ABSTRACT
Piloerection (goosebumps) requires concerted actions of the hair follicle, the arrector pili muscle (APM), and the sympathetic nerve, providing a model to study interactions across epithelium, mesenchyme, and nerves. Here, we show that APMs and sympathetic nerves form a dual-component niche to modulate hair follicle stem cell (HFSC) activity. Sympathetic nerves form synapse-like structures with HFSCs and regulate HFSCs through norepinephrine, whereas APMs maintain sympathetic innervation to HFSCs. Without norepinephrine signaling, HFSCs enter deep quiescence by down-regulating the cell cycle and metabolism while up-regulating quiescence regulators Foxp1 and Fgf18. During development, HFSC progeny secretes Sonic Hedgehog (SHH) to direct the formation of this APM-sympathetic nerve niche, which in turn controls hair follicle regeneration in adults. Our results reveal a reciprocal interdependence between a regenerative tissue and its niche at different stages and demonstrate sympathetic nerves can modulate stem cells through synapse-like connections and neurotransmitters to couple tissue production with demands.
Subject(s)
Accessory Nerve/physiology , Hair Follicle/cytology , Hair/growth & development , Hedgehog Proteins/metabolism , Norepinephrine/metabolism , Signal Transduction/genetics , Stem Cells/metabolism , Stem Cells/physiology , Accessory Nerve/cytology , Animals , Cell Cycle/genetics , Cold Temperature , Female , Fibroblast Growth Factors/metabolism , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Hair/cytology , Hair/physiology , Hair Follicle/growth & development , Hair Follicle/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Piloerection , RNA-Seq , Receptors, Adrenergic, beta-2/deficiency , Receptors, Adrenergic, beta-2/genetics , Receptors, Adrenergic, beta-2/metabolism , Repressor Proteins/metabolism , Signal Transduction/drug effects , Smoothened Receptor/genetics , Smoothened Receptor/metabolism , Stem Cell Niche , Stem Cells/cytology , Sympathetic Nervous System/cytology , Sympathetic Nervous System/physiology , Synapses/physiologyABSTRACT
Empirical and anecdotal evidence has associated stress with accelerated hair greying (formation of unpigmented hairs)1,2, but so far there has been little scientific validation of this link. Here we report that, in mice, acute stress leads to hair greying through the fast depletion of melanocyte stem cells. Using a combination of adrenalectomy, denervation, chemogenetics3,4, cell ablation and knockout of the adrenergic receptor specifically in melanocyte stem cells, we find that the stress-induced loss of melanocyte stem cells is independent of immune attack or adrenal stress hormones. Instead, hair greying results from activation of the sympathetic nerves that innervate the melanocyte stem-cell niche. Under conditions of stress, the activation of these sympathetic nerves leads to burst release of the neurotransmitter noradrenaline (also known as norepinephrine). This causes quiescent melanocyte stem cells to proliferate rapidly, and is followed by their differentiation, migration and permanent depletion from the niche. Transient suppression of the proliferation of melanocyte stem cells prevents stress-induced hair greying. Our study demonstrates that neuronal activity that is induced by acute stress can drive a rapid and permanent loss of somatic stem cells, and illustrates an example in which the maintenance of somatic stem cells is directly influenced by the overall physiological state of the organism.
Subject(s)
Autonomic Pathways/physiopathology , Hair Color/physiology , Melanocytes/pathology , Stem Cell Niche/physiology , Stem Cells/pathology , Stress, Psychological/physiopathology , Sympathetic Nervous System/physiopathology , Adrenal Glands/metabolism , Adrenalectomy , Animals , Autonomic Pathways/pathology , Cell Proliferation , Cells, Cultured , Denervation , Female , Humans , Male , Melanocytes/cytology , Melanocytes/metabolism , Mice , Norepinephrine/metabolism , Psychological Trauma/pathology , Psychological Trauma/physiopathology , Receptors, Adrenergic, beta-2/deficiency , Receptors, Adrenergic, beta-2/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Stress, Psychological/pathology , Sympathetic Nervous System/pathologyABSTRACT
Izumo1R is a pseudo-folate receptor with an essential role in mediating tight oocyte/spermatozoa contacts during fertilization. Intriguingly, it is also expressed in CD4+ T lymphocytes, in particular Treg cells under the control of Foxp3. To understand Izumo1R function in Treg cells, we analyzed mice with Treg-specific Izumo1r deficiency (Iz1rTrKO). Treg differentiation and homeostasis were largely normal, with no overt autoimmunity and only marginal increases in PD1+ and CD44hi Treg phenotypes. pTreg differentiation was also unaffected. Iz1rTrKO mice proved uniquely susceptible to imiquimod-induced, γδT cell-dependent, skin disease, contrasting with normal responses to several inflammatory or tumor challenges, including other models of skin inflammation. Analysis of Iz1rTrKO skin revealed a subclinical inflammation that presaged IMQ-induced changes, with an imbalance of Rorγ+ γδT cells. Immunostaining of normal mouse skin revealed the expression of Izumo1, the ligand for Izumo1R, electively in dermal γδT cells. We propose that Izumo1R on Tregs enables tight contacts with γδT cells, thereby controlling a particular path of skin inflammation.
Subject(s)
Dermatitis , Psoriasis , Receptors, Cell Surface , Skin Diseases , T-Lymphocytes, Regulatory , Animals , Mice , Dermatitis/metabolism , Imiquimod , Inflammation/metabolism , Psoriasis/metabolism , Receptors, Cell Surface/metabolism , Skin/metabolism , Skin Diseases/metabolism , T-Lymphocytes, Regulatory/metabolismABSTRACT
Osteocytes, cells forming an elaborate network within the bones of most vertebrate taxa, are thought to be the master regulators of bone modeling, a process of coordinated, local bone-tissue deposition and removal that keeps bone strains at safe levels throughout life. Neoteleost fish, however, lack osteocytes and yet are known to be capable of bone modeling, although no osteocyte-independent modeling regulatory mechanism has so far been described. Here, we characterize a novel, to our knowledge, bone-modeling regulatory mechanism in a fish species (medaka), showing that although lacking osteocytes (i.e., internal mechanosensors), when loaded, medaka bones model in mechanically directed ways, successfully reducing high tissue strains. We establish that as in mammals, modeling in medaka is regulated by the SOST gene, demonstrating a mechanistic link between skeletal loading, SOST down-regulation, and intense bone deposition. However, whereas mammalian SOST is expressed almost exclusively by osteocytes, in both medaka and zebrafish (a species with osteocytic bones), SOST is expressed by a variety of nonosteocytic cells, none of which reside within the bone bulk. These findings argue that in fishes (and perhaps other vertebrates), nonosteocytic skeletal cells are both sensors and responders, shouldering duties believed exclusive to osteocytes. This previously unrecognized, SOST-dependent, osteocyte-independent mechanism challenges current paradigms of osteocyte exclusivity in bone-modeling regulation, suggesting the existence of multivariate feedback networks in bone modeling-perhaps also in mammalian bones-and thus arguing for the possibility of untapped potential for cell targets in bone therapeutics.
Subject(s)
Feedback, Physiological , Fish Proteins/genetics , Glycoproteins/genetics , Mechanotransduction, Cellular/genetics , Oryzias/genetics , Osteogenesis/genetics , Zebrafish Proteins/genetics , Animals , Biomechanical Phenomena , Bone Remodeling/genetics , Bone and Bones/cytology , Bone and Bones/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Fish Proteins/metabolism , Gene Expression Regulation , Glycoproteins/metabolism , Humans , Oryzias/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteocytes , Protein Isoforms/genetics , Protein Isoforms/metabolism , Species Specificity , Swimming/physiology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolismABSTRACT
The current view of skeletal patterning fails to explain the formation of sesamoid bones. These small bones, which facilitate musculoskeletal function, are exceptionally embedded within tendons. Although their structural design has long puzzled researchers, only a limited model for sesamoid bone development has emerged. To date, sesamoids are thought to develop inside tendons in response to mechanical signals from the attaching muscles. However, this widely accepted model has lacked substantiation. Here, we show that, contrary to the current view, in the mouse embryo the patella initially develops as a bony process at the anteriodistal surface of the femur. Later, the patella is separated from the femur by a joint formation process that is regulated by mechanical load. Concurrently, the patella becomes superficially embedded within the quadriceps tendon. At the cellular level, we show that, similar to bone eminences, the patella is formed secondarily by a distinct pool of Sox9- and Scx-positive progenitor cells. Finally, we show that TGFß signaling is necessary for the specification of patella progenitors, whereas the BMP4 pathway is required for their differentiation. These findings establish an alternative model for patella development and provide the mechanical and molecular mechanisms that underlie this process. More broadly, our finding that activation of a joint formation program can be used to switch between the formation of bony processes and of new auxiliary bones provides a new perspective on plasticity during skeletal patterning and evolution.
Subject(s)
Joints/embryology , Joints/metabolism , Patella/embryology , Patella/metabolism , Sesamoid Bones/embryology , Sesamoid Bones/metabolism , Animals , Bone Morphogenetic Protein 4/metabolism , Cell Differentiation/physiology , In Situ Hybridization , Joints/cytology , Mice , Mice, Mutant Strains , Mice, Transgenic , Morphogenesis/genetics , Morphogenesis/physiology , Patella/cytology , Real-Time Polymerase Chain Reaction , Sesamoid Bones/cytology , Stem Cells/cytology , Stem Cells/metabolismABSTRACT
Coordination between the vascular system and forming organs is essential for proper embryonic development. The vasculature expands by sprouting angiogenesis, during which tip cells form filopodia that incorporate into capillary loops. Although several molecules, such as vascular endothelial growth factor A (Vegfa), are known to induce sprouting, the mechanism that terminates this process to ensure neovessel stability is still unknown. Sphingosine-1-phosphate receptor 1 (S1P(1)) has been shown to mediate interaction between endothelial and mural cells during vascular maturation. In vitro studies have identified S1P(1) as a pro-angiogenic factor. Here, we show that S1P(1) acts as an endothelial cell (EC)-autonomous negative regulator of sprouting angiogenesis during vascular development. Severe aberrations in vessel size and excessive sprouting found in limbs of S1P(1)-null mouse embryos before vessel maturation imply a previously unknown, mural cell-independent role for S1P(1) as an anti-angiogenic factor. A similar phenotype observed when S1P(1) expression was blocked specifically in ECs indicates that the effect of S1P(1) on sprouting is EC-autonomous. Comparable vascular abnormalities in S1p(1) knockdown zebrafish embryos suggest cross-species evolutionary conservation of this mechanism. Finally, genetic interaction between S1P(1) and Vegfa suggests that these factors interplay to regulate vascular development, as Vegfa promotes sprouting whereas S1P(1) inhibits it to prevent excessive sprouting and fusion of neovessels. More broadly, because S1P, the ligand of S1P(1), is blood-borne, our findings suggest a new mode of regulation of angiogenesis, whereby blood flow closes a negative feedback loop that inhibits sprouting angiogenesis once the vascular bed is established and functional.
Subject(s)
Endothelial Cells/metabolism , Neovascularization, Physiologic , Receptors, Lysosphingolipid/metabolism , Vascular Endothelial Growth Factor A/metabolism , Animals , Blood Vessels/embryology , Blood Vessels/growth & development , Embryo, Mammalian/metabolism , Mice , Mice, Transgenic , Receptors, Lysosphingolipid/genetics , ZebrafishABSTRACT
The musculoskeletal system functions because of the precise and coordinated assembly of its components, namely bones and joints, muscles, tendons and ligaments. This coordination requires cross-talk between the tissues, which is mediated by various molecular and mechanical cues. In this review, we summarize the progress that has been made in understanding the involvement of mechanical loads exerted by the musculature in the development of skeletal and tendinous tissues, in their integration into one functional unit and in the maintenance of this system. In addition, we discuss the possible role of muscle load in aging and propose new directions for future studies of the musculoskeletal system.
Subject(s)
Aging/physiology , Musculoskeletal Development/physiology , Stress, Mechanical , Adaptation, Physiological , Animals , HumansABSTRACT
Convergent extension driven by mediolateral intercalation of chondrocytes is a key process that contributes to skeletal growth and morphogenesis. While progress has been made in deciphering the molecular mechanism that underlies this process, the involvement of mechanical load exerted by muscle contraction in its regulation has not been studied. Using the zebrafish as a model system, we found abnormal pharyngeal cartilage morphology in both chemically and genetically paralyzed embryos, demonstrating the importance of muscle contraction for zebrafish skeletal development. The shortening of skeletal elements was accompanied by prominent changes in cell morphology and organization. While in control the cells were elongated, chondrocytes in paralyzed zebrafish were smaller and exhibited a more rounded shape, confirmed by a reduction in their length-to-width ratio. The typical columnar organization of cells was affected too, as chondrocytes in various skeletal elements exhibited abnormal stacking patterns, indicating aberrant intercalation. Finally, we demonstrate impaired chondrocyte intercalation in growth plates of muscle-less Sp(d) mouse embryos, implying the evolutionary conservation of muscle force regulation of this essential morphogenetic process.Our findings provide a new perspective on the regulatory interaction between muscle contraction and skeletal morphogenesis by uncovering the role of muscle-induced mechanical loads in regulating chondrocyte intercalation in two different vertebrate models.
Subject(s)
Bone and Bones/embryology , Cartilage/embryology , Chondrocytes/physiology , Growth Plate/embryology , Muscle Contraction/physiology , Osteogenesis/physiology , Alcian Blue , Animals , Biomechanical Phenomena , Cartilage/anatomy & histology , Cell Movement/physiology , Cell Shape , Chondrocytes/cytology , Immunohistochemistry , In Situ Hybridization , Mice , Models, Statistical , Neural Crest/physiology , Phalloidine , ZebrafishABSTRACT
Manipulation of adrenergic signaling has been shown experimentally and clinically to affect hair follicle growth. In this study, we provide direct evidence that canonical cAMP/CRE-binding protein signaling through adrenergic receptors can regulate hair follicle stem cell (HFSC) activation and hair cycle. We found that CRE-binding protein activation is regulated through the hair cycle and coincides with HFSC activation. Both isoproterenol and procaterol, agonists of adrenergic receptors, show the capacity to activate the hair cycle in mice. Furthermore, deletion of ADRB2 receptor, which is thought to mediate sympathetic nervous system regulation of HFSCs, was sufficient to block HFSC activation. Downstream, stimulation of adenylyl cyclase with forskolin or inhibition of phosphodiesterase to increase cAMP accumulation or direct application of cAMP was each sufficient to promote HFSC activation and accelerate initiation of hair cycle. Genetic induction of a Designer Receptors Exclusively Activated by Designer Drug allele showed that G-protein coupled receptor/GαS stimulation, specifically in HFSCs, promoted the activation of the hair cycle. Finally, we provide evidence that G-protein coupled receptor/CRE-binding protein signaling can potentially act on HFSCs by promoting glycolytic metabolism, which was previously shown to stimulate HFSC activation. Together, these data provide mechanistic insights into the role of sympathetic innervation on HFSC function.
Subject(s)
Activating Transcription Factor 2/metabolism , Cyclic AMP/metabolism , Hair Follicle/physiology , Hair/physiology , Receptors, Adrenergic, beta-2/metabolism , Receptors, G-Protein-Coupled/metabolism , Stem Cells/physiology , Animals , Cell Differentiation , Glycolysis , Hair/pathology , Isoproterenol/metabolism , Keratin-15/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Procaterol/metabolism , Receptors, Adrenergic, beta-2/genetics , Signal Transduction , Sympathetic Nervous SystemABSTRACT
Epidermal stem cells display remarkable capacities to restore the barrier upon skin injury. In this issue of Cell Stem Cell, Huang et al. (2021) use innovative high-resolution intravital imaging to identify a vital function of sensory nerves in regulating a subset of epidermal stem cells for wound repair.
Subject(s)
Nerve Tissue , Wound Healing , Epidermal Cells , Stem CellsABSTRACT
The scapula is the main skeletal element of the pectoral girdle allowing muscular fixation of the forelimb to the axial skeleton. The vertebrate limb skeleton has traditionally been considered to develop from the lateral plate mesoderm, whereas the musculature originates from the axial somites. However, in birds, the scapular blade has been shown to develop from the somites. We investigated whether a somitic contribution was also present in the mammalian scapula. Using genetic lineage-tracing techniques, we show that the medial border of the mammalian scapula develops from somitic cells. The medial scapula border serves as the attachment site of girdle muscles (serratus anterior, rhomboidei and levator scapulae). We show that the development of these muscles is independent of the mechanism that controls the formation of all other limb muscles. We suggest that these muscles be specifically referred to as medial girdle muscles. Our results establish the avian scapular blade and medial border of the mammalian scapula as homologous structures as they share the same developmental origin.
Subject(s)
Scapula/embryology , Somites/physiology , Animals , Biological Evolution , Birds , Cell Differentiation/physiology , Humans , Mice , Models, Biological , Paired Box Transcription Factors/genetics , Scapula/anatomy & histologyABSTRACT
In vivo delivery of genome-modifying enzymes holds significant promise for therapeutic applications and functional genetic screening. Delivery to endogenous tissue stem cells, which provide an enduring source of cell replacement during homeostasis and regeneration, is of particular interest. Here, we use a sensitive Cre/lox fluorescent reporter system to test the efficiency of genome modification following in vivo transduction by adeno-associated viruses (AAVs) in tissue stem and progenitor cells. We combine immunophenotypic analyses with in vitro and in vivo assays of stem cell function to reveal effective targeting of skeletal muscle satellite cells, mesenchymal progenitors, hematopoietic stem cells, and dermal cell subsets using multiple AAV serotypes. Genome modification rates achieved through this system reached >60%, and modified cells retained key functional properties. This study establishes a powerful platform to genetically alter tissue progenitors within their physiological niche while preserving their native stem cell properties and regulatory interactions.
Subject(s)
Cell Differentiation , Dependovirus/genetics , Genome , Hematopoietic Stem Cells/cytology , Satellite Cells, Skeletal Muscle/cytology , Skin/cytology , Animals , Cell Movement , Dependovirus/classification , Female , Gene Transfer Techniques , Genetic Therapy , Hematopoietic Stem Cells/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Inbred mdx , Satellite Cells, Skeletal Muscle/metabolism , Skin/metabolismABSTRACT
Synovial joints comprise several tissue types, including articular cartilage, the capsule, and ligaments. All of these compartments are commonly assumed to originate from an early set of Gdf5-expressing progenitors populating the interzone domain. Here, we provide evidence that joints develop through a continuous influx of cells into the interzone, where they contribute differentially to forming joint tissues. Using a knockin Gdf5-CreER(T2) mouse, we show that early labeling of Gdf5-positive interzone cells failed to mark the entire organ. Conversely, multiple Cre activation steps indicated a contribution of these cells to various joint compartments later in development. Spatiotemporal differences between Gdf5 and tdTomato reporter expression support the notion of a continuous recruitment process. Finally, differential contribution of Gdf5-positive cells to various tissues suggests that the spatiotemporal dynamics of Gdf5 expression may instruct lineage divergence. This work supports the influx model of joint development, which may apply to other organogenic processes.
Subject(s)
Growth Differentiation Factor 5/metabolism , Joints/cytology , Joints/metabolism , Animals , Cell Lineage , Cell Proliferation , Gene Expression Regulation , Gene Knock-In Techniques , Integrases/metabolism , Mice , Models, Animal , Models, Biological , Morphogenesis , SOX9 Transcription Factor/metabolism , Stem Cells/cytologyABSTRACT
Spatial and temporal visualization of RNA transcripts in tissue is a key tool in studying both developmental and pathological processes. In situ hybridization is a highly sensitive method for RNA transcript detection. It is based on sequence complementation between a labeled RNA probe and the RNA transcript of interest. The labeled probe is then detected by immunohistochemical methods using an antibody conjugated to an enzyme that catalyzes the generation of chromogenic or fluorescent signals, which indicate the location of the transcript.
Subject(s)
Bone and Bones/metabolism , In Situ Hybridization/methods , Animals , Fluorescent Dyes , Mice , Microscopy, Fluorescence , RNA ProbesABSTRACT
During the assembly of the musculoskeletal system, bone ridges provide a stable anchoring point and stress dissipation for the attachment of muscles via tendons to the skeleton. In this study, we investigate the development of the deltoid tuberosity as a model for bone ridge formation. We show that the deltoid tuberosity develops through endochondral ossification in a two-phase process: initiation is regulated by a signal from the tendons, whereas the subsequent growth phase is muscle dependent. We then show that the transcription factor scleraxis (SCX) regulates Bmp4 in tendon cells at their insertion site. The inhibition of deltoid tuberosity formation and several other bone ridges in embryos in which Bmp4 expression was blocked specifically in Scx-expressing cells implicates BMP4 as a key mediator of tendon effects on bone ridge formation. This study establishes a mechanistic basis for tendon-skeleton regulatory interactions during musculoskeletal assembly and bone secondary patterning.
Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Morphogenetic Protein 4/metabolism , Gene Expression Regulation, Developmental , Osteogenesis , Tendons/embryology , Animals , Embryo, Mammalian/metabolism , MiceABSTRACT
During embryogenesis, organ development is dependent upon maintaining appropriate progenitor cell commitment. Synovial joints develop from a pool of progenitor cells that differentiate into various cell types constituting the mature joint. The involvement of the musculature in joint formation has long been recognized. However, the mechanism by which the musculature regulates joint formation has remained elusive. In this study, we demonstrate, utilizing various murine models devoid of limb musculature or its contraction, that the contracting musculature is fundamental in maintaining joint progenitors committed to their fate, a requirement for correct joint cavitation and morphogenesis. Furthermore, contraction-dependent activation of beta-catenin, a key modulator of joint formation, provides a molecular mechanism for this regulation. In conclusion, our findings provide the missing link between progenitor cell fate determination and embryonic movement, two processes shown to be essential for correct organogenesis.