcriptome , Diagnosis , Down-Regulation , Gyrus Cinguli/pathology , High-Throughput Nucleotide Sequencing , Humans , Inflammation/pathology , Lewy Body Disease/pathology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Prefrontal Cortex/pathology , Sequence Analysis, RNA , Tissue Banks , United Kingdom , Up-Regulation
12.
Infect Immun ; 86(2)2018 02.
Article in English | MEDLINE | ID: mdl-29109176

ABSTRACT

Unlike other forms of candidiasis, vulvovaginal candidiasis, caused primarily by the fungal pathogen Candida albicans, is a disease of immunocompetent and otherwise healthy women. Despite its prevalence, the fungal factors responsible for initiating symptomatic infection remain poorly understood. One of the hallmarks of vaginal candidiasis is the robust recruitment of neutrophils to the site of infection, which seemingly do not clear the fungus, but rather exacerbate disease symptomatology. Candidalysin, a newly discovered peptide toxin secreted by C. albicans hyphae during invasion, drives epithelial damage, immune activation, and phagocyte attraction. Therefore, we hypothesized that Candidalysin is crucial for vulvovaginal candidiasis immunopathology. Anti-Candida immune responses are anatomical-site specific, as effective gastrointestinal, oral, and vaginal immunities are uniquely compartmentalized. Thus, we aimed to identify the immunopathologic role of Candidalysin and downstream signaling events at the vaginal mucosa. Microarray analysis of C. albicans-infected human vaginal epithelium in vitro revealed signaling pathways involved in epithelial damage responses, barrier repair, and leukocyte activation. Moreover, treatment of A431 vaginal epithelial cells with Candidalysin induced dose-dependent proinflammatory cytokine responses (including interleukin 1α [IL-1α], IL-1ß, and IL-8), damage, and activation of c-Fos and mitogen-activated protein kinase (MAPK) signaling, consistent with fungal challenge. Mice intravaginally challenged with C. albicans strains deficient in Candidalysin exhibited no differences in colonization compared to isogenic controls. However, significant decreases in neutrophil recruitment, damage, and proinflammatory cytokine expression were observed with these strains. Our findings demonstrate that Candidalysin is a key hypha-associated virulence determinant responsible for the immunopathogenesis of C. albicans vaginitis.


Subject(s)
Candida albicans/pathogenicity , Epithelial Cells/microbiology , Fungal Proteins/metabolism , Mucous Membrane/microbiology , Animals , Candidiasis, Vulvovaginal/immunology , Candidiasis, Vulvovaginal/metabolism , Cytokines/metabolism , Epithelial Cells/metabolism , Female , Fungal Proteins/pharmacology , Humans , Mice , Mucous Membrane/pathology , Neutrophil Infiltration/immunology , Signal Transduction , Vagina/immunology , Vagina/metabolism , Vagina/microbiology , Virulence Factors
13.
Mol Syst Biol ; 11(10): 834, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26475342

ABSTRACT

The gut microbiota has been proposed as an environmental factor that promotes the progression of metabolic diseases. Here, we investigated how the gut microbiota modulates the global metabolic differences in duodenum, jejunum, ileum, colon, liver, and two white adipose tissue depots obtained from conventionally raised (CONV-R) and germ-free (GF) mice using gene expression data and tissue-specific genome-scale metabolic models (GEMs). We created a generic mouse metabolic reaction (MMR) GEM, reconstructed 28 tissue-specific GEMs based on proteomics data, and manually curated GEMs for small intestine, colon, liver, and adipose tissues. We used these functional models to determine the global metabolic differences between CONV-R and GF mice. Based on gene expression data, we found that the gut microbiota affects the host amino acid (AA) metabolism, which leads to modifications in glutathione metabolism. To validate our predictions, we measured the level of AAs and N-acetylated AAs in the hepatic portal vein of CONV-R and GF mice. Finally, we simulated the metabolic differences between the small intestine of the CONV-R and GF mice accounting for the content of the diet and relative gene expression differences. Our analyses revealed that the gut microbiota influences host amino acid and glutathione metabolism in mice.


Subject(s)
Amino Acids/metabolism , Glutathione/metabolism , Microbiota , Animals , Intestine, Small/metabolism , Male , Mice , Mice, Inbred C57BL
15.
PLoS Comput Biol ; 9(3): e1002980, 2013.
Article in English | MEDLINE | ID: mdl-23555215

ABSTRACT

We present the RAVEN (Reconstruction, Analysis and Visualization of Metabolic Networks) Toolbox: a software suite that allows for semi-automated reconstruction of genome-scale models. It makes use of published models and/or the KEGG database, coupled with extensive gap-filling and quality control features. The software suite also contains methods for visualizing simulation results and omics data, as well as a range of methods for performing simulations and analyzing the results. The software is a useful tool for system-wide data analysis in a metabolic context and for streamlined reconstruction of metabolic networks based on protein homology. The RAVEN Toolbox workflow was applied in order to reconstruct a genome-scale metabolic model for the important microbial cell factory Penicillium chrysogenum Wisconsin54-1255. The model was validated in a bibliomic study of in total 440 references, and it comprises 1471 unique biochemical reactions and 1006 ORFs. It was then used to study the roles of ATP and NADPH in the biosynthesis of penicillin, and to identify potential metabolic engineering targets for maximization of penicillin production.


Subject(s)
Models, Biological , Penicillium chrysogenum/genetics , Penicillium chrysogenum/metabolism , Adenosine Triphosphate/metabolism , Bioengineering , Computational Biology/methods , Databases, Genetic , Genome, Bacterial , Metabolic Networks and Pathways , NADP/metabolism , Penicillins/metabolism , Software
16.
Metabolites ; 14(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38535292

ABSTRACT

Understanding microbial metabolism is crucial for evaluating shifts in human host-microbiome interactions during periods of health and disease. However, the primary hurdle in the realm of constraint-based modeling and genome-scale metabolic models (GEMs) pertaining to host-microbiome interactions lays in the efficient utilization of metagenomic data for constructing GEMs that encompass unexplored and uncharacterized genomes. Challenges persist in effectively employing metagenomic data to address individualized microbial metabolisms to investigate host-microbiome interactions. To tackle this issue, we have created a computational framework designed for personalized microbiome metabolisms. This framework takes into account factors such as microbiome composition, metagenomic species profiles and microbial gene catalogues. Subsequently, it generates GEMs at the microbial level and individualized microbiome metabolisms, including reaction richness, reaction abundance, reactobiome, individualized reaction set enrichment (iRSE), and community models. Using the toolbox, our findings revealed a significant reduction in both reaction richness and GEM richness in individuals with liver cirrhosis. The study highlighted a potential link between the gut microbiota and liver cirrhosis, i.e., increased level of LPS, ammonia production and tyrosine metabolism on liver cirrhosis, emphasizing the importance of microbiome-related factors in liver health.

17.
Biomedicines ; 12(4)2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38672280

ABSTRACT

BACKGROUND: Mitochondrial dysfunction and metabolic abnormalities are acknowledged as significant factors in the onset of neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). Our research has demonstrated that the use of combined metabolic activators (CMA) may alleviate metabolic dysfunctions and stimulate mitochondrial metabolism. Therefore, the use of CMA could potentially be an effective therapeutic strategy to slow down or halt the progression of PD and AD. CMAs include substances such as the glutathione precursors (L-serine and N-acetyl cysteine), the NAD+ precursor (nicotinamide riboside), and L-carnitine tartrate. METHODS: Here, we tested the effect of two different formulations, including CMA1 (nicotinamide riboside, L-serine, N-acetyl cysteine, L-carnitine tartrate), and CMA2 (nicotinamide, L-serine, N-acetyl cysteine, L-carnitine tartrate), as well as their individual components, on the animal models of AD and PD. We assessed the brain and liver tissues for pathological changes and immunohistochemical markers. Additionally, in the case of PD, we performed behavioral tests and measured responses to apomorphine-induced rotations. FINDINGS: Histological analysis showed that the administration of both CMA1 and CMA2 formulations led to improvements in hyperemia, degeneration, and necrosis in neurons for both AD and PD models. Moreover, the administration of CMA2 showed a superior effect compared to CMA1. This was further corroborated by immunohistochemical data, which indicated a reduction in immunoreactivity in the neurons. Additionally, notable metabolic enhancements in liver tissues were observed using both formulations. In PD rat models, the administration of both formulations positively influenced the behavioral functions of the animals. INTERPRETATION: Our findings suggest that the administration of both CMA1 and CMA2 markedly enhanced metabolic and behavioral outcomes, aligning with neuro-histological observations. These findings underscore the promise of CMA2 administration as an effective therapeutic strategy for enhancing metabolic parameters and cognitive function in AD and PD patients.

18.
J Immunol Methods ; 532: 113731, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39059745

ABSTRACT

Innate and adaptive immune responses at mucosal surfaces play a role in protection against most infectious diseases. However, the relative importance either of mucosal versus systemic, or of cellular versus humoral immunity in protection against such infections remains unclear. We aimed to determine the relative percentages and reproducibility of detection of five major T lymphocyte phenotypes in stimulated whole mouth fluid (SWMF); to compare matched mucosal and blood phenotypes; to evaluate the consistency of phenotypes in SWMF over time; and to determine any associations with age or gender. Peripheral blood and SWMF samples were collected from 194 participants and sequential concomitant samples were collected from 27 of those and from 12 subjects living with HIV. CD3, CD4, CD8, Th1 and Th2 T lymphocyte phenotypes were determined by FACS. All the five T lymphocyte phenotypes were detected consistently by FACS in PBMC and SWMF with experimental replicates (N = 10; PBMC CV: 3-30%; SWMF CV: 12-36%). In longitudinal samples detection rates were reproducible in both fluids but variations were higher in SWMF (CV: 23-79.6%) than PBMC (CV: 9.7-75%). Statistically significant correlations of the percentages of all the T lymphocyte phenotypes except CD8 was seen between the two fluids. In PBMCs a negative correlation with age was found with CD3, CD4 and CD8 phenotypes, whilst a positive correlation was found in both SWMF and PBMC with the Th2 phenotype. CD3, CD4 and CD8 phenotypes in SWMF and PBMCs from an HIV-positive cohort were not significantly correlated in contrast with the HIV-negative controls. Our study provides a robust FACS protocol for the detection of the five major T lymphocyte phenotypes in SWMF which should prove useful for research with other mucosal fluids.

19.
Aliment Pharmacol Ther ; 59(7): 877-888, 2024 04.
Article in English | MEDLINE | ID: mdl-38414095

ABSTRACT

BACKGROUND: Patients with cirrhosis are susceptible to develop bacterial infections that trigger acute decompensation (AD) and acute-on-chronic liver failure (ACLF). Infections with multidrug-resistant organisms (MDRO) are associated with deleterious outcome. MDRO colonisation frequently proceeds MDRO infections and antibiotic therapy has been associated with MDRO colonisation. AIM: The aim of the study was to assess the influence of non-antibiotic medication contributing to MDRO colonisation. METHODS: Three hundred twenty-four patients with AD and ACLF admitted to the ICU of Frankfurt University Hospital with MDRO screening were included. Regression models were performed to identify drugs associated with MDRO colonisation. Another cohort (n = 129) from Barcelona was included to validate. A third multi-centre cohort (n = 203) with metagenomic sequencing data of stool was included to detect antibiotic resistance genes. RESULTS: A total of 97 patients (30%) were identified to have MDRO colonisation and 35 of them (11%) developed MDRO infection. Patients with MDRO colonisation had significantly higher risk of MDRO infection than those without (p = 0.0098). Apart from antibiotic therapy (odds ratio (OR) 2.91, 95%-confidence interval (CI) 1.82-4.93, p < 0.0001), terlipressin therapy in the previous 14 days was the only independent covariate associated with MDRO colonisation in both cohorts, the overall (OR 9.47, 95%-CI 2.96-30.23, p < 0.0001) and after propensity score matching (OR 5.30, 95%-CI 1.22-23.03, p = 0.011). In the second cohort, prior terlipressin therapy was a risk factor for MDRO colonisation (OR 2.49, 95% CI 0.911-6.823, p = 0.075) and associated with risk of MDRO infection during follow-up (p = 0.017). The validation cohort demonstrated that antibiotic inactivation genes were significantly associated with terlipressin administration (p = 0.001). CONCLUSIONS: Our study reports an increased risk of MDRO colonisation in patients with AD or ACLF, who recently received terlipressin therapy, while other commonly prescribed non-antibiotic co-medications had negligible influence. Future prospective trials are needed to confirm these results.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Humans , Terlipressin/adverse effects , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/adverse effects , Risk Factors , Liver Cirrhosis/drug therapy , Bacteria
20.
NPJ Syst Biol Appl ; 9(1): 2, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36681701

ABSTRACT

The human gut microbiome has been associated with several metabolic disorders including type 2 diabetes mellitus. Understanding metabolic changes in the gut microbiome is important to elucidate the role of gut bacteria in regulating host metabolism. Here, we used available metagenomics data from a metformin study, together with genome-scale metabolic modelling of the key bacteria in individual and community-level to investigate the mechanistic role of the gut microbiome in response to metformin. Individual modelling predicted that species that are increased after metformin treatment have higher growth rates in comparison to species that are decreased after metformin treatment. Gut microbial enrichment analysis showed prior to metformin treatment pathways related to the hypoglycemic effect were enriched. Our observations highlight how the key bacterial species after metformin treatment have commensal and competing behavior, and how their cellular metabolism changes due to different nutritional environment. Integrating different diets showed there were specific microbial alterations between different diets. These results show the importance of the nutritional environment and how dietary guidelines may improve drug efficiency through the gut microbiota.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Metformin , Humans , Metformin/pharmacology , Metformin/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome/genetics , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Diet , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL