Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters

Affiliation country
Publication year range
1.
J Virol ; 89(17): 8871-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26085170

ABSTRACT

UNLABELLED: Enterovirus A71 (EV-A71) is a major cause of hand, foot, and mouth disease (HFMD) and is particularly prevalent in parts of Southeast Asia, affecting thousands of children and infants each year. Revealing the evolutionary and epidemiological dynamics of EV-A71 through time and space is central to understanding its outbreak potential. We generated the full genome sequences of 200 EV-A71 strains sampled from various locations in Viet Nam between 2011 and 2013 and used these sequence data to determine the evolutionary history and phylodynamics of EV-A71 in Viet Nam, providing estimates of the effective reproduction number (Re) of the infection through time. In addition, we described the phylogeography of EV-A71 throughout Southeast Asia, documenting patterns of viral gene flow. Accordingly, our analysis reveals that a rapid genogroup switch from C4 to B5 likely took place during 2012 in Viet Nam. We show that the Re of subgenogroup C4 decreased during the time frame of sampling, whereas that of B5 increased and remained >1 at the end of 2013, corresponding to a rise in B5 prevalence. Our study reveals that the subgenogroup B5 virus that emerged into Viet Nam is closely related to variants that were responsible for large epidemics in Malaysia and Taiwan and therefore extends our knowledge regarding its associated area of endemicity. Subgenogroup B5 evidently has the potential to cause more widespread outbreaks across Southeast Asia. IMPORTANCE: EV-A71 is one of many viruses that cause HFMD, a common syndrome that largely affects infants and children. HFMD usually causes only mild illness with no long-term consequences. Occasionally, however, severe infection may arise, especially in very young children, causing neurological complications and even death. EV-A71 is highly contagious and is associated with the most severe HFMD cases, with large and frequent epidemics of the virus recorded worldwide. Although major advances have been made in the development of a potential EV-A71 vaccine, there is no current prevention and little is known about the patterns and dynamics of EV-A71 spread. In this study, we utilize full-length genome sequence data obtained from HFMD patients in Viet Nam, a geographical region where the disease has been endemic since 2003, to characterize the phylodynamics of this important emerging virus.


Subject(s)
Enterovirus A, Human/genetics , Genome, Viral/genetics , Hand, Foot and Mouth Disease/epidemiology , Hand, Foot and Mouth Disease/genetics , Base Sequence , Child , Disease Outbreaks , Enterovirus A, Human/classification , Epidemics , Gene Flow/genetics , Hand, Foot and Mouth Disease/virology , Humans , Molecular Sequence Data , Phylogeography , Sequence Analysis, RNA , Vietnam/epidemiology , Virus Replication/physiology
2.
J Gen Virol ; 95(Pt 4): 836-848, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24394697

ABSTRACT

From 1 January 2009 to 31 May 2013, 15 287 respiratory specimens submitted to the Clinical Virology Laboratory at the Children's Hospital Colorado were tested for human coronavirus RNA by reverse transcription-PCR. Human coronaviruses HKU1, OC43, 229E and NL63 co-circulated during each of the respiratory seasons but with significant year-to-year variability, and cumulatively accounted for 7.4-15.6 % of all samples tested during the months of peak activity. A total of 79 (0.5 % prevalence) specimens were positive for human betacoronavirus HKU1 RNA. Genotypes HKU1 A and B were both isolated from clinical specimens and propagated on primary human tracheal-bronchial epithelial cells cultured at the air-liquid interface and were neutralized in vitro by human intravenous immunoglobulin and by polyclonal rabbit antibodies to the spike glycoprotein of HKU1. Phylogenetic analysis of the deduced amino acid sequences of seven full-length genomes of Colorado HKU1 viruses and the spike glycoproteins from four additional HKU1 viruses from Colorado and three from Brazil demonstrated remarkable conservation of these sequences with genotypes circulating in Hong Kong and France. Within genotype A, all but one of the Colorado HKU1 sequences formed a unique subclade defined by three amino acid substitutions (W197F, F613Y and S752F) in the spike glycoprotein and exhibited a unique signature in the acidic tandem repeat in the N-terminal region of the nsp3 subdomain. Elucidating the function of and mechanisms responsible for the formation of these varying tandem repeats will increase our understanding of the replication process and pathogenicity of HKU1 and potentially of other coronaviruses.


Subject(s)
Coronaviridae Infections/epidemiology , Coronaviridae Infections/virology , Coronaviridae/classification , Coronaviridae/isolation & purification , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/virology , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cells, Cultured , Cluster Analysis , Colorado , Coronaviridae/genetics , Genotype , Humans , Molecular Sequence Data , Phylogeny , RNA, Viral/genetics , Sequence Analysis, DNA , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Virus Cultivation
3.
Nucleic Acids Res ; 40(Database issue): D237-41, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22140108

ABSTRACT

CharProtDB (http://www.jcvi.org/charprotdb/) is a curated database of biochemically characterized proteins. It provides a source of direct rather than transitive assignments of function, designed to support automated annotation pipelines. The initial data set in CharProtDB was collected through manual literature curation over the years by analysts at the J. Craig Venter Institute (JCVI) [formerly The Institute of Genomic Research (TIGR)] as part of their prokaryotic genome sequencing projects. The CharProtDB has been expanded by import of selected records from publicly available protein collections whose biocuration indicated direct rather than homology-based assignment of function. Annotations in CharProtDB include gene name, symbol and various controlled vocabulary terms, including Gene Ontology terms, Enzyme Commission number and TransportDB accession. Each annotation is referenced with the source; ideally a journal reference, or, if imported and lacking one, the original database source.


Subject(s)
Databases, Protein , Molecular Sequence Annotation , Proteins/chemistry , Proteins/genetics , Proteins/physiology
4.
Virol J ; 10: 32, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23351667

ABSTRACT

Rubella virus is the causative agent of rubella, a mild rash illness, and a potent teratogenic agent when contracted by a pregnant woman. Global rubella control programs target the reduction and elimination of congenital rubella syndrome. Phylogenetic analysis of partial sequences of rubella viruses has contributed to virus surveillance efforts and played an important role in demonstrating that indigenous rubella viruses have been eliminated in the United States. Sixteen wild-type rubella viruses were chosen for whole genome sequencing. All 16 viruses were collected in the United States from 1961 to 2009 and are from 8 of the 13 known rubella genotypes. Phylogenetic analysis of 30 whole genome sequences produced a maximum likelihood tree giving high bootstrap values for all genotypes except provisional genotype 1a. Comparison of the 16 new complete sequences and 14 previously sequenced wild-type viruses found regions with clusters of variable amino acids. The 5' 250 nucleotides of the genome are more conserved than any other part of the genome. Genotype specific deletions in the untranslated region between the non-structural and structural open reading frames were observed for genotypes 2B and genotype 1G. No evidence was seen for recombination events among the 30 viruses. The analysis presented here is consistent with previous reports on the genetic characterization of rubella virus genomes. Conserved and variable regions were identified and additional evidence for genotype specific nucleotide deletions in the intergenic region was found. Phylogenetic analysis confirmed genotype groupings originally based on structural protein coding region sequences, which provides support for the WHO nomenclature for genetic characterization of wild-type rubella viruses.


Subject(s)
Genome, Viral , RNA, Viral/genetics , Rubella virus/genetics , Sequence Analysis, DNA , Cluster Analysis , Conserved Sequence , Female , Genetic Variation , Genotype , Humans , Molecular Sequence Data , Mutation, Missense , Phylogeny , Pregnancy , Rubella virus/classification , Rubella virus/isolation & purification , Sequence Deletion , United States
5.
BMC Microbiol ; 12: 88, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22646228

ABSTRACT

BACKGROUND: Ureaplasma urealyticum (UUR) and Ureaplasma parvum (UPA) are sexually transmitted bacteria among humans implicated in a variety of disease states including but not limited to: nongonococcal urethritis, infertility, adverse pregnancy outcomes, chorioamnionitis, and bronchopulmonary dysplasia in neonates. There are 10 distinct serotypes of UUR and 4 of UPA. Efforts to determine whether difference in pathogenic potential exists at the ureaplasma serovar level have been hampered by limitations of antibody-based typing methods, multiple cross-reactions and poor discriminating capacity in clinical samples containing two or more serovars. RESULTS: We determined the genome sequences of the American Type Culture Collection (ATCC) type strains of all UUR and UPA serovars as well as four clinical isolates of UUR for which we were not able to determine serovar designation. UPA serovars had 0.75-0.78 Mbp genomes and UUR serovars were 0.84-0.95 Mbp. The original classification of ureaplasma isolates into distinct serovars was largely based on differences in the major ureaplasma surface antigen called the multiple banded antigen (MBA) and reactions of human and animal sera to the organisms. Whole genome analysis of the 14 serovars and the 4 clinical isolates showed the mba gene was part of a large superfamily, which is a phase variable gene system, and that some serovars have identical sets of mba genes. Most of the differences among serovars are hypothetical genes, and in general the two species and 14 serovars are extremely similar at the genome level. CONCLUSIONS: Comparative genome analysis suggests UUR is more capable of acquiring genes horizontally, which may contribute to its greater virulence for some conditions. The overwhelming evidence of extensive horizontal gene transfer among these organisms from our previous studies combined with our comparative analysis indicates that ureaplasmas exist as quasi-species rather than as stable serovars in their native environment. Therefore, differential pathogenicity and clinical outcome of a ureaplasmal infection is most likely not on the serovar level, but rather may be due to the presence or absence of potential pathogenicity factors in an individual ureaplasma clinical isolate and/or patient to patient differences in terms of autoimmunity and microbiome.


Subject(s)
DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sequence Analysis, DNA , Ureaplasma urealyticum/genetics , Ureaplasma/genetics , Animals , Evolution, Molecular , Gene Transfer, Horizontal , Humans , Molecular Sequence Data , Ureaplasma/isolation & purification , Ureaplasma urealyticum/isolation & purification , Virulence Factors/genetics
6.
Virol J ; 9: 261, 2012 Nov 06.
Article in English | MEDLINE | ID: mdl-23131097

ABSTRACT

BACKGROUND: In a high-throughput environment, to PCR amplify and sequence a large set of viral isolates from populations that are potentially heterogeneous and continuously evolving, the use of degenerate PCR primers is an important strategy. Degenerate primers allow for the PCR amplification of a wider range of viral isolates with only one set of pre-mixed primers, thus increasing amplification success rates and minimizing the necessity for genome finishing activities. To successfully select a large set of degenerate PCR primers necessary to tile across an entire viral genome and maximize their success, this process is best performed computationally. RESULTS: We have developed a fully automated degenerate PCR primer design system that plays a key role in the J. Craig Venter Institute's (JCVI) high-throughput viral sequencing pipeline. A consensus viral genome, or a set of consensus segment sequences in the case of a segmented virus, is specified using IUPAC ambiguity codes in the consensus template sequence to represent the allelic diversity of the target population. PCR primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the full length of the specified target region. As part of the tiling process, primer pairs are computationally screened to meet the criteria for successful PCR with one of two described amplification protocols. The actual sequencing success rates for designed primers for measles virus, mumps virus, human parainfluenza virus 1 and 3, human respiratory syncytial virus A and B and human metapneumovirus are described, where >90% of designed primer pairs were able to consistently successfully amplify >75% of the isolates. CONCLUSIONS: Augmenting our previously developed and published JCVI Primer Design Pipeline, we achieved similarly high sequencing success rates with only minor software modifications. The recommended methodology for the construction of the consensus sequence that encapsulates the allelic variation of the targeted population and is a key step prior to designing degenerate primers is also formally described.


Subject(s)
DNA Primers/genetics , High-Throughput Nucleotide Sequencing/methods , Viruses/genetics , Genome, Viral , Humans , Polymerase Chain Reaction , Viruses/isolation & purification
7.
Nucleic Acids Res ; 38(Database issue): D336-9, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20007151

ABSTRACT

Generation of syntactically correct and unambiguous names for proteins is a challenging, yet vital task for functional annotation processes. Proteins are often named based on homology to known proteins, many of which have problematic names. To address the need to generate high-quality protein names, and capture our significant experience correcting protein names manually, we have developed the Protein Naming Utility (PNU, http://www.jcvi.org/pn-utility). The PNU is a web-based database for storing and applying naming rules to identify and correct syntactically incorrect protein names, or to replace synonyms with their preferred name. The PNU allows users to generate and manage collections of naming rules, optionally building upon the growing body of rules generated at the J. Craig Venter Institute (JCVI). Since communities often enforce disparate conventions for naming proteins, the PNU supports grouping rules into user-managed collections. Users can check their protein names against a selected PNU rule collection, generating both statistics and corrected names. The PNU can also be used to correct GenBank table files prior to submission to GenBank. Currently, the database features 3080 manual rules that have been entered by JCVI Bioinformatics Analysts as well as 7458 automatically imported names.


Subject(s)
Computational Biology/methods , Databases, Genetic , Databases, Protein , Proteins/chemistry , Terminology as Topic , Algorithms , Animals , Automation , Computational Biology/trends , Genome , Humans , Information Storage and Retrieval/methods , Internet , Software
8.
Nucleic Acids Res ; 38(Database issue): D408-14, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19843611

ABSTRACT

Pathema (http://pathema.jcvi.org) is one of the eight Bioinformatics Resource Centers (BRCs) funded by the National Institute of Allergy and Infectious Disease (NIAID) designed to serve as a core resource for the bio-defense and infectious disease research community. Pathema strives to support basic research and accelerate scientific progress for understanding, detecting, diagnosing and treating an established set of six target NIAID Category A-C pathogens: Category A priority pathogens; Bacillus anthracis and Clostridium botulinum, and Category B priority pathogens; Burkholderia mallei, Burkholderia pseudomallei, Clostridium perfringens and Entamoeba histolytica. Each target pathogen is represented in one of four distinct clade-specific Pathema web resources and underlying databases developed to target the specific data and analysis needs of each scientific community. All publicly available complete genome projects of phylogenetically related organisms are also represented, providing a comprehensive collection of organisms for comparative analyses. Pathema facilitates the scientific exploration of genomic and related data through its integration with web-based analysis tools, customized to obtain, display, and compute results relevant to ongoing pathogen research. Pathema serves the bio-defense and infectious disease research community by disseminating data resulting from pathogen genome sequencing projects and providing access to the results of inter-genomic comparisons for these organisms.


Subject(s)
Bacterial Infections/microbiology , Communicable Diseases/microbiology , Computational Biology/methods , Databases, Genetic , Amino Acid Sequence , Animals , Bacterial Infections/diagnosis , Computational Biology/trends , Genome, Bacterial , Humans , Information Storage and Retrieval/methods , Internet , Molecular Sequence Data , National Institute of Allergy and Infectious Diseases (U.S.) , Sequence Homology, Amino Acid , Software , United States
9.
PLoS Genet ; 4(7): e1000141, 2008 Jul 25.
Article in English | MEDLINE | ID: mdl-18654632

ABSTRACT

We report here the sequencing and analysis of the genome of the nitrogen-fixing endophyte, Klebsiella pneumoniae 342. Although K. pneumoniae 342 is a member of the enteric bacteria, it serves as a model for studies of endophytic, plant-bacterial associations due to its efficient colonization of plant tissues (including maize and wheat, two of the most important crops in the world), while maintaining a mutualistic relationship that encompasses supplying organic nitrogen to the host plant. Genomic analysis examined K. pneumoniae 342 for the presence of previously identified genes from other bacteria involved in colonization of, or growth in, plants. From this set, approximately one-third were identified in K. pneumoniae 342, suggesting additional factors most likely contribute to its endophytic lifestyle. Comparative genome analyses were used to provide new insights into this question. Results included the identification of metabolic pathways and other features devoted to processing plant-derived cellulosic and aromatic compounds, and a robust complement of transport genes (15.4%), one of the highest percentages in bacterial genomes sequenced. Although virulence and antibiotic resistance genes were predicted, experiments conducted using mouse models showed pathogenicity to be attenuated in this strain. Comparative genomic analyses with the presumed human pathogen K. pneumoniae MGH78578 revealed that MGH78578 apparently cannot fix nitrogen, and the distribution of genes essential to surface attachment, secretion, transport, and regulation and signaling varied between each genome, which may indicate critical divergences between the strains that influence their preferred host ranges and lifestyles (endophytic plant associations for K. pneumoniae 342 and presumably human pathogenesis for MGH78578). Little genome information is available concerning endophytic bacteria. The K. pneumoniae 342 genome will drive new research into this less-understood, but important category of bacterial-plant host relationships, which could ultimately enhance growth and nutrition of important agricultural crops and development of plant-derived products and biofuels.


Subject(s)
Genome, Bacterial , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/pathogenicity , Nitrogen Fixation , Sequence Analysis, DNA , Animals , Animals, Outbred Strains , Base Sequence , Chromosomes, Bacterial/chemistry , Female , Klebsiella pneumoniae/metabolism , Mice , Mice, Inbred C3H , Molecular Sequence Data , Virulence
10.
BMJ Glob Health ; 5(12)2020 12.
Article in English | MEDLINE | ID: mdl-33355264

ABSTRACT

INTRODUCTION: Despite increasing utilisation of institutional healthcare in India, many healthcare facilities (HCFs) lack access to basic water, sanitation and hygiene (WASH) services. WASH services protect patients by improving infection prevention and control (IPC), which in turn can reduce the burden of healthcare-associated infections (HAIs). However, data on the cost of implementing WASH interventions in Indian HCFs are limited. METHODS: We surveyed 32 HCFs across India, varying in size, type and setting to obtain the direct costs of providing improved water supply, sanitation and IPC-supporting infrastructure. We calculated the average costs of WASH interventions and the number of HCFs nationwide requiring investments in WASH to estimate the financial cost of improving WASH across India's public healthcare system over 1 year. RESULTS: Improving WASH across India's public healthcare sector and sustaining services among upgraded facilities for 1 year would cost US$354 million in capital costs and US$289 million in recurrent costs from the provider perspective. The most costly interventions were those on water (US$238 million), linen reprocessing (US$112 million) and sanitation (US$104 million), while the least costly were interventions on hand hygiene (US$52 million), medical device reprocessing (US$56 million) and environmental surface cleaning (US$80 million). Overall, investments in rural HCFs would account for 64.4% of total costs, of which 52.3% would go towards primary health centres. CONCLUSION: Improving IPC in Indian public HCFs can aid in the prevention of HAIs to reduce the spread of antimicrobial resistance. Although WASH is a necessary component of IPC, coverage remains low in HCFs in India. Using ex-post costs, our results estimate the investment levels needed to improve WASH across the Indian public healthcare system and provide a basis for policymakers to support IPC-related National Action Plan activities for antimicrobial resistance through investments in WASH.


Subject(s)
Hygiene , Sanitation , Water , Costs and Cost Analysis , Delivery of Health Care , Humans , India/epidemiology
11.
BMC Genomics ; 10: 447, 2009 Sep 22.
Article in English | MEDLINE | ID: mdl-19772637

ABSTRACT

BACKGROUND: Rhodoferax ferrireducens is a metabolically versatile, Fe(III)-reducing, subsurface microorganism that is likely to play an important role in the carbon and metal cycles in the subsurface. It also has the unique ability to convert sugars to electricity, oxidizing the sugars to carbon dioxide with quantitative electron transfer to graphite electrodes in microbial fuel cells. In order to expand our limited knowledge about R. ferrireducens, the complete genome sequence of this organism was further annotated and then the physiology of R. ferrireducens was investigated with a constraint-based, genome-scale in silico metabolic model and laboratory studies. RESULTS: The iterative modeling and experimental approach unveiled exciting, previously unknown physiological features, including an expanded range of substrates that support growth, such as cellobiose and citrate, and provided additional insights into important features such as the stoichiometry of the electron transport chain and the ability to grow via fumarate dismutation. Further analysis explained why R. ferrireducens is unable to grow via photosynthesis or fermentation of sugars like other members of this genus and uncovered novel genes for benzoate metabolism. The genome also revealed that R. ferrireducens is well-adapted for growth in the subsurface because it appears to be capable of dealing with a number of environmental insults, including heavy metals, aromatic compounds, nutrient limitation and oxidative stress. CONCLUSION: This study demonstrates that combining genome-scale modeling with the annotation of a new genome sequence can guide experimental studies and accelerate the understanding of the physiology of under-studied yet environmentally relevant microorganisms.


Subject(s)
Comamonadaceae/genetics , Comamonadaceae/metabolism , Ferric Compounds/metabolism , Genome, Bacterial , Genomics/methods , Comparative Genomic Hybridization , DNA, Bacterial/genetics , Models, Biological , Oxidation-Reduction , Sequence Analysis, DNA
12.
Appl Environ Microbiol ; 75(7): 2046-56, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19201974

ABSTRACT

The complete genomes of three strains from the phylum Acidobacteria were compared. Phylogenetic analysis placed them as a unique phylum. They share genomic traits with members of the Proteobacteria, the Cyanobacteria, and the Fungi. The three strains appear to be versatile heterotrophs. Genomic and culture traits indicate the use of carbon sources that span simple sugars to more complex substrates such as hemicellulose, cellulose, and chitin. The genomes encode low-specificity major facilitator superfamily transporters and high-affinity ABC transporters for sugars, suggesting that they are best suited to low-nutrient conditions. They appear capable of nitrate and nitrite reduction but not N(2) fixation or denitrification. The genomes contained numerous genes that encode siderophore receptors, but no evidence of siderophore production was found, suggesting that they may obtain iron via interaction with other microorganisms. The presence of cellulose synthesis genes and a large class of novel high-molecular-weight excreted proteins suggests potential traits for desiccation resistance, biofilm formation, and/or contribution to soil structure. Polyketide synthase and macrolide glycosylation genes suggest the production of novel antimicrobial compounds. Genes that encode a variety of novel proteins were also identified. The abundance of acidobacteria in soils worldwide and the breadth of potential carbon use by the sequenced strains suggest significant and previously unrecognized contributions to the terrestrial carbon cycle. Combining our genomic evidence with available culture traits, we postulate that cells of these isolates are long-lived, divide slowly, exhibit slow metabolic rates under low-nutrient conditions, and are well equipped to tolerate fluctuations in soil hydration.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , Genome, Bacterial , Soil Microbiology , Anti-Bacterial Agents/biosynthesis , Biological Transport , Carbohydrate Metabolism , Cyanobacteria/genetics , DNA, Bacterial/chemistry , Fungi/genetics , Macrolides/metabolism , Molecular Sequence Data , Nitrogen/metabolism , Phylogeny , Proteobacteria/genetics , Sequence Analysis, DNA , Sequence Homology
13.
PLoS One ; 14(7): e0220057, 2019.
Article in English | MEDLINE | ID: mdl-31318956

ABSTRACT

Human Parainfluenza viruses (HPIV) type 1 and 3 are important causes of respiratory tract infections in young children globally. HPIV infections do not confer complete protective immunity so reinfections occur throughout life. Since no effective vaccine is available for the two virus subtypes, comprehensive understanding of HPIV-1 and HPIV-3 genetic and epidemic features is important for diagnosis, prevention, and treatment of HPIV-1 and HPIV-3 infections. Relatively few whole genome sequences are available for both HPIV-1 and HPIV-3 viruses, so our study sought to provide whole genome sequences from multiple countries to further the understanding of the global diversity of HPIV at a whole-genome level. We collected HPIV-1 and HPIV-3 samples and isolates from Argentina, Australia, France, Mexico, South Africa, Switzerland, and USA from the years 2003-2011 and sequenced the genomes of 40 HPIV-1 and 75 HPIV-3 viruses with Sanger and next-generation sequencing with the Ion Torrent, Illumina, and 454 platforms. Phylogenetic analysis showed that the HPIV-1 genome is evolving at an estimated rate of 4.97 × 10-4 mutations/site/year (95% highest posterior density 4.55 × 10-4 to 5.38 × 10-4) and the HPIV-3 genome is evolving at a similar rate (3.59 × 10-4 mutations/site/year, 95% highest posterior density 3.26 × 10-4 to 3.94 × 10-4). There were multiple genetically distinct lineages of both HPIV-1 and 3 circulating on a global scale. Further surveillance and whole-genome sequencing are greatly needed to better understand the spatial dynamics of these important respiratory viruses in humans.


Subject(s)
Genome, Viral , Genomics , Parainfluenza Virus 1, Human/genetics , Parainfluenza Virus 3, Human/genetics , Evolution, Molecular , Genomics/methods , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , Recombination, Genetic , Selection, Genetic , Sequence Analysis, DNA
14.
Sci Rep ; 8(1): 15843, 2018 10 26.
Article in English | MEDLINE | ID: mdl-30367096

ABSTRACT

The recent emergence of Zika virus (ZIKV) has been concentrated in the Caribbean, Southeastern United States, and South- and Central America; resulting in travel-based cases being reported around the globe. As multi-disciplinary collaborations are combatting the ZIKV outbreak, the need to validate the sequence of existing strains has become apparent. Here, we report high-quality sequence data for multiple ZIKV strains made publicly available through the National Institutes of Health- (NIH) funded biorepository, BEI Resources (www.beiresources.org). Next-generation sequencing, 3' rapid amplification of cDNA ends (RACE), and viral genome annotation pipelines generated GenBank sequence records for 16 BEI Resources strains. Minor variants, consensus mutations, and consensus insertions/deletions were identified within the viral stocks using next-generation sequencing (NGS) and consensus changes were confirmed with Sanger sequencing. Bioinformatics analyses of the sequencing results confirm that the virus stocks available to the scientific research community through BEI Resources adequately represent the viral population diversity of ZIKV.


Subject(s)
Genetic Variation , Genome, Viral , Zika Virus/genetics , Databases, Nucleic Acid , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , RNA, Viral/chemistry , RNA, Viral/genetics , Recombination, Genetic , Whole Genome Sequencing , Zika Virus/classification , Zika Virus Infection/virology
15.
Genome Announc ; 6(4)2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29371358

ABSTRACT

We report 26 complete genomes of Zika virus (ZIKV) isolated after passaging the Zika virus strain FLR in mosquito (C6/36) and mammalian (Vero) cell lines. The consensus ZIKV genomes we recovered show greater than 99% nucleotide identify with each other and with the FLR strain used as input.

16.
Genome Announc ; 6(24)2018 Jun 14.
Article in English | MEDLINE | ID: mdl-29903816

ABSTRACT

We report here the whole-genome sequence of 11 Zika virus (ZIKV) samples from six pediatric patients in Nicaragua. Serum samples were collected, and ZIKV was isolated in tissue culture. Both serum and virus isolates were sequenced. The consensus ZIKV genomes are greater than 99% identical to each other.

17.
Infect Genet Evol ; 63: 79-88, 2018 09.
Article in English | MEDLINE | ID: mdl-29782933

ABSTRACT

Rotavirus A (RVA) exhibits a wide genotype diversity globally. Little is known about the genetic composition of genotype P[6] from Africa. This study investigated possible evolutionary mechanisms leading to genetic diversity of genotype P[6] VP4 sequences. Phylogenetic analyses on 167 P[6] VP4 full-length sequences were conducted, which included six porcine-origin sequences. Of the 167 sequences, 57 were newly acquired through whole genome sequencing as part of this study. The other 110 sequences were all publicly-available global P[6] VP4 full-length sequences downloaded from GenBank. The strength of association between the phenotypic features and the phylogeny was also determined. A number of reassortment and mixed infections of RVA genotype P[6] strains were observed in this study. Phylogenetic analyses demostrated the extensive genetic diversity that exists among human P[6] strains, porcine-like strains, their concomitant clades/subclades and estimated that P[6] VP4 gene has a higher substitution rate with the mean of 1.05E-3 substitutions/site/year. Further, the phylogenetic analyses indicated that genotype P[6] strains were endemic in Africa, characterised by an extensive genetic diversity and long-time local evolution of the viruses. This was also supported by phylogeographic clustering and G-genotype clustering of the P[6] strains when Bayesian Tip-association Significance testing (BaTS) was applied, clearly supporting that the viruses evolved locally in Africa instead of spatial mixing among different regions. Overall, the results demonstrated that multiple mechanisms such as reassortment events, various mutations and possibly interspecies transmission account for the enormous diversity of genotype P[6] strains in Africa. These findings highlight the need for continued global surveillance of rotavirus diversity.


Subject(s)
Genotype , Rotavirus Infections/epidemiology , Rotavirus Infections/virology , Rotavirus/genetics , Whole Genome Sequencing , Africa/epidemiology , Feces/virology , Humans , Phylogeny , Reassortant Viruses/genetics
18.
PLoS Negl Trop Dis ; 12(7): e0006670, 2018 07.
Article in English | MEDLINE | ID: mdl-30059496

ABSTRACT

Chikungunya virus (CHIKV) has been detected sporadically since the 1950s and includes three distinct co-circulating genotypes. In late 2013, the Asian genotype of CHIKV was responsible for the Caribbean outbreak (CO) that rapidly became an epidemic throughout the Americas. There is a limited understanding of the molecular evolution of CHIKV in the Americas during this epidemic. We sequenced 185 complete CHIKV genomes collected mainly from Nicaragua in Central America and Florida in the United States during the 2014-2015 Caribbean/Americas epidemic. Our comprehensive phylogenetic analyses estimated the epidemic history of the Asian genotype and the recent Caribbean outbreak (CO) clade, revealed considerable genetic diversity within the CO clade, and described different epidemiological dynamics of CHIKV in the Americas. Specifically, we identified multiple introductions in both Nicaragua and Florida, with rapid local spread of viruses in Nicaragua but limited autochthonous transmission in Florida in the US. Our phylogenetic analysis also showed phylogeographic clustering of the CO clade. In addition, we identified the significant amino acid substitutions that were observed across the entire Asian genotype during its evolution and examined amino acid changes that were specific to the CO clade. Deep sequencing analysis identified specific minor variants present in clinical specimens below-consensus levels. Finally, we investigated the association between viral phylogeny and geographic/clinical metadata in Nicaragua. To date, this study represents the largest single collection of CHIKV complete genomes during the Caribbean/Americas epidemic and significantly expands our understanding of the emergence and evolution of CHIKV CO clade in the Americas.


Subject(s)
Chikungunya Fever/virology , Chikungunya virus/isolation & purification , Adolescent , Asia/epidemiology , Chikungunya Fever/epidemiology , Chikungunya virus/classification , Chikungunya virus/genetics , Chikungunya virus/physiology , Child , Child, Preschool , Epidemics , Female , Genetic Variation , Genome, Viral , Genotype , Humans , Male , Nicaragua/epidemiology , Phylogeny , Travel , United States/epidemiology , Young Adult
20.
Emerg Microbes Infect ; 7(1): 10, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29410402

ABSTRACT

Human adenoviruses (HAdVs) are uniquely important "model organisms" as they have been used to elucidate fundamental biological processes, are recognized as complex pathogens, and are used as remedies for human health. As pathogens, HAdVs may effect asymptomatic or mild and severe symptomatic disease upon their infection of respiratory, ocular, gastrointestinal, and genitourinary systems. High-resolution genomic data have enhanced the understanding of HAdV epidemiology, with recombination recognized as an important and major pathway in the molecular evolution and genesis of emergent HAdV pathogens. To support this view and to actualize an algorithm for identifying, characterizing, and typing novel HAdVs, we determined the DNA sequence of 95 isolates from archives containing historically important pathogens and collections housing currently circulating strains to be sequenced. Of the 85 samples that were completely sequenced, 18 novel recombinants within species HAdV-B and D were identified. Two HAdV-D genomes were found to contain novel penton base and fiber genes with significant divergence from known molecular types. In this data set, we found additional isolates of HAdV-D53 and HAdV-D58, two novel genotypes recognized recently using genomics. This supports the thesis that novel HAdV genotypes are not limited to "one-time" appearances of the prototype but are of importance in HAdV epidemiology. These data underscore the significance of lateral genomic transfer in HAdV evolution and reinforce the potential public health impact of novel genotypes of HAdVs emerging in the population.


Subject(s)
Adenovirus Infections, Human/virology , Adenoviruses, Human/genetics , DNA, Viral/genetics , Genome, Viral , Genomics , Adenovirus Infections, Human/epidemiology , Adenoviruses, Human/pathogenicity , Base Sequence , Computational Biology , Evolution, Molecular , Genotype , Humans , Phylogeny , Recombination, Genetic , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL