Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
J Physiol ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38533641

ABSTRACT

Sympathoexcitation is a hallmark of hypoxic exposure, occurring acutely, as well as persisting in acclimatised lowland populations and with generational exposure in highland native populations of the Andean and Tibetan plateaus. The mechanisms mediating altitude sympathoexcitation are multifactorial, involving alterations in both peripheral autonomic reflexes and central neural pathways, and are dependent on the duration of exposure. Initially, hypoxia-induced sympathoexcitation appears to be an adaptive response, primarily mediated by regulatory reflex mechanisms concerned with preserving systemic and cerebral tissue O2 delivery and maintaining arterial blood pressure. However, as exposure continues, sympathoexcitation is further augmented above that observed with acute exposure, despite acclimatisation processes that restore arterial oxygen content ( C a O 2 ${C_{{\mathrm{a}}{{\mathrm{O}}_{\mathrm{2}}}}}$ ). Under these conditions, sympathoexcitation may become maladaptive, giving rise to reduced vascular reactivity and mildly elevated blood pressure. Importantly, current evidence indicates the peripheral chemoreflex does not play a significant role in the augmentation of sympathoexcitation during altitude acclimatisation, although methodological limitations may underestimate its true contribution. Instead, processes that provide no obvious survival benefit in hypoxia appear to contribute, including elevated pulmonary arterial pressure. Nocturnal periodic breathing is also a potential mechanism contributing to altitude sympathoexcitation, although experimental studies are required. Despite recent advancements within the field, several areas remain unexplored, including the mechanisms responsible for the apparent normalisation of muscle sympathetic nerve activity during intermediate hypoxic exposures, the mechanisms accounting for persistent sympathoexcitation following descent from altitude and consideration of whether there are sex-based differences in sympathetic regulation at altitude.

2.
J Physiol ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687185

ABSTRACT

During acute hypoxic exposure, cerebral blood flow (CBF) increases to compensate for the reduced arterial oxygen content (CaO2). Nevertheless, as exposure extends, both CaO2 and CBF progressively normalize. Haemoconcentration is the primary mechanism underlying the CaO2 restoration and may therefore explain, at least in part, the CBF normalization. Accordingly, we tested the hypothesis that reversing the haemoconcentration associated with extended hypoxic exposure returns CBF towards the values observed in acute hypoxia. Twenty-three healthy lowlanders (12 females) completed two identical 4-day sojourns in a hypobaric chamber, one in normoxia (NX) and one in hypobaric hypoxia (HH, 3500 m). CBF was measured by ultrasound after 1, 6, 12, 48 and 96 h and compared between sojourns to assess the time course of changes in CBF. In addition, CBF was measured at the end of the HH sojourn after hypervolaemic haemodilution. Compared with NX, CBF was increased in HH after 1 h (P = 0.001) but similar at all later time points (all P > 0.199). Haemoglobin concentration was higher in HH than NX from 12 h to 96 h (all P < 0.001). While haemodilution reduced haemoglobin concentration from 14.8 ± 1.0 to 13.9 ± 1.2 g·dl-1 (P < 0.001), it did not increase CBF (974 ± 282 to 872 ± 200 ml·min-1; P = 0.135). We thus conclude that, at least at this moderate altitude, haemoconcentration is not the primary mechanism underlying CBF normalization with acclimatization. These data ostensibly reflect the fact that CBF regulation at high altitude is a complex process that integrates physiological variables beyond CaO2. KEY POINTS: Acute hypoxia causes an increase in cerebral blood flow (CBF). However, as exposure extends, CBF progressively normalizes. We investigated whether hypoxia-induced haemoconcentration contributes to the normalization of CBF during extended hypoxia. Following 4 days of hypobaric hypoxic exposure (corresponding to 3500 m altitude), we measured CBF before and after abolishing hypoxia-induced haemoconcentration by hypervolaemic haemodilution. Contrary to our hypothesis, the haemodilution did not increase CBF in hypoxia. Our findings do not support haemoconcentration as a stimulus for the CBF normalization during extended hypoxia.

3.
J Physiol ; 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38408065

ABSTRACT

Hypoxia at high altitude facilitates changes in ventilatory control that can lead to nocturnal periodic breathing (nPB). Here, we introduce a placebo-controlled approach to prevent nPB by increasing inspiratory CO2 and used it to assess whether nPB contributes to the adverse effects of hypoxia on sleep architecture. In a randomized, single-blinded, crossover design, 12 men underwent two sojourns (three days/nights each, separated by 4 weeks) in hypobaric hypoxia corresponding to 4000 m altitude, with polysomnography during the first and third night of each sojourn. During all nights, subjects' heads were encompassed by a canopy retaining exhaled CO2 , and CO2 concentration in the canopy (i.e. inspiratory CO2 concentration) was controlled by adjustment of fresh air inflow. Throughout the placebo sojourn inspiratory CO2 was ≤0.2%, whereas throughout the other sojourn it was increased to 1.76% (IQR, 1.07%-2.44%). During the placebo sojourn, total sleep time (TST) with nPB was 54.3% (37.4%-80.8%) and 45.0% (24.5%-56.5%) during the first and the third night, respectively (P = 0.042). Increased inspiratory CO2 reduced TST with nPB by an absolute 38.1% (28.1%-48.1%), the apnoea-hypopnoea index by 58.1/h (40.1-76.1/h), and oxygen desaturation index ≥3% by 56.0/h (38.9.1-73.2/h) (all P < 0.001), whereas it increased the mean arterial oxygen saturation in TST by 2.0% (0.4%-3.5%, P = 0.035). Increased inspiratory CO2 slightly increased the percentage of N3 sleep during the third night (P = 0.045), without other effects on sleep architecture. Increasing inspiratory CO2 effectively prevented hypoxia-induced nPB without affecting sleep macro-architecture, indicating that nPB does not explain the sleep deterioration commonly observed at high altitudes. KEY POINTS: Periodic breathing is common during sleep at high altitude, and it is unclear how this affects sleep architecture. We developed a placebo-controlled approach to prevent nocturnal periodic breathing (nPB) with inspiratory CO2 administration and used it to assess the effects of nPB on sleep in hypobaric hypoxia. Nocturnal periodic breathing was effectively mitigated by an increased inspiratory CO2 fraction in a blinded manner. Prevention of nPB did not lead to relevant changes in sleep architecture in hypobaric hypoxia. We conclude that nPB does not explain the deterioration in sleep architecture commonly observed at high altitude.

4.
Eur Heart J Cardiovasc Pharmacother ; 10(4): 316-328, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38216517

ABSTRACT

BACKGROUND: An increasing number of hypertensive persons travel to high altitude (HA) while using antihypertensive medications such as beta-blockers. Nevertheless, while hypoxic exposure initiates an increase in pulmonary artery pressure (Ppa) and pulmonary vascular resistance (PVR), the contribution of the autonomic nervous system is unclear. In animals, beta-adrenergic blockade has induced pulmonary vasoconstriction in normoxia and exaggerated hypoxic pulmonary vasoconstriction (HPV) and both effects were abolished by muscarinic blockade. We thus hypothesized that in humans, propranolol (PROP) increases Ppa and PVR in normoxia and exaggerates HPV, and that these effects of PROP are abolished by glycopyrrolate (GLYC). METHODS: In seven healthy male lowlanders, Ppa was invasively measured without medication, with PROP and PROP + GLYC, both at sea level (SL, 488 m) and after a 3-week sojourn at 3454 m altitude (HA). Bilateral thigh-cuff release manoeuvres were performed to derive pulmonary pressure-flow relationships and pulmonary vessel distensibility. RESULTS: At SL, PROP increased Ppa and PVR from (mean ± SEM) 14 ± 1 to 17 ± 1 mmHg and from 69 ± 8 to 108 ± 11 dyn s cm-5 (21% and 57% increase, P = 0.01 and P < 0.0001). The PVR response to PROP was amplified at HA to 76% (P < 0.0001, P[interaction] = 0.05). At both altitudes, PROP + GLYC abolished the effect of PROP on Ppa and PVR. Pulmonary vessel distensibility decreased from 2.9 ± 0.5 to 1.7 ± 0.2 at HA (P < 0.0001) and to 1.2 ± 0.2 with PROP, and further decreased to 0.9 ± 0.2% mmHg-1 with PROP + GLYC (P = 0.01). CONCLUSIONS: Our data show that beta-adrenergic blockade increases, and muscarinic blockade decreases PVR, whereas both increase pulmonary artery elastance. Future studies may confirm potential implications from the finding that beta-adrenergic blockade exaggerates HPV for the management of mountaineers using beta-blockers for prevention or treatment of cardiovascular conditions.


Subject(s)
Adrenergic beta-Antagonists , Altitude , Hypoxia , Propranolol , Pulmonary Artery , Vascular Resistance , Vasoconstriction , Male , Humans , Vascular Resistance/drug effects , Vasoconstriction/drug effects , Adult , Pulmonary Artery/drug effects , Pulmonary Artery/physiopathology , Adrenergic beta-Antagonists/pharmacology , Hypoxia/physiopathology , Propranolol/pharmacology , Glycopyrrolate/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL