ABSTRACT
Lactic acid bacteria (LAB) have been recognized as safe microorganism that improve micro-flora disturbances and enhance immune response. A well-know traditional herbal medicine, Acanthopanax senticosus (As) was extensively utilized in aquaculture to improve growth performance and disease resistance. Particularly, the septicemia, skin wound and gastroenteritis caused by Aeromonas hydrophila threaten the health of aquatic animals and human. However, the effects of probiotic fermented with A. senticosus product on the immune regulation and pathogen prevention in fish remain unclear. Here, the aim of the present study was to elucidate whether the A. senticosus fermentation by Lactobacillus rhamnosus improve immune barrier function. The crucian carp were fed with basal diet supplemented with L. rhamnosus fermented A. senticosus cultures at 2 %, 4 %, 6 % and 8 % bacterial inoculum for 8 weeks. After trials, the weight gain rate (WGR), specific growth rate (SGR) were significantly increased, especially in LGG-6 group. The results confirmed that the level of the CAT, GSH-PX, SOD, lysozyme, and MDA was enhanced in fish received with probiotic fermented product. Moreover, the L. rhamnosus fermented A. senticosus cultures could trigger innate and adaptive immunity, including the up-regulation of the C3, C4, and IgM concentration. The results of qRT-PCR revealed that stronger mRNA transcription of IL-1ß, IL-10, IFN-γ, TNF-α, and MyD88 genes in the liver, spleen, kidney, intestine and gills tissues of fish treated with probiotic fermented with A. senticosus product. After infected with A. hydrophila, the survival rate of the LGG-2 (40 %), LGG-4 (50 %), LGG-6 (60 %), LGG-8 (50 %) groups was higher than the control group. Meanwhile, the pathological damage of the liver, spleen, head-kidney, and intestine tissues of probiotic fermentation-fed fish could be alleviated after pathogen infection. Therefore, the present work indicated that L. rhamnosus fermented A. senticosus could be regard as a potential intestine-target therapy strategy to protecting fish from pathogenic bacteria infection.
Subject(s)
Aeromonas hydrophila , Antioxidants , Carps , Eleutherococcus , Fermentation , Fish Diseases , Lacticaseibacillus rhamnosus , Probiotics , Animals , Lacticaseibacillus rhamnosus/metabolism , Carps/microbiology , Probiotics/pharmacology , Probiotics/administration & dosage , Antioxidants/metabolism , Fish Diseases/prevention & control , Fish Diseases/microbiology , Fish Diseases/immunology , Gram-Negative Bacterial Infections/veterinary , Gram-Negative Bacterial Infections/prevention & control , Gram-Negative Bacterial Infections/immunology , Animal Feed , Inflammation/prevention & control , Cytokines/metabolism , AquacultureABSTRACT
Aeromonas veronii is a gram-negative pathogen capable of infecting both fish and mammals, including humans, and natural infection in fish results in irreparable damage to the aquaculture industry. Lactic acid bacteria (LAB) have a number of properties that make them attractive candidates as delivery vehicles for presentation to the mucosa sites of compounds with pharmaceutical interest, in particular vaccines. In this study, we generated two recombinant Lactobacillus casei (surface-displayed or secretory) expressing the OmpAI of A.veronii and evaluated the effect on immune responses in fish model. A 1022 bp gene fragment of the 42 kDa OmpAI antigen of A.veronii was cloned into pPG-1 (surface-displayed) and pPG-2 (secretory) and electrotransformed into Lactobacillus casei CC16. The recombinant plasmid in L.casei could be stably inherited over 50 generations, and production of OmpAI protein had slight limited effects on cells growth. Treatment of common carp with the recombinant vaccine candidate stimulated high serum or skin mucus specific antibody titers and induced a higher lysozyme, ACP, SOD activity, while fish fed with Lc-pPG or PBS had no detectable immobilizing immune responses. Expression of IL-10, IL-ß, IFN-γ, TNF-α genes in the group immunized with recombinant L.casei were significantly (P < 0.05) up regulated as compared with control groups, indicating that inflammatory response and cell immune response were triggered. Further, viable recombinant L.casei strains were directly delivered and survive throughout the intestinal tract, the recombinant OmpAI was also detected in intestine mucosal. The results showed that common carp received Lc-pPG1-OmpAI (66.7%) and Lc-pPG2-OmpAI (50.0%) had higher survival rates compared with the controls after challenge with A.veronii, indicating that Lc-pPG1-OmpAI and Lc-pPG2-OmpAI had beneficial effects on immune response and enhanced disease resistance of common carp against A.veronii infection. Our study here demonstrates, for the first time, the ability of recombinant L.casei as oral vaccine against A.veronii infection in carps. The combination of OmpAI delivery and LAB approach may be a promising mucosal therapeutic agent for treating and controlling A.veronii.
Subject(s)
Bacterial Outer Membrane Proteins/immunology , Bacterial Vaccines/therapeutic use , Carps , Fish Diseases/prevention & control , Gram-Negative Bacterial Infections/veterinary , Immunization/veterinary , Lacticaseibacillus casei/immunology , Administration, Oral , Aeromonas veronii/immunology , Animals , Fish Diseases/immunology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/prevention & control , Vaccines, Synthetic/therapeutic useABSTRACT
This study investigated the effects of the ß-mannanase enzyme and soyhulls on production performance, economics, egg quality, hematology and serum biochemistry, nutrient digestibility, gut morphology, digesta viscosity, and excreta consistency in laying hens during the late peak production phase (37 to 40 weeks of age). Golden brown hens (RIR × Fayoumi; n = 200) were fed a control diet (no soyhulls or enzymes) and diets containing four combinations, i.e., 3% soyhulls with 20 mg/kg ß-mannanase (D1), 3% soyhulls with 30 mg/kg ß-mannanase (D2), 9% soyhulls with 20 mg/kg ß-mannanase (D3), and 9% soyhulls with 30 mg/kg ß-mannanase (D4), for four weeks in four replicates of 10 birds each. Overall, a significantly higher (p < 0.05) feed intake, weight gain, feed conversion ratio, and water intake were calculated in the D2 group as compared to the control and remaining combinations of soyhulls and ß-mannanase. No mortality was recorded during the entire experiment. Economically, the D1 and D2 groups showed the best results as compared to the D3 and D4 groups. Egg quality parameters like egg weight, shell weight and shell thickness, yolk weight, albumen weight and height, and the Haugh unit remained unchanged (p > 0.05). Similarly, the D2 group showed significantly lower total cholesterol, LDL, and VLDL levels and enhanced gut morphology with greater villus width, height, crypt depth, and surface area across intestinal segments. Crude protein (CP), crude fiber (CF), crude fat, and ash digestibility were higher (p < 0.05) in the D1 and D2 groups compared to the control. Digesta viscosity, excreta consistency, and other egg quality parameters remained unaffected. In conclusion, the dietary inclusion of a combination of 3% soyhulls and 30 mg/kg ß-mannanase may have potential benefits for laying hens by improving some production performance and egg quality indicators and economics, lowering blood cholesterol, LDL, and VLDL levels, enhancing nutrient digestibility, and improving gut morphology without affecting egg quality.