ABSTRACT
Exploring phytochemicals from ethnomedicinal plants for pharmacological applications is a promising research area. By studying ethnomedicine, researchers can identify plants used for centuries to treat ailments and investigate their phytochemicals. Consequently, phytochemicals can be isolated, characterized, and tested for pharmacological activities, leading to new drug development. This research also helps preserve traditional knowledge and biodiversity. Lithospermum officinale L., found in Eurasia, Argentina (South), Colombia, and the United States, is valued for its medicinal properties, including anti-inflammatory, antioxidant, and antimicrobial effects. The current review emphasizes L. officinale L. as a significant reservoir of bioactive phytochemicals, with alkaloids, quinones, glucosides, phenolics, flavonoids, and lipids identified as the principal metabolites. It also unveils the unexplored potential of this plant for future research endeavors. Continued research on L. officinale L. can unlock its full potential, providing insights into its medicinal uses and contributing to biodiversity preservation.
Subject(s)
Medicine, Traditional , Phytochemicals , Phytochemicals/chemistry , Phytochemicals/pharmacology , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistryABSTRACT
Atraphaxis is a genus of flowering plants in the family Polygonaceae, with approximately 60 species. Species of Atraphaxis are much-branched woody plants, forming shrubs or shrubby tufts, primarily inhabiting arid zones across the temperate steppe and desert regions of Central Asia, America, and Australia. Atraphaxis species have been used by diverse groups of people all over the world for the treatment of various diseases. However, their biologically active compounds with therapeutic properties have not been investigated well. Studying the biologically active components of Atraphaxis laetevirens, Atraphaxis frutescens, Atraphaxis spinosa L., and Atraphaxis pyrifolia is crucial for several reasons. Firstly, it can unveil the therapeutic potential of these plants, aiding in the development of novel medicines or natural remedies for various health conditions. Understanding their bioactive compounds enables scientists to explore their pharmacological properties, potentially leading to the discovery of new drugs or treatments. Additionally, investigating these components contributes to preserving traditional knowledge and validating the historical uses of these plants in ethnomedicine, thus supporting their conservation and sustainable utilization. These herbs have been used as an anti-inflammatory and hypertension remedies since the dawn of time. Moreover, they have been used to treat a variety of gastrointestinal disorders and problems related to skin in traditional Kazakh medicine. Hence, the genus Atraphaxis can be considered as a potential medicinal plant source that is very rich in biologically active compounds that may exhibit great pharmacological properties, such as antioxidant, antibacterial, antiulcer, hypoglycemic, wound healing, neuroprotective, antidiabetic, and so on. This study aims to provide a collection of publications on the species of Atraphaxis, along with a critical review of the literature data. This review will constitute support for further investigations on the pharmacological activity of these medicinal plant species.
Subject(s)
Plants, Medicinal , Polygonaceae , Humans , Ethnopharmacology , Medicine, Traditional , Phytotherapy , Phytochemicals/pharmacology , Phytochemicals/therapeutic use , Phytochemicals/chemistry , Plant Extracts/chemistryABSTRACT
Numerous natural habitats, such as soil, air, fermented foods, and human stomachs, are home to different Bacillus strains. Some Bacillus strains have a distinctive predominance and are widely recognized among other microbial communities, as a result of their varied habitation and physiologically active metabolites. The present study collected vegetable products (potato, carrot, and tomato) from local markets in Almaty, Kazakhstan. The bacterial isolates were identified using biochemical and phylogenetic analyses after culturing. Our phylogenetic analysis revealed three Gram-positive bacterial isolates BSS11, BSS17, and BSS19 showing 99% nucleotide sequence similarities with Bacillus subtilis O-3, Bacillus subtilis Md1-42, and Bacillus subtilis Khozestan2. The crude extract was prepared from bacterial isolates to assess the antibiotic resistance potency and the antimicrobial potential against various targeted multidrug-resistant strains, including Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus group B, Streptococcus mutans, Candida albicans, Candida krusei, Pseudomonas aeruginosa, Shigella sonnei, Klebsiella pneumoniae, Salmonella enteritidis, Klebsiella aerogenes, Enterococcus hirae, Escherichia coli, Serratia marcescens, and Proteus vulgaris. This study found that the species that were identified have the ability to produce antibiotic chemicals. Additionally, the GC-MS analysis of three bacterial extracts revealed the presence of many antibiotic substances including phenol, benzoic acid, 1,2-benzenedicarboxylic acid and bis(2-methylpropyl), methoxyphenyl-oxime, and benzaldehyde. This work sheds light on the potential of Bacillus to be employed as an antimicrobial agent to target different multidrug-resistant bacterial strains. The results indicate that market vegetables may be a useful source of strains displaying a range of advantageous characteristics that can be used in the creation of biological antibiotics.
Subject(s)
Anti-Infective Agents , Bacillus , Humans , Anti-Bacterial Agents/pharmacology , Bacillus/genetics , Vegetables , Phylogeny , Bacillus subtilis , Escherichia coli , Microbial Sensitivity TestsABSTRACT
Bacillus species produce different classes of antimicrobial and antioxidant substances: peptides or proteins with different structural compositions and molecular masses and a broad range of volatile organic compounds (VOCs), some of which may serve as biomarkers for microorganism identification. The aim of this study is the identification of biologically active compounds synthesized by five Bacillus species using gas chromatography coupled to mass spectrometry (GC-MS). The current study profoundly enhances the knowledge of antibacterial and antioxidant metabolites ensuring the unambiguous identification of VOCs produced by some Bacillus species, which were isolated from vegetable samples of potato, carrot, and tomato. Phylogenetic and biochemical studies were used to identify the bacterial isolates after culturing. Phylogenetic analysis proved that five bacterial isolates BSS12, BSS13, BSS16, BSS21, and BSS25 showed 99% nucleotide sequence similarities with Bacillus safensis AS-08, Bacillus cereus WAB2133, Bacillus acidiproducens NiuFun, Bacillus toyonesis FORT 102, and Bacillus thuringiensis F3, respectively. The crude extract was prepared from bacterial isolates to assess the antibiotic resistance potency and the antimicrobial potential against various targeted multidrug-resistant strains, including yeast strains such as Candida albicans, Candida krusei, and bacterial strains of Enterococcus hirae, Escherichia coli, Klebsiella aerogenes, Klebsiella pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus group B, Streptococcus mutans, Shigella sonnei, Salmonella enteritidis, Serratia marcescens, Pseudomonas aeruginosa, and Proteus vulgaris. GC-MS analysis of bacterial strains found that VOCs from Bacillus species come in a variety of chemical forms, such as ketones, alcohols, terpenoids, alkenes, etc. Overall, 69 volatile organic compounds were identified from five Bacillus species, and all five were found to share different chemical classes of volatile organic components, which have a variety of pharmacological applications. However, eight antibacterial compounds with different concentrations were commonly found in all five species: acetoin, acetic acid, butanoic acid, 2-methyl-, oxime-, methoxy-phenyl, phenol, 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester, nonanoic acid, and hexadecanoic acid, methyl. The present study has demonstrated that bacterial isolates BSS25, BSS21, and BSS16 display potent inhibitory effects against Candida albicans, while BSS25, BSS21, and BSS13 exhibit the ability to restrain the growth and activity of Candida krusei. Notably, BSS25 and BSS21 are the only isolates that demonstrate substantial inhibitory activity against Klebsiella aerogenes. This disparity in inhibitory effects could be attributed to the higher concentrations of acetoin in BSS25 and BSS21, whereas BSS16 and BSS13 have relatively elevated levels of butanoic acid, 2-methyl-. Certainly, the presence of acetoin and butanoic acid, 2-methyl-, contributes to the enhanced antibacterial potential of these bacterial strains, in conjunction with other organic volatile compounds and peptides, among other factors. The biology and physiology of Bacillus can be better understood using these results, which can also be used to create novel biotechnological procedures and applications. Moreover, because of its exceptional ability to synthesize and produce a variety of different antibacterial compounds, Bacillus species can serve as natural and universal carriers for antibiotic compounds in the form of probiotic cultures and strains to fight different pathogens, including mycobacteria.
Subject(s)
Anti-Infective Agents , Bacillus , Enterobacter aerogenes , Volatile Organic Compounds , Anti-Bacterial Agents/chemistry , Gas Chromatography-Mass Spectrometry/methods , Volatile Organic Compounds/analysis , Antioxidants/pharmacology , Butyric Acid/pharmacology , Acetoin/analysis , Phylogeny , Anti-Infective Agents/pharmacology , Escherichia coli , Bacillus cereus , Peptides/pharmacology , Microbial Sensitivity TestsABSTRACT
Animal toxins that are used to subdue prey and deter predators act as the key drivers in natural food chains and ecosystems. However, the predators of venomous animals may exploit feeding adaptation strategies to overcome toxins their prey produce. Much remains unknown about the genetic and molecular game process in the toxin-dominant food chain model. Here, we show an evolutionary strategy in different trophic levels of scorpion-eating amphibians, scorpions and insects, representing each predation relationship in habitats dominated by the paralytic toxins of scorpions. For scorpions preying on insects, we found that the scorpion α-toxins irreversibly activate the skeletal muscle sodium channel of their prey (insect, BgNaV1) through a membrane delivery mechanism and an efficient binding with the Asp/Lys-Tyr motif of BgNaV1. However, in the predatory game between frogs and scorpions, with a single point mutation (Lys to Glu) in this motif of the frog's skeletal muscle sodium channel (fNaV1.4), fNaV1.4 breaks this interaction and diminishes muscular toxicity to the frog; thus, frogs can regularly prey on scorpions without showing paralysis. Interestingly, this molecular strategy also has been employed by some other scorpion-eating amphibians, especially anurans. In contrast to these amphibians, the Asp/Lys-Tyr motifs are structurally and functionally conserved in other animals that do not prey on scorpions. Together, our findings elucidate the protein-protein interacting mechanism of a toxin-dominant predator-prey system, implying the evolutionary game theory at a molecular level.